
Vol. 29 no. 3 2013, pages 308–315
BIOINFORMATICS ORIGINAL PAPER doi:10.1093/bioinformatics/bts690

Genome analysis Advance Access publication November 29, 2012

Musket: a multistage k-mer spectrum-based error corrector

for Illumina sequence data
Yongchao Liu1,*, Jan Schröder2 and Bertil Schmidt1,*
1Institut für Informatik, Johannes Gutenberg Universität Mainz, Mainz 55099, Germany and 2Department of Computing
and Information Systems, The University of Melbourne, Parkville 3010, Australia

Associate Editor: Martin Bishop

ABSTRACT

Motivation: The imperfect sequence data produced by next-

generation sequencing technologies have motivated the development

of a number of short-read error correctors in recent years. The majority

of methods focus on the correction of substitution errors, which are

the dominant error source in data produced by Illumina sequencing

technology. Existing tools either score high in terms of recall or preci-

sion but not consistently high in terms of both measures.

Results: In this article, we present Musket, an efficient multistage

k-mer-based corrector for Illumina short-read data. We use the

k-mer spectrum approach and introduce three correction techniques

in a multistage workflow: two-sided conservative correction, one-

sided aggressive correction and voting-based refinement. Our per-

formance evaluation results, in terms of correction quality and de

novo genome assembly measures, reveal that Musket is consistently

one of the top performing correctors. In addition, Musket is multi-

threaded using a master–slave model and demonstrates superior par-

allel scalability compared with all other evaluated correctors as well as

a highly competitive overall execution time.

Availability: Musket is available at http://musket.sourceforge.net.

Contact: liuy@uni-mainz.de or bertil.schmidt@uni-mainz.de

Supplementary information: Supplementary data are available at

Bioinformatics online.

Received on August 20, 2012; revised on October 24, 2012; accepted

on November 26, 2012

1 INTRODUCTION

The emergence and rapid progress of next-generation sequencing

(NGS) technologies has enabled the high-throughput production

of short DNA sequences (reads) at low cost. The ever increasing

throughput and decreasing cost has significantly altered the land-

scape of whole-genome sequencing, providing an opportunity for
scientists to initiate whole-genome sequencing projects for almost

any organism, including those whose genomes span billions of

base pairs, such as the giant panda (Li et al., 2010a) and humans

(Li et al., 2010b). Many NGS sequencing technologies have been

developed, among which Illumina is most widely used. However,
reads produced from NGS platforms are never perfect and can

contain various types of sequencing errors, including substitu-

tions and indels (insertions or deletions). These sequencing

errors complicate data processing for many biological applica-

tions such as de novo genome assembly (Salzberg et al., 2012) and

short-read mapping (Liu et al., 2012; Salmela and Schröder,

2011).
To improve data quality, one frequently used approach is to

trim reads from the more error-prone 30–ends, which unfortu-
nately results in loss of information (Yang et al., 2012). This has

ignited the interest of researchers in conceiving more sophisti-

cated algorithms to detect and correct sequencing errors in NGS
data, for example, Schröder et al. (2009). As substitution is the

dominant error type for data produced by Illumina sequencing
technology, most approaches focus on correcting this type of

errors (Yang et al., 2012). The core of substitution-error-based

methods is to compute consensus bases using the highly redun-
dant coverage information. When a sequencing error occurs in a

read that originated from a certain position on the genome, all
reads covering the erroneous position could be piled up to com-

pute the consensus base. Considering that sequencing errors are

generally random and infrequent, this consensus base is likely to
be correct. However, as we assume that the source genome is

unknown beforehand, we can neither determine the read loca-
tions on the genome nor the correctness of reads directly.

Instead, reads that cover overlapping genomic positions can be

inferred by assuming that they typically share common sub-
strings. Furthermore, we can approximate the source genome

using a k-mer spectrum, which was first introduced by Pevzner
et al. (2001). Given a dataset with sufficient coverage of a

genome, the k-mer spectrum is defined as the set of all k-mers
in the dataset, where the k-mers whose multiplicity exceeds a

coverage cut-off are deemed to be trusted and otherwise,

untrusted. The first k-mer spectrum-based corrector was pro-
posed by Pevzner et al. (2001), using an iterative spectral align-

ment problem approach. CUDA-EC (Shi et al., 2010) and
DecGPU (Liu et al., 2011a) accelerated this spectral alignment

problem approach using graphics processing unit computing. To

further improve correcting quality, Chaisson et al. (2004) intro-
duced a dynamic programming approach that corrects errors by

minimizing edit distances. The SOAP corrector (Li et al., 2010b)
adopted a similar approach. Quake (Kelley et al., 2010) intro-

duced a probabilistic model derived from base quality scores of

reads. For a k-mer, Quake accumulates the correctness probabil-
ity of all its occurrences and defines this sum as the multiplicity

of the k-mer, instead of just the number of occurrences. Reptile
(Yang et al., 2010) relies on a Hamming graph to resolve ambi-

guities for a tile-based correction, whereas Hammer (Medvedev

et al., 2011) combines the Hamming graph with a probabilistic
model to deal with datasets with non-uniform coverage. HiTEC

(Ilie et al., 2011) supports multiple k-mer sizes in a single launch*To whom correspondence should be addressed.

