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ABSTRACT

Summary: Modern sequencing instruments have the capability to pro-

duce millions of short reads every day. The large number of reads

produced in conjunction with variations between reads and reference

genomic sequences caused both by legitimate differences, such as

single-nucleotide polymorphisms and insertions/deletions (indels), and

by sequencer errors make alignment a difficult and computationally

expensive task, and many reads cannot be aligned. Here, we intro-

duce a new alignment tool, SRmapper, which in tests using real data

can align 10s of billions of base pairs from short reads to the human

genome per computer processor day. SRmapper tolerates a higher

number of mismatches than current programs based on Burrows–

Wheeler transform and finds about the same number of alignments

in 2–8� less time depending on read length (with higher performance

gain for longer read length). The current version of SRmapper aligns

both single and pair-end reads in base space fastq format and outputs

alignments in Sequence Alignment/Map format. SRmapper uses a

probabilistic approach to set a default number of mismatches allowed

and determines alignment quality. SRmapper’s memory footprint

(�2.5 GB) is small enough that it can be run on a computer with 4

GB of random access memory for a genome the size of a human.

Finally, SRmapper is designed so that its function can be extended to

finding small indels as well as long deletions and chromosomal trans-

locations in future versions.

Availability: http://www.umsl.edu/�wongch/software.html.
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1 INTRODUCTION

With the advent of next-generation sequencing (NGS) instru-

ments, the amount of raw genetic sequence information has ex-
ponentially increased during the past few years, and it is expected

to continue to grow at a high rate as sequencing cost continue to

decrease. Instruments such as the HiSeq2000 (Illumina), GS
FLX titanium (Roche) and SOLiD 4 (ABI) can generate billions

of base pairs (gigabases or Gb) of data per day with increasingly
high accuracies, 498.5% for Illumina and 499.5% for Roche

and ABI, respectively, and with costs that have decreased to
�$10000 per human genome (Pareek et al., 2011). Newer instru-

ments, such as the Ion Proton (Life Technologies), can produce
even higher amounts of data and are approaching the goal of a

$1000 genome (Rothberg et al., 2011). With the speed and cost

factors making whole-genome sequencing practical, researchers

are sequencing and analysing large numbers of genomes in hopes

of finding genetic origins of many diseases, such as cancers. For

example, one recent study sequenced 457 human genomes

searching for rare mutations involved in ovarian cancer

(Rafnar et al., 2011). With the dramatically increased amount

of raw data, analysis has become more challenging. This is

because of two factors: the sheer amount of data gathered and

the relatively short lengths of reads produced by current NGS

instruments (Ng and Kirkness, 2010). For example, in the study

aforementioned,412 terabases of sequence data would be gath-

ered for a 10� coverage of the 457 genomes. The short length of

the reads, typically between 30 and 100bp for Illumina and ABI

and �400bp for Roche, complicates the building of a genome

de novo (Ng and Kirkness, 2010; Pareek et al., 2011). For exam-

ple, a genome may contain repetitive regions. It is difficult to

reconstruct these regions and their flanking sequences if the

length of the reads is much shorter than that of the repeating

units. NGS instruments can now perform pair-end sequencing, in

which the sequence of the two ends of longer fragments are

determined, which has helped to resolve these problems (Ng

and Kirkness, 2010; Pareek et al., 2011). Nevertheless, de novo

assembly remains challenging and is memory intensive and,

therefore, difficult to perform on genomes larger than those of

bacteria (Pareek et al., 2011).
A popular alternative to de novo assembly is reference assem-

bly, in which reads are aligned against a pre-existing reference

genome. There are three main classes of alignment tools:

read-hashing tools, reference-hashing tools and Burrows–

Wheeler transform (BWT) tools. Examples of reference-hashing

tools include BFAST (Homer et al., 2009), SHRiMP-2 (David

et al., 2011) and WHAM (Li et al., 2011). Tools that use the

BWT include Burrows–Wheeler Aligner (BWA) (Li and Durbin,

2009, 2010), bowtie (Langmead et al., 2009) and SOAP2 (Li

et al., 2009b). Most genome-hashing algorithms require large

memory that they must be run on expensive large-memory ma-

chines. On the other hand, many BWT methods carry a small

memory footprint that they can be run on computers with 4 GB

of random access memory (RAM), accessible by many users

possessing only desktop machines. Among the genome-hashing

methods listed previously, only BFAST can be run on a com-

puter with 4 GB of RAM. For methods based on BWT, both

BWA and bowtie can be run on computers with 4 GB of RAM.

Among these three, bowtie is the most restrictive in terms of

allowing variants between the reference and short read, allowing

a maximum of three mismatches and no insertions or deletions*To whom correspondence should be addressed.
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(indels), making it a less attractive option for sequencing longer

reads, which would be expected to have a higher number of

mismatches and errors. BWA and BFAST both allow indels

and mismatches. Among the three, bowtie is slightly faster

than BWA, and both are significantly faster than BFAST.

However, BFAST has been shown to be more sensitive than

the BWT-based methods for most datasets evaluated (Table 2

in Homer et al., 2009).
Here, we introduce a new genome-hashing alignment tool,

SRmapper. The original design goal for SRmapper was to

build an alignment tool that was not restrictively slow, had as

high sensitivity as other widely used alignment tools and was

capable of finding long deletions and other more complicated

genomic alternations, such as chromosomal translocations

from short-read sequences. The current version of SRmapper

already achieves the first two goals and uses a novel approach

to determine the initial number of mismatches allowed and cal-

culates alignment scores. In evaluations on real data, SRmapper

is 2–8� faster than BWA on datasets of length �51bp while

aligning comparable number of reads as BWA. For short

reads, 32bp, SRmapper was 6–40� faster than BWA, but some-

what less sensitive. This article explains the approach taken by

SRmapper, compares its performance against the popular BWA

package for multiple datasets of different read length, describes

how we envision this first version of SRmapper being used and

discusses future extensions and improvements.

2 METHODS

2.1 Indexing reference genomes

SRmapper takes reference data in the form of fasta files. It first builds an

index from the reference genome or sequences to which short reads are to

be aligned and writes the index to file, such that the index only has to be

built once. The index takes the form of a hash table. Hashing is done by

first transforming a hash key containing a sequence of D bases into a

base-4 number with D digits. Each digit represents a base in the sequence

by taking a value of 0(A), 1(C), 2(G) or 3(T). This base-4 number is then

converted into a base-10 value, V10, which points to a bucket containing

the locations of the genome in which this sequence is found. To reduce

the size of the index, SRmapper divides a genome into non-overlapping

sequences containing D bases and stores the locations of these sequences

in the corresponding buckets using the hash function previously

described. Non-standard nucleotides, N, can be converted to random

bases or keys containing a non-standard nucleotide can be skipped; the

current version takes the latter approach. For a reference sequence of

length R, D is chosen according to D(R)¼ floor [log4(R)]. This value is

selected in an attempt that for any R, a hash table with minimal collisions

will be constructed while also minimizing memory usage. For the human

genome with �3 billion bases, D¼ 15; for a virus with a 10-kb genome,

D¼ 6. The number of buckets is 4D. The total number of locations stored

in the buckets is �R/D.

For D¼ 15, all buckets cannot be stored in 4 GB of memory at the

same time because each bucket requires �4 bytes to hold the largest

number from the reference sequence of the human genome (4 bytes/

bucket� 415 buckets¼ 4 GB). We avoided this problem by storing only

4D-1 buckets at a time and making four passes through the reference

sequence. In the first pass, all the locations in the index that start with ‘A’

are loaded into memory; in the second, all locations in the index starting

with ‘C’ are loaded into memory, and so on. In practice, the buckets are

not declared until a key corresponding to the particular bucket is found in

the genome. This reduces memory usage, as all keys are not found in the

genome. At the end of each pass, the locations in the buckets alone are

written to a binary file. A count is kept of how many locations have been

dumped, and after each key’s bucket has been written, the current value

of the counter is written to a separate binary file (Supplementary Fig. S1

illustrates this with a simple example). SRmapper also builds a com-

pressed, 2 bit per base form of the reference genome or sequences.