308 � The Author 2012. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/29/3/308/257257 by guest on 10 April 2024

http://musket.sourceforge.net
http://bioinformatics.oxfordjournals.org/cgi/content/full/bts690/DC1


and relies on witness clusters that are constructed from suffix
arrays. SGA (Simpson and Durbin, 2012) uses a memory-
efficient Burrows Wheeler transform (Burrows and Wheeler,

1994) and an FM-index (Ferragina and Manzini, 2005) to rep-
resent the k-mer spectrum. In addition to k-mer spectrum-based
approaches, some correctors based on other techniques have

been developed. SHREC (Schröder et al., 2009) uses a general-
ized suffix trie to detect and correct substitution errors, which is

further extended by Hybrid SHREC (Salmela, 2010) to addition-
ally correct indels. Coral (Salmela and Schröder, 2011) and
ECHO (Kao et al., 2011) are two correctors that use the concept

of multiple sequence alignment, using k-mers as seeds. Coral
corrects errors by constructing consensus sequences from mul-
tiple alignments, and ECHO by computing consensus bases

using a maximum-a-posterior estimate over position specific sub-
stitution matrices.
In this article, we present Musket (multistage K-mer spectrum-

based corrector), an efficient substitution-error-based corrector
for Illumina sequence data based on a k-mer spectrum approach

(Pevzner et al., 2001). We introduce three techniques, namely,
two-sided conservative correction, one-sided aggressive correc-
tion and voting-based refinement, to form a multistage correc-

tion workflow. The performance of Musket is evaluated using
both simulated and real datasets for short-read data originating
from small-sized (Escherichia coli), medium-sized (human

chromosome 21) and large-sized (human chromosome 1) gen-
omes. In terms of correction quality, Musket is consistently
one of the top performing correctors compared with HiTEC,

SGA, SHREC, Coral, Quake, Reptile and DecGPU. In terms
of de novo genome assembly using the SGA assembler (Simpson

and Durbin, 2012), Musket yields better performance than all
other evaluated correctors with respect to some commonly used
metrics. In addition, Musket provides support for multi-

threading using a master–slave model and demonstrates superior
scalability on a shared-memory multi-CPU workstation, as well
as highly competitive overall execution speed.

2 METHODS

Musket consists of two stages: k-mer spectrum construction and error

correction. For k-mer spectrum construction, Musket counts the number

of occurrences of all non-unique k-mers using a combination of a Bloom

filter (Bloom, 1970) and a hash table. This k-mer counting approach has

been introduced by Melsted and Pritchard (2011) and has been shown to

be able to significantly reduce the memory footprint for large datasets.

Musket automatically estimates the coverage cut-off from the coverage

histogram of all non-unique k-mers. For error correction, Musket intro-

duces three techniques, namely, two-sided conservative correction,

one-sided aggressive correction and voting-based refinement. In addition,

Musket has been parallelized using multi-threading to benefit from the

compute power of common multi-CPU systems.

2.1 K-mer spectrum construction

2.1.1 Parallelized k-mer counting K-mer counting based on a

Bloom filter generally comprises three steps. Step 1 filters out as many

unique k-mers as possible using a Bloom filter, storing all non-unique

k-mers in a hash table. Because of the false-positive probability of a

Bloom filter, some unique k-mers are likely to exist in the hash table.

Step 2 computes the multiplicity of each k-mer in the hash table to de-

termine the unique k-mers that are occasionally stored in the hash table.

Step 3 removes all unique k-mers from the hash table, leaving all

non-unique k-mers in the hash table. We have parallelized this k-mer

counting using multi-threading to leverage the compute power of multiple

CPU cores.

Our parallelization strategy uses the master–slave model, a typical par-

allelization paradigm in which masters are dedicated to task distribution,

and slaves are assigned to work on individual tasks. Typically, there is

only one master in many applications using the master–slave model.

Instead, we have used multiple masters in Musket (Fig. 1a) to avoid

the case in which the task distribution becomes a new bottleneck as the

number of slaves grows larger. In general, the model is configured to have

more slaves than masters. However, to maximize performance, the

slave-to-master ratio must be carefully chosen. Our experiments indicate

that a 3:1 ratio is good for Musket. In the following, we describe in detail

the tasks that the masters and slaves perform in each step.

In Step 1, the masters fetch reads in parallel from the input file, where

mutually exclusive accesses to the file are guaranteed by locks, and then

distribute all k-mers in the reads to the slaves. The distribution of a k-mer

requires the destination slave to be determined deterministically and ef-

ficiently from the k-mer itself. Thus, we compute the destination slave

from the canonical k-mer, which is defined as the smaller numerical rep-

resentation of the k-mer and its reverse complement. Once the destination

slave is determined, the canonical k-mer is transferred to the slave

through the corresponding communication channels. All slaves listen to

their corresponding communication channels and start processing k-mers

once they arrive. Each slave holds a local Bloom filter and a local hash

table to capture all non-unique k-mers as well as filter out as many unique

k-mers. When a k-mer arrives, the slave performs membership lookup in

the local Bloom filter for the k-mer. If the k-mer is queried to exist in the

Bloom filter, the slave inserts it into the local hash table because it is likely

to have more than one occurrence and into the Bloom filter, otherwise.

After completing this step, all non-unique k-mers are definitely stored in

all local hash tables of all slaves, and the number of unique k-mers oc-

casionally existing in all hash tables depends on the false-positive prob-

ability rate of all local Bloom filters. Because of the independence of the

local Bloom filters and hash tables, this step does not require any syn-

chronization between the slave threads, which greatly benefits efficiency.

In Step 2, the masters follow the same procedure as in Step 1, whereas

all slaves listen to their corresponding communication channels and wait

for the arrival of k-mers. Once a k-mer arrives, a slave queries the exist-

ence of the k-mer in the local hash table. If present, the multiplicity of the

k-mer is increased by one. After completing this step, each slave holds the

multiplicity of each k-mer stored in its hash table, which is used to de-

termine the uniqueness of a k-mer. In Step 3, the masters are idle, and

each slave deletes all unique k-mers from its hash table. After finishing

this step, each slave holds a partition of the set of all non-unique k-mers

in the input reads. For Steps 1 and 2, a hybrid combination of Pthreads

and OpenMP parallel programming models is used to implement the

master–slave model. For Step 3, only OpenMP model is used.

(a) (b)

Fig. 1. (a) The master–slave model used in Musket (0� I5j5#masters

and 0� u5k5v5#slaves). (b) The k-mer coverage histograms of two

datasets with different coverage

309

Musket

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/29/3/308/257257 by guest on 10 April 2024



2.1.2 Coverage cut-off estimation K-mer coverage histograms are

frequently used to determine the coverage cut-off for a k-mer spectrum. A

k-mer coverage histogram illustrates a mixture of two distributions: one

for the coverage of likely correct k-mers and the other for spurious

k-mers. In theory, the coverage of true k-mers follows a Poisson distri-

bution, but the biases in Illumina sequencing add variance (Dohm et al.,

2008). Hence, the coverage of true k-mers can be modelled as a normal

distribution or a mixture of multiple distributions (e.g. Quake models it

by mixing a normal distribution and a Zeta distribution). The coverage of

spurious k-mers can be modelled as a Poisson distribution (Chaisson

et al., 2009) or as a Gamma distribution (Kelley et al., 2010).

Figure 1b shows two k-mer coverage histograms constructed from all

non-unique 21mers in two real datasets, which are generated by randomly

sampling reads from a high-coverage real dataset sequenced from an

E.coli K12 MG1665 sample, which has accession number ERR022075

in the NCBI sequence read archive (SRA), to form a 30� and 70�

coverage of the E.coli genome, respectively. The two curves share similar

trends. As the multiplicity increases, the density (i.e. the number of k-mers

with the same multiplicity) goes down sharply and then climbs up and

down following a bell shape, thus forming a valley at the beginning of

each curve. The area around the valley is generally considered as the

watershed to separate the true k-mers from the spurious ones. The

k-mers distributed at the right of the valley are supposed to be true

k-mers (trusted) and the ones on the opposite side to be spurious

(untrusted). Some correctors have proposed methods to automatically

estimate the coverage cut-off. HiTEC determines the cut-off by computing

the minimal support that makes the expected number of correct witness

pairs greater than that of incorrect ones for a specific witness. Quake

calculates it by using the Broyden–Fletcher–Goldfarb–Shanno method

implemented in R to compute the likelihood ratio of trusted k-mers to

untrusted ones for various coverage values. However, the curve of a

k-mer coverage distribution is not always smooth enough, and thus some-

times causes Quake to fail. After examining histograms from some data-

sets, we found that the multiplicity corresponding to the smallest density

around the valley is an appropriate estimation of the cut-off. Hence,

Musket chooses that multiplicity as the coverage cut-off, by default. In

addition, Musket provides a parameter to allow users to specify the

cut-off.

2.2 Error correction

The error correction stage adopts a multistage workflow (Fig. 2). The

core of the workflow relies on three techniques: two-sided conservative

correction, one-sided aggressive correction and voting-based refinement.

2.2.1 Two-sided conservative correction Our two-sided correc-

tion starts with the classification of trusted and untrusted bases for a

read. If a base is covered by any trusted k-mer, the base is deemed to

be trusted and untrusted, otherwise. The untrusted bases are considered

as potential sequencing errors (only considering substitutions). The time

complexity of this classification procedure is O(L) for a L-length read,

assuming the querying of a k-mer in the hash table takes constant time.

For a sequencing error occurring at position i of a read of l bases, it

causes up to min{k, i, l�i} erroneous k-mers. In this context, our

two-sided correction conservatively assumes that there is at most one

substitution error in any k-mer of a read—an assumption that is relaxed

in later stages of the algorithm. Under this assumption, our two-sided

correction aims to find a unique alternative base that makes all k-mers

that cover position i trusted. In this case, we might need to examine up to

k k-mers while correcting a single untrusted base, resulting in high com-

putational overhead. Hence, Musket chooses to only evaluate both the

leftmost and the rightmost k-mers that cover position i on the read, sig-

nificantly improving speed. For a single base, if more than one alternative

is found to make both the leftmost and the rightmost k-mers trusted, the

base will keep unchanged as a result of ambiguity. For a read, the

two-sided correction will be executed for a fixed number of iterations

(default¼ 2) or until no base change is made. As a constant number of

k-mer membership queries are conducted for an untrusted base, the time

complexity of the overall two-sided correction can be inferred as O(L).

2.2.2 One-sided aggressive correction When two or more sequen-

cing errors occur in a single k-mer, it is impossible to correct these errors

using the two-sided correction. In this context, we propose a one-sided

correction to aggressively correct errors in the case of more than one error

occurring in a single k-mer. The core idea is as follows. Given a read R,

define Ri to denote the base at position i of R, and Ri,k to denote the k-

mer starting at position i. If Ri,k is trusted, but Riþ 1,k is untrusted, the

base Riþ k is likely to be a sequencing error. Our one-sided correction

aims to find an alternative of Riþ k that yields a trusted Riþ 1,k. Unlike

the two-sided correction, this correction selects the alternative, which

makes the resulting trusted k-mer Riþ 1,k have the largest multiplicity, if

more than one alternative is found.