Finally, the indexing program builds a file containing header information

from the fasta files, including chromosomal lengths and chromosome

numbers to be used in output downstream.

2.2 Short-read alignment

Reads and read length: SRmapper takes short-read data in the form of

one or more fastq files. In the current version, reads must be in base

space. There is no hard limit on read length, but SRmapper’s sets a

default maximum read length of 1000bp. Users aligning reads

41000bp can define their own maximum read length at run time.

SRmapper does not require all reads to be of the same length. This

allows users to pre-trim reads to a specific length or to trim low-quality

bases off the end of reads without causing SRmapper to fail. SRmapper

does require reads to be of a minimum length of D.

Setting initial mismatches allowed: SRmapper was built to be flexible

with respect to both the reference being aligned against and read length.

SRmapper considers both read length and reference genome length when

determining how many mismatches should be allowed for a particular

read. Before aligning reads, SRmapper builds a mismatch table of max-

imum mismatches allowed for every read length up to maximum allowed

read length and calculates a mapping quality associated with the number

of mismatches in a read. This allows a lookup in the table to determine

mismatches allowed instead of performing calculations to determine mis-

matches allowed for every read. Alternatively, users are allowed to set the

maximum number of mismatches between a read and reference.

Calculating initial mismatches allowed and phred score: To simplify cal-

culations on determining mismatches allowed, two assumptions are made

about reference sequences. First, it is assumed that for all j and k with

j 6¼k, the identity of nucleotide j (Nj) and nucleotide k is independent of

each other. Second, we assume that for any j, there is an equal probability

that Nj is A, C, G or T. A probability function for whether an alignment

had been generated spuriously or not is then generated as follows. The

probability that a base will match at a random location in the genome is

1/4. For a read of length L, there are 4L possible combinations, and thus a

1/4L probability of a perfect match at a specific location. If a read was

allowed to have one mismatch in it, there would be L possible locations

for the mismatch, and each location would have three possible changes to

a base that would cause a mismatch. Thus, the probability that a read of

length L aligns to a specific location with one mismatch is 3L/4L or

31LC1/4
L. For two mismatches, there are L locations possible for the

first mismatch and L-1 locations possible for the second mismatch, and

as the order of mismatches is not important, we divide L (L-1) by two.

Again, for each location, there are three possible changes to a base that

result in a mismatch. Thus, the probability of an alignment with two

mismatches is 32LC2/4
L. It holds for any number of mismatches, M,

that the probability of an alignment at a random location is (3MLCM)/

4L and that the probability of an alignment with M or fewer

mismatches is

PðL,MÞ ¼
XM

i¼0
3iLCi

� �
=4L ð1Þ

The probability that an alignment is not generated at a random loca-

tion is then 1� PðL,MÞ. The probability of a match not occurring at any

location within the genome is the cumulative probability of a match not

occurring at each possible location in a genome of length R:

PðL,M,RÞ ¼ 1� PðL,MÞð Þ
R
¼ 1�

XM

i¼0
3iLCi

� �
=4L

� �R
ð2Þ
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The probability that a read does align to the genome is then