Our one-sided correction begins with the location of trusted regions for

a read. A trusted region means that every base in this region is trusted,

thus having a minimum length of k. For each trusted region, error cor-

rections are conducted towards each of the two orientations on the read.

For each orientation, the error correction process does not stop until it

either reaches a neighbouring trusted region or fails to correct the current

base. This correction approach is effective but has the drawback that it

strictly relies on the correctness of k-mer Ri,k. If Ri,k does contain sequen-

cing errors but is deemed to be trusted, this one-sided correction is pos-

sible to cause cumulative incorrect corrections, mutating a series of

correct bases to incorrect ones. To reduce this negative effect, we have

introduced two tricks: look-ahead validation and voting-based refine-

ment. The look-ahead validation assesses the trustiness of a predefined

maximal number (default¼ 2) of neighbouring k-mers that cover the base

position at which a sequencing error likely occurs. If all evaluated k-mers

are trusted for a certain alternative on that position, this alternative is

reserved as one potential correction. The voting-based refinement is used

after completing one-sided correction and will be described in more de-

tails in the following.

In addition, we use a constraint on the number Nc (default �4) of

corrections that are allowed in any k-mer of a read. During the correcting

process, we track the number of corrections that have been made in any

k-mer. For a k-mer, once Nc exceeds the constraint, all corrections made

Fig. 2. Error correction workflow: (i) two-sided conservative correction is

performed using multiple iterations; (ii) one-sided aggressive correction is

directly followed by voting-based refinement; and (iii) the combination of

one-sided correction and voting-based refinement is conducted in mul-

tiple iterations

310

Y.Liu et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/29/3/308/257257 by guest on 10 April 2024



in the k-mer will be disregarded. In Musket, the one-sided correction is

conducted for each integer value from 1 to the maximal allowable

number of corrections to confine the number of false-positive errors.

The time complexity can also be inferred as O(L), same as for the

two-sided correction.

2.2.3 Voting-based refinement The voting-based refinement uses

the same voting algorithm as used in DecGPU with the difference that

Musket only considers the unique alternative base with the highest votes

at a certain position. More details about the voting-algorithm can be

obtained from Liu et al. (2011). This voting-based refinement is used

because it introduces the fewest new errors, even though it does not cor-

rect as many errors as other correctors (see Section 3). Through our

experiments, this approach does facilitate the reduction of the number

of new errors from the one-sided correction. As the voting algorithm

checks all possible base substitutions in any k-mer, the time complexity

of this approach can be calculated as O(k�L).

3 RESULTS

We have evaluated the performance of Musket using both simu-

lated and real short-read datasets from the following three per-
spectives: (i) correction quality; (ii) impact on de novo genome

assembly quality; and (iii) speed, parallel scalability and memory

consumption. Performance is compared with several publicly
available correctors: HiTEC (v1.0.2), SGA (v0.9.18), SHREC

(v2.2), Coral (v1.4), Quake (v0.3.1), Reptile (v1.1) and

DecGPU (v1.0.6). For all correctors, we have used the default
settings and disabled read trimming/discarding. For Coral, we

have disabled the correction of indels. As Quake sometimes ex-

ceptionally exits, we have manually run each step of Quake in
this article. All tests are conducted on a workstation with 2

six-core Intel Xeon X5650 2.67GHzCPUs and 96GB random

access memory, running Linux (Ubuntu 12.04 LTS).

3.1 Correction quality assessment

Several previous publications (Ilie et al., 2011; Liu et al., 2011a;

Schröder et al., 2009; Yang et al., 2010) assessed correction per-
formance based on a binary read classifier that differentiates

correct reads from incorrect ones. We have decided not to use

this metric in our study because it does not reflect the ability to
detect and correct individual erroneous bases or the risk of intro-

ducing new errors by wrongly mutating correct bases. Instead,

we have evaluated the performance using a binary base classifier
that takes into account how many erroneous bases are success-

fully corrected as well as how many new base errors are

introduced.
Both simulated and real reads are used for assessment. For

simulated reads, they are simulated from three references of vary-
ing complexity and length: the E.coli K12 MG1665 strain

(NC_000913) of length 4 639 675 bases, human chromosome 21

(Chr21) of length 48129 895 bases and human chromosome 1
(Chr1) of length 249 250 621 bases. As Quake relies on base qual-

ity scores, we further mimic the real quality scores for the simu-
lated reads by extracting quality scores from related real datasets,

where the quality scores of one read in a real dataset are entirely

used for one read in a simulated dataset. For a simulated dataset
with a uniform base error rate err, we define Q to denote the

lowest quality score in the simulated dataset, where Q is calcu-

lated from err (deemed to be the probability that a base call is

incorrect) following the PHRED definition (Ewing and Green,

1998). If a real quality score is smaller than Q, we replace the real

one with Q. All simulated reads have the same length of 100

bases and contain only substitution errors. For real reads, two

real datasets from E.coli are used (see the Supplementary Data).
Performance is measured in terms of recall, precision, F-score

and Gain. We define TP (true positive) as the number of erro-

neous bases that are successfully corrected, FP (false positive) as

the number of newly introduced errors (i.e. the number of correct

bases that are changed to be erroneous) and FN (false negative)

as the number of erroneous bases that failed to be successfully

corrected, including the erroneous bases that keep unchanged

and those that are changed to incorrect ones. Recall is calculated

as TP/(TPþFN), precision as TP/(TPþFP), F-score as 2�pre-

cision� recall/(precisionþ recall) and Gain as (TP�FP)/

(TPþFN). The used definitions of TP, FP and FN are identical

to Yang et al. (2012). They can also be derived from the four

measures introduced in Liu et al. (2011a): correct corrections

(CC), incorrect corrections (IC), errors unchanged (EU) and

errors introduced (EI), where TP¼CC, FP¼EI and

FN¼ ICþEU. All recall, precision, F-score and Gain values

in related tables have been multiplied by 100, and all best

values have been highlighted in bold.

3.1.1 Evaluation using E.coli genome We have first evalu-
ated all correctors using reads simulated from the small-sized

E.coli genome. Three uniform base error rates (1, 2 and 3) and

three coverage values (30, 70 and 100�) are used. The base qual-

ity scores are extracted from the high-coverage ERR022075 real

dataset (aforementioned).
Supplementary Tables S1–S4 show the correction quality for

simulated datasets from the E.coli genome in terms of recall,

precision, F-score and Gain, respectively. In terms of recall,

Reptile is the worst for all 30�- and 70�-coverage datasets,

and DecGPU is the worst for all 100�-coverage datasets.

Among the nine tested datasets, Musket achieves the best per-

formance in four cases, HiTEC is best in four cases and Coral is

best in two cases (there is a tie between Musket and HiTEC for

the 70�-coverage dataset with 2% error rate). In terms of pre-

cision, DecGPU consistently outperforms all other correctors,

and Musket is consistently second best. Coral performs worst

in five cases, and Reptile performs worst in four cases. This is

because Coral (Reptile) produces significantly more false–posi-

tive results, for example, up to 87� (32�) more than Musket. In

terms of F-score, Musket is superior to all other correctors for all

datasets except for the 30�-coverage dataset with 3% error rate,

for which HiTEC is better. HiTEC is the second best. Reptile is

the worst for all 30�- and 70�-coverage datasets, and DecGPU

is the worst for all 100�-coverage datasets. Ranking in terms of

Gain is the same as for F-score. On average, Musket has the best

recall, F-score and Gain, whereas DecGPU has the best preci-

sion. In addition, Supplementary Table S6 shows the correction

quality using the two real datasets from E.coli.

3.1.2 Evaluation using human chromosomes Repeat regions
generally occur more frequently in large genomic sequences

than in small ones. While performing correction on a certain

base position, these genomic repeats may result in multiple

choices making error correction more challenging. In this

311

Musket

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/29/3/308/257257 by guest on 10 April 2024

http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/bts690/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/bts690/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/bts690/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/bts690/-/DC1


evaluation, simulated reads are produced from the Chr21 and

Chr1 sequences using three uniform base error rates (1, 2 and

3%) and two coverage values (30 and 70%). The base quality

scores are extracted from a real dataset sequenced from a human

individual (SRR189815 in NCBI SRA). In this test, we only

evaluate the performance of Musket, SGA and Quake, excluding

the other four correctors. Both HiTEC and SHREC are not

evaluated because of excessive memory requirements (496GB

random access memory), Coral because of too many false–posi-

tive results and excessive runtime and both Reptile and DecGPU

because of their poor performance in terms of recall, F-score and

Gain for E.coli.

Supplementary Table S5 shows the performance of all evalu-

ated correctors using simulated reads from the medium-sized

Chr21 sequence. In terms of recall, Quake is consistently the

worst. For the datasets with 2 and 3% error rates, Musket

yields the highest performance, and SGA is second. For the

other two datasets, SGA performs best, whereas Musket is

second. In terms of precision, Quake is the best for all datasets,

whereas Musket and SGA show comparable performance. In

terms of F-score, Quake is worst for all datasets. Musket per-

forms best for the datasets with 2 and 3% error rates. SGA is

best for remaining two datasets. Gain has the same ranking with

F-score for each case. For a specific coverage value, the perform-

ance of both SGA and Quake degrades quickly as the error rate

grows in terms of recall, F-score and Gain, whereas the perform-

ance of Musket only shows small fluctuations. For a specific

error rate, both Musket and Quake show improved performance

as the coverage increases in terms of recall, F-score and Gain.

However, SGA does not always follow this trend. All correctors

keep relatively consistent precision for different coverage and

error rates. On average, Musket is superior to SGA and Quake

for recall, F-score and Gain measures, whereas Quake has the

highest precision.

Table 1 shows the performance evaluation using reads simu-

lated form the large-sized Chr1 sequence. In terms of recall,

Quake is still worst for all datasets. Musket achieves the best

performance for the 30�-coverage datasets with 1 and 3%

error rates and the 70�-coverage datasets with 2 and 3% error

rates. SGA performs best for the two remaining datasets. In

terms of precision, among the six tested datasets, Musket

yields the highest performance in one case, SGA is best in two

cases and Quake is best in three cases. Ranking in terms of either

F-score or Gain is the same as for recall. For a specific coverage

value, the performance of Quake degrades as the error rate in-

creases for all datasets and in terms of all measures. The per-

formance of both Musket and SGA varies as the error rate

changes, but does not show any regular trend. For a specific

error rate, none of the correctors does consistently improve its

performance as the coverage increases. On average, Musket is

superior to both SGA and Quake in terms of all four measures.