1� PðL,M,RÞ. Phred score (Ewing and Green, 1998; Ewing et al.,

1998), which was originally used to describe experimental error, is used

here to estimate the probability of aligning a read with a certain number

of mismatches to a reference genome by chance, so as to aid SRmapper to

decide how many mismatches to consider in aligning read with a certain

length. Phred score is a logarithmically scaled number that measures the

probability that a base is incorrect and is scaled up by a factor of 10. We

estimate alignment qualities by using a phred-like value that uses the

probability of Equation 2:

phredðL,M,RÞ ¼ �10 log 1� 1�
XM

i¼0
3iLCi

� �
=4L

� �R� �
ð3Þ

Equation 3 can be approximated well by

phredðL,M,RÞ ¼ �10 log R
XM

i¼0
3iLCi

� �
=4L

� �
ð4Þ

Supplementary Figure S2 shows an example that Equation 4 approxi-

mates Equation 3 readily. By default, the maximum number of mis-

matches, Mm, allowed for a read is set, such that an alignment has a

phred of 30 (499.9% chance of not being randomly aligned); however,

the user can specify any minimum phred score for alignment and

SRmapper will cap the allowed number of mismatches, such that all

alignments will have the minimum allowed score. Reads having multiple

alignments with the same number of mismatches are automatically as-

signed a phred score of zero and an alignment location placed randomly

from among the reads. Random placement from among equally scoring

hits is used by other alignment tools as well.

Alignment of short reads to reference genomes: SRmapper takes as

input base space reads in fastq format. Alignment is performed in two

steps as the seed-and-extend strategy taken by the short-read aligners

SSAHA (Ning et al., 2001) and Stampy (Lunter and Goodson, 2011),

but using different methods of seeding and extension. In the first step, the

first D bases (1 through D) from the read are passed through the same

hash function as in indexing. SRmapper then takes values from the

corresponding bucket from the hashing to create initial possible align-

ments. In the second step, the remaining bases are compared with

their corresponding bases in the reference as determined by the first

step (Supplementary Fig. S3 illustrates with a simple example).

Comparison is terminated either when all bases in the read have been

checked against the reference or when the number of mismatches between

the read and reference exceeds the maximum allowed number of mis-

matches, Mm. A possible alignment is considered a proper alignment if,

on comparing all bases against the reference, the number of mismatches is

less than or equal to the allowed number of mismatches. If an alignment

is found, Mm is then decreased to the number of mismatches in that

alignment, and the location of the alignment and the number of mis-

matches is stored. The first and second steps are repeated using bases 2

through Dþ1, and this process is repeated until all L bases in the read

have been used in the first step of alignment or until D (Mmþ 2) bases

have been used in the first step of alignment. The latter case applying to

longer reads in which the whole read does not need to pass through step 1

is justified as follows: If there is no mismatch, using the first 2D bases to

create the fragments 1 to D, 2 to Dþ 1, . . . Dþ1 to 2D as seed to search

the index, containing only non-overlapping segments of the genome, will

guarantee an exact match to be found, if it exists. If there is one mis-

match, the worst case scenario is to have a mismatch occurring at the Dth

base of a read, so that a continuous stretch of D bases occurring in the

index could only occur afterwards. Again, because we only store the

genome in non-overlapping, rather than overlapping, segments of D

bases to keep the size of the index small, we have to search 2D, rather

than D, bases to ensure a contiguous segment of D bases can be found if

the read can be mapped to the genome. Thus, the first D� 1þ 2D bases

in a read need to be used. The general expression for any number of

mismatch k is D�kþ 2 D¼D� (kþ 2). After checking for alignments

on the forward strand, the reverse complement of the read is generated to

search for alignments on the reverse strand. The value of Mm is not reset

to its original value when performing alignment on the reverse strand but

remains at its current value as found during alignment on the forward

strand.

Output format and options: Similarly to indexing, SRmapper performs

alignment in four passes with a quarter of the index (corresponding to the

A, C, G or T buckets) being stored in memory at any one time.

The locations of the best hits from each quarter of the index are stored

in corresponding binary files, which are deleted after a permanent align-

ment file is built. The final output is presented in Sequence Alignment/

Map (SAM) format (Li et al., 2009a). For single-end reads, the user may

specify a maximum number of equally best alignments to output. By

default, this value is set at one. For pair-end reads, only the best align-

ment will be displayed. SRmapper does not report reads failing to be

aligned in its SAM file. Instead, it writes these reads to a separate file

in a minimal fastq format, so that other alignment tools can attempt to

align reads that SRmapper was unable to align.

Pair-end alignment: This proceeds similarly to single-end alignment

until after the binary temp files are written. Possible alignments are

generated treating each mate in a pair-end read as single-end reads,

and after the alignments generated for both mates in the pairs, pair-

end reads are searched for. Two single-end alignments are considered to

form a proper pair-end alignment if they are mapped to within a suffi-

ciently close distance. By default, this distance is set to 1kb, but a value

more appropriate for a specific dataset being analysed can be chosen by

the user at run time. In single-end alignment, four binary temp files are

written, whereas in pair-end alignment, eight are written. For the two

binary files for each quarter of the index aligned against, one comes

from alignments on the first reads in the pairs, whereas the second

comes from the second mates. Unlike single-end alignment in which

only the reads with the highest phred are selected, pair-end alignments

also consider lower quality alignments that were found during the course

of the single-end alignment. If multiple possible pair-end alignments are

found, the pair-end alignment with the fewest combined mismatches is

chosen, and the reported phred score is the score for a single-end read

with the same length and number of mismatches as the length and

mismatches of the two mates combined. If multiple reads of equal qual-

ity are found, one is chosen, at random, and the reported phred score is

zero.

Increasing alignment speed: Apart from the D (kþ 2) base search for k

mismatch reads, SRmapper imposes two other limits by which align-

ment speed is substantially increased. The first is to decrement the

number of allowed mismatches by one if a set number of alignments

with an equal number of mismatches are found for a read. By default,

this value is set at five for each quarter of the index, but this value can

also be changed by the user at run time. This modification has no effect

on the number of confident alignments achieved (those with a phred

score greater than zero), as only reads with multiple, equally best align-

ments are affected. The second is to limit how many locations will be

looked at from each bucket. This trade’s speed for the number of reads

aligned, as not looking in at locations will cause some reads to be missed

but will require less time. This policy is enforced because of the large

number of locations found in buckets corresponding to low complexity

regions, such as poly-A tracts, dGdC islands, short interspersed elements

(SINES) or long interspersed elements (LINES). By default, SRmapper

only considers a maximum of 100 locations per bucket. This limit affects

under 1:26 000 buckets and results in 499.5% of reads without this

imposed limit still being aligned while reducing alignment time by

49�. The number of locations checked per bucket can be modified,

or limited checking of the buckets can be disabled by the user at run

time.
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3 RESULTS

3.1 Indexing reference genomes

For both SRmapper and BWA, indexing the genome only needs

to be performed once, as their respective indices are written to

file after being built. SRmapper takes as input one or more

chromosomal fasta files, whereas BWA requires these files to

first be concatenated into one fasta file to index the whole

genome or a pre-concatenated file with all chromosomes to be

used. Indexing the human genome with SRmapper required

2350 s on an Intel Xeon 2.8GHz processor. BWA required

8100 s to perform the same task, making SRmapper �3.5�

faster in the indexing stage. SRmapper does require somewhat

more disk space for its index, as it uses 5.4 GB in comparison

with BWA’s 4.3 GB.

3.2 Evaluation of alignment performance on real data

To measure the performance of SRmapper against BWA, we

downloaded four sets of data from the sequence read archive

(http://www.ncbi.nlm.nih.gov/sra): SRR002787, which consists

of 5.88M 32-bp single-end reads, SRR006150, which consists

of 13.18-M pair-end reads with each mate in the pair being

51 bp, SRR020477, which consists of 2.04-M pair-end reads

with each mate being 76 bp, and SRR539393, which contains

2.25-M pair-end reads sequenced by the Illumina HiSeq 2000

from individual NA12878. Additionally, SRR006150,

SRR020477 and SRR539393 were also evaluated as single-end

reads. For SRR006150, the first mate was taken to create

13.18M 51-bp single-end reads. For SRR020477 and

SRR539393, both mates in the pair were evaluated to create

4.08M 76-bp and 4.50M 100-bp single-end reads, respectively.