3.2 De novo genome assembly

De novo genome assembly has been a difficult and challenging

proposition in genomics. Considerable progress has been made

in just the past few years with the successful establishment of

several de novo assemblers. The most popular approach for

de novo assembly is the use of de Bruijn graphs. Corresponding

assemblers include Velvet (Zerbino and Birney, 2008),

ALLPATHS (Butler et al., 2008), ABySS (Simpson et al.,

2009), ALLPATHS-LG (Gnerre et al., 2010), SOAPdenovo (Li

et al., 2010b) and PASHA (Liu et al., 2011b). Furthermore, some

recent assemblers, such as SGA (Simpson and Durbin, 2012) and

Fermi (Li, 2012), have used string graphs. To improve assembly

quality, pre-assembly data cleaning has become one of the most

important steps in de novo assembly from NGS reads. Short-read

error correction has been frequently used to improve data quality

and is often the most time-consuming part of the assembly pipe-

line. In addition to many individual correctors, some assemblers

like ALLPATHS-LG, SGA and Fermi have their built-in cor-

rectors. Hence, it is valuable to evaluate the impact of different

correctors on de novo assembly quality.

We have used three real Illumina datasets (Table 2) to assess

the impact on de novo assembly of three correctors: Musket,

SGA and Quake. The E.coli dataset has a coverage of �30,

produced by randomly sampling reads from the real

ERR022075 dataset aforementioned. The Caenorhabditis elegans

dataset (SRR065390 in NCBI SRA) has a coverage of �67, and

the Chr14 dataset has a coverage of �34, given in Salzberg et al.

(2012). The SGA assembler is used to perform genome assembly

for all tests. For the SGA assembler, the same set of parameters

has been used for each case, where we set the minimal read

overlap length to 50 and used default settings for all other par-

ameters. As the SGA assembler requires every base being known,

Table 1. Performance evaluation using simulated reads from Chr1

Mean coverage 30� 70�

Error rate 1% 2% 3% 1% 2% 3%

Recall

Musket 86.96 87.92 87.85 87.17 88.28 88.49

SGA 86.93 88.63 78.72 89.56 87.79 84.81

Quake 54.63 31.11 19.14 55.91 32.98 20.78

Precision

Musket 97.73 97.11 96.54 97.71 97.14 96.65

SGA 97.74 96.67 96.85 96.76 97.18 97.47

Quake 98.19 96.98 94.90 98.22 97.21 95.10

F-score

Musket 92.03 92.29 91.99 92.14 92.49 92.39

SGA 92.02 92.47 86.85 93.02 92.24 90.70

Quake 70.20 47.10 31.85 71.26 49.25 34.11

Gain

Musket 84.94 85.30 84.69 85.13 85.67 85.42

SGA 84.93 85.58 76.16 86.56 85.23 82.61

Quake 53.62 30.14 18.11 54.90 32.03 19.71

Table 2. Information of the three utilized real Illumina datasets

Name Read length No. of reads Coverage Genome length

E.coli 100 1391 904 30� 4 639 675

C.elegans 100 67617 092 67� 100 286 070

Chr14 100 36504 800 34� 107 349 540

312

Y.Liu et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/29/3/308/257257 by guest on 10 April 2024

http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/bts690/-/DC1


we have randomly converted all unknown bases in each dataset

into known ones.

The assembly quality is measured in terms of the following

metrics: N50 contig size, error-corrected N50 contig size,

number of contig errors and genome coverage. The calculation

of N50 contig size starts from sorting all assembled contigs in the

descendent order of length and then accumulates the lengths

from the largest to the smallest until the summed lengths are

not550% of the reference genome size. The N50 contig size is

the size of the smallest contig that stops the length summation.

The number of contig errors is calculated by summing up the

number of misjoins and the number of indel errors of length45

in all contigs. The genome coverage is calculated from the

error-corrected contigs, reflecting the number of bases covered

by correct contigs in the reference sequence. The GAGE scripts

from Salzberg et al. (2012) are used to analyse the resulting

assemblies before and after error correction for each dataset.

In this evaluation, we do not use the paired-end information

and only consider contigs whose lengths are �200.
Table 3 shows the assembly results. Each corrector is able to

improve both the N50 contig size and the error-corrected N50

contig size for each dataset. In terms of N50 contig size and

error-corrected N50 contig size, Musket is superior to all other

correctors for each dataset. SGA yields greater N50 contig sizes

than Quake for both the E.coli and C.elegans datasets, whereas

the latter performs better for the Chr14 dataset. However, in

terms of error-corrected N50 contig size, except for the E.coli

dataset, Quake outperforms SGA for the other two datasets.

The number of contig errors is identical for all correctors for

the E.coli dataset. However, Musket is superior for the other

two datasets. Furthermore, all correctors are able to reduce the

number of errors for both the C.elegans and Chr14 datasets

compared with when not using error correction. All correctors

show improved genome coverage for both the E.coli and Chr14

datasets. Interestingly, the genome coverage decreases after cor-

rection for the C.elegans dataset. This suggests that pre-assembly

error correction is not always favourable with respect to some

measures. In terms of genome coverage, Musket performs best

for both the E.coli and Chr14 datasets and Quake for the

C.elegans dataset. SGA consistently yields the lowest coverage.

3.3 Speed, scalability and memory consumption

In addition to correction quality, execution speed is an important

factor that must be taken into account, especially for large-scale

datasets. We have assessed the speed of different correctors using

both simulated and real datasets. For simulated datasets, we

have organized the datasets into groups as per the genomic se-

quences from which they are generated, and we have averaged

the runtimes of all datasets in each group. For the simulated

datasets from the E.coli genome, all evaluated correctors, with

the exception of both HiTEC and Reptile (which do not support

multi-threading), run two threads because at least two threads

are required for Musket. For the simulated datasets from the

Chr21 and Chr1 sequences, and the real datasets, all evaluated

correctors run 12 threads. Runtimes are measured in wall clock

time.
Supplementary Figure S1 shows the average runtimes of all

evaluated correctors for the simulated datasets. For E.coli,

DecGPU is the fastest, and Musket outruns the other correctors.