Reads were downloaded in Short Reads Archive (SRA) format

and converted to fastq format by the SRA Toolkit’s fastq-dump

command (the SRA Toolkit is a resource provided by the

National Center for Biotechnology Information). We used

BWA 0.5.8c for all comparisons against BWA. BWA accom-

plishes alignment over two steps. In the first, the suffix array

coordinates are determined for short reads, and in the second,

the suffix array values are converted into chromosomal coordin-

ates and output in SAM format. Thus, the time for BWA align-

ment is the sum of the time for the two aforementioned steps. As

this first version of SRmapper does not perform gapped align-

ment, we disabled gapped alignment on BWA. Tests were run

both using the default number of mismatches allowed by BWA

and by SRmapper.
For single-end read alignment, SRmapper was several times

faster with results varying from 2.1 to 8.7� faster (Table 1). The

sensitivity of SRmapper, in terms of the percentage of reads that

could be aligned, was comparable with BWA or better except for

the shortest reads of 32bp. These results are not surprising be-

cause of the different methods by which the tools perform align-

ment. As SRmapper needs to find an exact match for D bases in

its initial placement of a read, some reads with high mismatch

rates will not be aligned because SRmapper cannot find a D base

stretch with no mismatches when it performs its initial alignment.

This is more problematic with shorter reads, as there are fewer

initial alignments (L–Dþ 1) to use. On the other hand, BWA

allows mismatches in its seed sequence (with computational costs

that increase with the number of mismatches allowed in the

seed). Nevertheless, in all tests, there was a high overlap of

reads found by both tools qualitatively, suggesting that as

BWA has been shown to be accurate (Li and Durbin, 2009)

and SRmapper produces similar results to BWA, SRmapper

also accurately maps reads. In all cases with significantly differ-

ent sensitivity, the more sensitive tool found 499% of reads

found by the less sensitive tool while aligning additional reads

missed by the less sensitive tool because of the reasons previously

listed. In pair-end evaluations, SRmapper retained its speed ad-

vantage over BWA, with speeds being between 2–8� faster de-

pending on the dataset and parameters used. Pair-end

evaluations on BWA were run with the –A option to disable

Smith–Waterman alignment. Enabling Smith–Waterman align-

ment increases the amount of reads mapped by BWA but also

increases the alignment time. For pair-end alignment, BWA has

an improved sensitivity compared with single-end read results

(Table 2).

Table 1. Comparison of the performance of SRmapper with BWA on

single-end reads

Alignment

time (s)

Speed-up % aligned

SRR002787

BWA default 4404 56.84

BWA @ SRmapper def 29 023 66.08

SRmapper @ BWA def 715 6.16 50.74

SRmapper default 744 39.01 56.62

SRR006150

BWA default 10 673 73.49

BWA @ SRmapper def 13 574 82.18

SRmapper @ BWA def 2771 3.85 72.68

SRmapper default 3611 3.76 84.08

SRR020477

BWA default 1482 66.35

BWA @ SRmapper def 8112 78.35

SRmapper @ BWA def 616 2.41 67.62

SRmapper default 930 8.72 84.02

SRR539393

BWA default 2715 90.0

BWA @ SRmapper def 11 155 95.6

SRmapper @ BWA def 1298 2.09 90.2

SRmapper default 1548 7.21 91.0

Alignment time for 5.88 million 32-bp reads (SRR002787), 26.28 million 51-bp

reads (SRR006150), 4.08 million 76-bp reads (SRR020477) and 4.49 million 100-

bp reads (SRR5393939) downloaded from the sequence read archive (http://www.

ncbi.nlm.nih.gov/sra) to the human genome was determined. BWA was run with the

–o 0 option to disable gapped alignment. For BWA@def, BWA was run with its

default mismatch settings. For BWA@SRmapper, BWA was run allowing the de-

fault number of mismatches permitted by SRmapper. SRmapper was run with its

default settings in SRmapper@def and using the default number of mismatches

permitted by BWA for SRmapper@BWA. Alignment time for BWA is the sum

of the time for commands aln and sampe to run. Default mismatches allowed for

SRR002787 are 2 and 3 for BWA and SRmapper, respectively, for SRR006150 are

3 and 12 for BWA and SRmapper, respectively, for SRR020477 are 4 and 28 for

BWA and SRmapper, respectively, and for SRR539393 are 5 and 40 for BWA and

SRmapper, respectively.
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3.3 Results on simulated data

To further compare the accuracy of SRmapper with BWA, simu-

lated single-end reads of length 50 and 100bp were generated
from the human genome. To model reads from a sequencer, the
simulated reads were allowed to have sequencer errors as well as

single-nucleotide polymorphisms (SNPs) and indels. All indels
were of length 1–5. Sequencer error rate was set at 1.5%, and

SNP and indel rates were set at 0.09% and 0.01%, respectively,
as in the SNP and indel rates in the original testing of BWA
(Li and Durbin, 2009). Tests were performed using both

BWA’s default mismatch parameter and SRmapper’s default
mismatch parameter. As both tools randomly choose an align-

ment for reads with multiple equally best hits and report zero
confidence, only reads that had a non-zero quality score were
considered for determining accuracy. Accuracy here refers to

simulated reads that were aligned back to the locations of the
genome from which they were derived.
For all of the test runs, both alignment tools had high accura-

cies for reads confidently aligned (Table 3). BWA did show a
higher accuracy across all tests, but as read length increased,

incorrectly placing confident reads became less of an issue with
SRmapper, having an error rate of �1:250 confident reads being
incorrect. It is noteworthy that in reviewing reads that were

incorrectly placed, the main cause of incorrect placement of
reads was because of SNPs or sequencer errors, which resulted

in the read aligning with a higher quality to an alternative loca-
tion in the genome. However, this issue is better considered to be
a weakness of the sequencers and reference assembly than an

error of the alignment program, as there is not always sufficient

information in short reads to properly determine where a read
should be placed when there are differences between the refer-
ence and the genome to be assembled. Likewise, ‘incorrect’ place-

ment of reads because of sequencing errors should be considered
a weakness of sequencers and not the fault of the alignment

programs. To further evaluate the accuracy of SRmapper in re-
lation to BWA, simulated pair-end reads were created using
wgsim (https://github.com/lh3/wgsim). The receiving operating

characteristics (ROC) curves show that for this dataset, BWA
has a lower error rate and a somewhat higher sensitivity for the
data set shown (Supplementary Fig. S4). The error rate of

SRmapper for pair-end reads would be expected to be lower
than for single-end reads, as for a pair-end read to be misaligned,
both mates in the pair would have to be incorrectly aligned to the

same area. Without Smith–Waterman alignment, SRmapper
would be expected to be somewhat less sensitive in pair-end

alignment than single-end alignment, as both ends of a pair
must be aligned to generate a pair-end alignment.