SHREC, SGA and Coral are slowest. On average, Musket is

about 2.1� faster than HiTEC, 2.5� faster than SGA, 3.3�

faster than SHREC, 3.5� faster than Coral, 1.1� faster than

Quake and 1.7� faster than Reptile. For Chr21 and Chr1,

Musket is superior to both SGA and Quake. SGA is slightly

faster than Quake for all simulated Chr21 datasets, whereas

Quake runs slightly faster than SGA for all simulated Chr1 data-

sets. On average, Musket runs �4.6� (4.8�) faster than SGA

and �5.0� (4.5�) faster than Quake for all simulated datasets

from sequence Chr21 (Chr1).
Figure 3 shows the runtimes of all evaluated correctors for the

three real datasets in Table 2 when using 12 threads. Musket is

superior to both SGA and Quake for all datasets. For the E.coli

dataset, Musket runs �11.0� faster than SGA and �46.7�

faster than Quake. For the C.elegans dataset, Musket achieves

a speedup of �9.3 over SGA and �18.1 over Quake. Finally, for

the Chr14 dataset, Musket outruns SGA by a factor of �6.6 and

Quake by a factor of �17.2. In addition, SGA performs signifi-

cantly better than Quake for each dataset.

In addition to speed, we have evaluated the parallel scalability

of Musket, SGA and Quake in terms of the number of CPU

threads using the real dataset Chr14. Figure 4 illustrates the

speedups using different number of threads. For Musket, the

speedups are calculated against the runtime obtained using

two threads because of the use of the master–slave model

Table 3. Assembly results for all three real datasets

Dataset Corrector N50 N50 corrector Errors Coverage (%)

E.coli

Original 13 580 13580 1 97.94

Musket 21 563 21563 1 98.36

SGA 20018 20018 1 98.19

Quake 18 493 18345 1 98.20

C.elegans

Original 7987 7570 95 96.75

Musket 9360 8078 91 96.29

SGA 8968 7643 93 96.14

Quake 8720 7882 92 96.74

Chr14

Original 2273 2232 822 76.93

Musket 2562 2515 793 77.52

SGA 2282 2252 826 77.39

Quake 2440 2393 822 77.42

Fig. 3. Runtimes for real reads

313

Musket

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/29/3/308/257257 by guest on 10 April 2024

http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/bts690/-/DC1


(see Section 2). Musket demonstrates the best scalability, and

SGA is second. These results suggest superior utilization of com-

pute power by Musket. The peak resident memory consumption

for each evaluated corrector is shown in Supplementary Figures

S2 and S3.

4 DISCUSSION

We have presented Musket, an efficient substitution-error-based

error corrector for short DNA reads produced by Illumina

sequencing technology. This reference-free error corrector uses

the k-mer spectrum approach and aims at correcting as many

errors as possible while introducing few new errors. Three cor-

rection techniques, including two-sided conservative correction,

one-sided aggressive correction and voting-based refinement,

have been introduced to form a multistage correction workflow.

We have assessed the performance of Musket in comparison

with several established error correctors: HiTEC, SGA, SHREC,

Coral, Quake, Reptile and DecGPU. The assessment is con-

ducted using both simulated and real reads in terms of correction

quality and de novo genome assembly measures. In terms of cor-

rection quality, Musket is consistently one of the top performing

correctors for reads simulated from the small-sized E.coli genome

as well as large-sized human chromosomes. The best perform-

ance of Musket is obtained using simulated reads from the

human chromosomes, which suggests that Musket can perform

well on genomic sequences with complex repeat structures. In

terms of de novo genome assembly, Musket is superior to all

other evaluated correctors in terms of the following metrics:

N50 contig size, error-corrected N50 contig size, number of

contig errors and genome coverage. Through this study, we

have found that pre-assembly error correction does not always

guarantee to yield better assembly quality in terms of all metrics,

but have demonstrated the capability of improving contig con-

tiguities and reducing mis-assemblies. Besides de novo genome

assembly, short-read error correctors can also be used before

short-read alignment. As many state-of-the-art short-read

aligners tolerate multiple sequencing errors in the full-read

length, substitution-error-based error correctors might not be

able to make significant impact on the improvement of alignment

performance. Hence, the use of Musket might be more valuable

before de novo genome assembly than short-read alignment.

In addition, Musket uses multi-threading, based on a master–
slave model, to leverage the compute power of common shared-

memory multi-CPU platforms. This approach results in superior
parallel scalability compared with all other evaluated correctors

in terms of the number of CPU threads as well as in overall
execution time.

All existing standalone correctors target haploid genome
sequencing (Yang et al., 2012). Kelley et al. (2010) showed that

error correction can benefit single nucleotide polymorphism call-
ing in haploid genomes. However, the effect of error correction

on diploid genomes has not been explored yet. A heterozygous
site results in a percentage of k-mers supporting alternative al-

leles. In a moderate or high coverage dataset, we would expect
these k-mers to be within the distribution of trusted k-mers.

However, this might not be the case when the coverage is low
or allelic distribution is imbalanced. In such cases, diploid single

nucleotide polymorphisms could be lost as a result of false-posi-
tive corrections.