4 CONCLUSIONS

Here, we have implemented a reference genome-hashing align-
ment tool that shows a significant speed increase over BWA
while maintaining similar alignment rates and a comparable

memory footprint. Additionally, SRmapper is less sensitive to
increasing the number of mismatches allowed in short reads
than BWA is, as the speed advantage SRmapper possesses over

BWA increases as the number of mismatches allowed increases.
Also, pair-end alignment against reads for the human genome can
be performed on a PC with as little as 4 GB of memory, whereas

pair-end alignment with BWA requires a computer with a larger
amount of memory. Although SRmapper does not possess all the

features of BWA with no gapped alignment or Smith–Waterman
alignment for pair-end reads being the two most notable, its cap-
abilities are sufficient to demonstrate that hash table-based align-

ment tools can be created with similar sensitivities and memory
requirements and a higher speed than the current BWT alignment
tools. TheROC curves show that a large portion of the false align-

ments occurs with those having few or no mismatches. The only
way this can occur is in repetitive regions of the genome where all
possible alignmentsmay not be found. Currently, SRmapper does

not retain suboptimal alignments or use them for determination of

Table 2. Comparison of the performance of SRmapper with BWA on

pair-end reads

Alignment

time (s)

Speed-up % aligned

SRR006150

BWA default 11 644.02 64.60

BWA @ SRmapper def 14 794.12 73.34

SRmapper @ BWA def 2706 4.30 59.44

SRmapper default 3552 4.17 67.25

SRR020477

BWA default 1547 55.76

BWA @ SRmapper def 8192 68.43

SRmapper @ BWA def 676 2.29 54.90

SRmapper default 973 8.42 71.53

SRR539393

BWA default 2795 84.18

BWA @ SRmapper def 11 248 88.56

SRmapper @ BWA def 1317 2.12 82.72

SRmapper default 1542 7.29 89.29

Alignment time for 13.14 million pairs of 51-bp reads (SRR006150), 2.04 million

pairs of 76-bp reads (SRR020477) and 2.25 million pairs of 100-bp reads

(SRR539393) downloaded from the sequence read archive to the human genome

was determined. BWA aln was run as described in Table 1, and BWA sampe was

run with the –A option to disable Smith–Waterman alignment. Default mismatches

allowed for SRR006150 are 3 and 12 for BWA and SRmapper, respectively,

for SRR020477 are 4 and 28 for BWA and SRmapper, respectively, and for

SRR539393 are 5 and 40 for BWA and SRmapper, respectively.

Table 3. Evaluation of the accuracy of SRmapper on simulated reads

Simulated reads 50bp %

aligned

50bp %

correct

100bp %

aligned

100bp %

correct

BWA @ def 83.55 99.62 87.30 99.90

BWA @ SRmapper 83.96 99.58 87.88 99.82

SRmapper @ BWA 81.83 98.79 88.07 99.58

SRmapper @ def 82.30 98.32 89.06 99.19

A total of 100 000 simulated reads were generated from the human genome with a

1.5% sequencer error rate, a 0.09 SNP rate and a 0.01 insertion–deletion rate.

Insertions and deletions were of random size between 1 and 5bp. SRmapper and

BWAwere run as described in the legend of Table 2. The %aligned is the per cent of

reads confidently aligned, and %correct is calculated as (confident reads correctly

aligned)/(reads confidently aligned)� 100.
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quality in alignments that explains why SRmapper has a higher
rate of false-positive results than BWA. This is a significant ad-
vantage BWA currently has over SRmapper and many other
popular alignment tools (http://lh3lh3.users.sourceforge.net/

alnROC.shtml).
An additional advantage SRmapper possesses over the BWT

tools is that its alignment need not use the whole read simultan-

eously. In theory, this property would allow SRmapper to hunt
down chromosomal translocations and deletions longer than
those currently detectable by alignment tools. In detection of a

read containing a long deletion or translocation, alignment
would begin from one end of the read proceeding until a stretch
of bases with poor correspondence to the reference was found.

Alignment would then commence from the other end of the read
and proceed to where the first alignment began showing poor
correspondence with the reference.
As different alignment tools have different pros and cons,

using several alignment tools in sequence could provide a
better balance among speed, sensitivity and accuracy. For ex-
ample, as SRmapper is fast, one can use it first to align reads.

Unaligned reads and reads that are more likely to be misaligned
can then be evaluated by other aligners, such as BWA.
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