Up to date, almost all correctors based on k-mer spectrum use
a single coverage cut-off to differentiate trusted k-mers from the

untrusted ones. This static coverage cut-off ignores the confi-
dence difference in the correctness of bases that is represented

as base quality scores in NGS reads. Hence, a dynamic coverage

cut-off as in Coral (Salmela and Schröder, 2011) might be ad-
vantageous to further improve correction quality of correctors

based on k-mer spectrums. A possible solution might be the use
of a position specific cut-off matrix derived from base quality

scores for a single read.

Conflicts of Interest: none declared.

REFERENCES

Bloom,B.H. (1970) Space/time trade-offs in hash coding with allowable errors.

Commu. ACM, 13, 422–426.

Burrows,M. and Wheeler,D.J. (1994) A block-sorting lossless data compression

algorithm. Technical Report 124 Palo Alto, CA., Digital Equipment

Corporation.

Butler,J. et al. (2008) ALLPATHS: de novo assembly of whole-genome shotgun

microreads. Genome Res., 18, 810–820.

Chaisson,M. et al. (2004) Fragment assembly with short reads. Bioinformatics, 20,

2067–2074.

Chaisson,M. et al. (2009) De novo fragment assembly with short mate-paired reads:

does the read length matter? Genome Res., 19, 336–346.

Dohm,J.C. et al. (2008) Substantial biases in ultra-short read data sets from

high-throughput DNA sequencing. Nucleic Acids Res., 36, e105.

Ewing,B. and Green,P. (1998) Base-calling of automated sequencer traces using

phred. II. Error probabilities. Genome Res., 8, 186–194.

Ferragina,P. and Manzini,G. (2005) Indexing compressed text. J. ACM, 52, 4.

Gnerre,S. et al. (2010) High-quality draft assemblies of mammalian genomes from

massively parallel sequence data. Proc. Natl Acad. Sci. USA, 108, 1513–1518.

Ilie,L. et al. (2011) HiTEC: accurate error correction in high-throughput sequencing

data. Bioinformatics, 27, 295–302.

Kao,W.C. et al. (2011) ECHO: a reference-free short-read error correction algo-

rithm. Genome Res., 21, 1181–1192.

Kelley,D.R. et al. (2010) Quake: quality-aware detection and correction of sequen-

cing errors. Genome Biol., 11, R116.

Li,H. (2012) Exploring single-sample SNP and INDEL calling with whole-genome

de novo assembly. Bioinformatics, 28, 1838–1844.

Li,R. et al. (2010a) The sequence and de novo assembly of the giant panda genome.

Nature, 463, 311–317.

Li,R. et al. (2010b) De novo assembly of human genomes with massively parallel

short read sequencing. Genome Res., 20, 265–272.

Liu,Y. et al. (2011a) DecGPU: distributed error correction on massively parallel

graphics processing units using CUDA and MPI. BMC Bioinformatics, 12, 85.

Fig. 4. Speedups using different number of threads

314

Y.Liu et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/29/3/308/257257 by guest on 10 April 2024

http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/bts690/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/bts690/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/bts690/-/DC1


Liu,Y. et al. (2011b) Parallelized short read assembly of large genomes using de

Bruijn graphs. BMC Bioinformatics, 12, 354.

Liu,Y. et al. (2012) CUSHAW: a CUDA compatible short read aligner to large

genomes based on the Burrows-Wheeler transform. Bioinformatics, 28,

1830–1837.

Medvedev,P. et al. (2011) Error correction of high-throughput sequencing datasets

with non-uniform coverage. Bioinformatics, 27, i137–i141.

Melsted,P. and Pritchard,J.K. (2011) Efficient counting of k-mers in DNA se-

quences using a bloom filter. BMC Bioinformatics, 12, 333.

Pevzner,P.A. et al. (2001) An Eulerian path approach to DNA fragment assembly.

Proc. Natl Acad. Sci. USA, 98, 9748–9753.

Salmela,L. (2010) Correction of sequencing errors in a mixed set of reads.

Bioinformatics, 26, 1284–1290.

Salmela,L. and Schröder,J. (2011) Correcting errors in short reads by multiple

alignments. Bioinformatics, 27, 1455–1461.

Salzberg,S.L. et al. (2012) GAGE: a critical evaluation of genome assemblies and

assembly algorithms. Genome Res., 22, 557–567.

Schröder,J. et al. (2009) SHREC: a short-read error correction method.

Bioinformatics, 25, 2157–2163.

Shi,H. et al. (2010) A parallel algorithm for error correction in high-throughput

short-read data on CUDA-enabled graphics hardware. J. Comput. Biol., 17,

603–615.

Simpson,J.T. and Durbin,R. (2012) Efficient de novo assembly of large genomes

using compressed data structures. Genome Res., 22, 549–556.

Simpson,J.T. et al. (2009) ABySS: a parallel assembler for short read sequence data.

Genome Res., 19, 1117–1123.

Yang,X. et al. (2010) Reptile: representative tiling for short read error correction.

Bioinformatics, 26, 2526–2533.

Yang,X. et al. (2012) A survey of error-correction methods for next-generation

sequencing. Brief. Bioinform., [Epub ahead of print, doi:10.1093/bib/bbs015,

April 6, 2012].

Zerbino,D.R. and Birney,E. (2008) Velvet: algorithms for de novo short read as-

sembly using de Bruijn graphs. Genome Res., 18, 821–829.

315

Musket

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/29/3/308/257257 by guest on 10 April 2024


