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ABSTRACT

Motivation: Computational modeling of protein–DNA complexes

remains a challenging problem in structural bioinformatics. One of

the key factors for a successful protein–DNA docking is a potential

function that can accurately discriminate the near-native structures

from decoy complexes and at the same time make conformational

sampling more efficient. Here, we developed a novel orientation-

dependent, knowledge-based, residue-level potential for improving

transcription factor (TF)-DNA docking.

Results: We demonstrated the performance of this new potential in

TF–DNA binding affinity prediction, discrimination of native protein–

DNA complex from decoy structures, and most importantly in rigid

TF–DNA docking. The rigid TF–DNA docking with the new orientation

potential, on a benchmark of 38 complexes, successfully predicts

42% of the cases with root mean square deviations lower than 1 Å

and 55% of the cases with root mean square deviations lower than

3 Å. The results suggest that docking with this new orientation-

dependent, coarse-grained statistical potential can achieve high-

docking accuracy and can serve as a crucial first step in multi-stage

flexible protein–DNA docking.

Availability and implementation: The new potential is available at

http://bioinfozen.uncc.edu/Protein_DNA_orientation_potential.tar.

Contact: jguo4@uncc.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

Protein–DNA interactions play crucial roles in many biological

processes. Transcription factors (TFs), which bind to specific

cis-regulatory elements on DNA and regulate gene expression,

represent one of the largest groups of proteins in many genomes

(Babu et al., 2004; Janga and Collado-Vides, 2007). How TFs

recognize and bind specifically to their DNA target sequences,

despite of decades of efforts, is still not fully understood.

Benefited from the technical advances in experimental structure

determination, high-resolution structures of TF–DNA com-

plexes have provided a glimpse of TF–DNA interaction in

each complex. A collection of such views may offer valuable

insights into the molecular mechanism of TF–DNA recognition

and the evolution of gene regulatory networks (Luscombe and

Thornton, 2002). A TF–DNA complex model is also a starting

point for structure-based TF-binding site prediction, which has

received much research attention recently (Angarica et al., 2008;

Kaplan et al., 2005; Liu et al., 2008; Siggers and Honig, 2007; Xu

et al., 2009).

Despite technical advances in experimental structure determin-

ation, only a small percentage of TF–DNA complex structures

have been solved and deposited in Protein Data Bank (PDB)

(Berman et al., 2000). Computational docking between a protein

and DNA, on the other hand, has been considered as a

cost-efficient alternative to the usually time-consuming experi-

mental methods. Macromolecule docking relies on some sorts

of energy functions for building complex models (Pande, 2011).

There are two major types of the potentials for studying protein–

DNA interactions: physics-based (Donald et al., 2007; Endres

et al., 2004) and knowledge-based (Liu et al., 2005; Robertson

and Varani, 2007; Xu et al., 2009; Zhang et al., 2005). For ex-

ample, van Dijk et al. applied a physics-based potential, origin-

ally developed for protein–protein docking, to protein–DNA

docking (van Dijk and Bonvin, 2010; van Dijk et al., 2006).

Knowledge-based potentials, derived from experimental struc-

tures, are considered more attractive and have more practical

value in structural bioinformatics studies owing to their relative

simplicity (Miyazawa and Jernigan, 1985; Pande, 2011; Sippl,

1990; Sippl, 1995; Zhou and Zhou, 2002). These knowledge-

based potentials generally vary in their resolutions, from

residue-level to atom-level and in their distance scales, from

distance-independent to distance-dependent (Gao and Skolnick,

2008; Kono and Sarai, 1999; Liu et al., 2005; Luscombe et al.,

2001; Robertson and Varani, 2007; Xu et al., 2009; Zhang et al.,

2005; Zhao et al., 2010).
Although high-resolution, atomic-level potentials can provide

the details needed to accurately discriminate near-native struc-

tures from decoys, coarse-grained potentials can have a smooth

and less-rugged energy landscape, making it less likely to get

trapped in local minima during conformational search (Ayton

et al., 2007; Bradley et al., 2005; Flores et al., 2012; Kim and

Hummer, 2008; Poulain et al., 2008). Another advantage of the

coarse-grained potentials at residue-nucleotide level is their cap-

ability in addressing the dynamic nature of macromolecules, as

they are less sensitive to small conformational changes (Bradley

et al., 2005; Gopal et al., 2010; Vreven et al., 2011). To take

advantage of both the coarse-level and the atomic-level poten-

tials, multi-scale approaches are often adopted, in which
near-native models are constructed first with a coarse-level po-

tential followed by refinement with high-resolution potentials

(Chen and Xu, 2006; Murphy et al., 2003; Vreven et al., 2011).*To whom correspondence should be addressed.
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In this study, we focus on the development of a novel

knowledge-based, residue-level potential for accurate docking

between TFs and their DNA target sequences. Previous studies

have revealed different interaction ‘modes’ between TFs and

other major types of DNA-binding proteins, such as restriction

enzymes and non-specific DNA-binding proteins (Ashworth and

Baker, 2009; Contreras-Moreira et al., 2010; Kim et al., 2011). In

addition, the negatively charged residues, aspartate and glutam-

ate, are overrepresented in restriction enzymes compared with

other types of DNA-binding proteins (Pingoud et al., 2005).

As the major goal of this study is to develop a protein–DNA

interaction potential for assessing TF–DNA binding affinity in

TF–DNA docking, non-TF protein–DNA complexes including

restriction enzymes and non-specific DNA-binding proteins are

not included in the dataset for potential development.
Liu et al. have previously developed a knowledge-based,

residue-level potential based on statistical analysis of known

TF–DNA complex structures (Liu et al., 2005). The potential

uses DNA tri-nucleotides, called triplets, as an interaction unit

to study the interactions between TF and DNA molecules. The

triplets could be real nucleotides with explicit positions (native

nucleotides) or pseudo-nucleotide placeholders that do not make

any structural or energy contribution toward potential calcula-

tion. The triplet representation has the advantage of covering

both the preference of individual bases and the local environment

around the nucleotides. It has been shown that this multi-body

potential performs well in assessing TF–DNA interactions and in

protein–DNA docking (Liu et al., 2005; Liu et al., 2008).
The binding specificity between a DNA and a protein is gen-

erally contributed by hydrogen bonds. It has been shown that

two-thirds of the hydrogen bonds between amino acids and bases

lead to specific complex interactions (Angarica et al., 2008).

Kono and Sarai have previously studied the radial and angular

distributions for hydrogen bonds and found that the angular

distributions of protein atoms around potential hydrogen-bond

forming atoms of bases have different patterns (Kono and Sarai,

1999). The strength of a hydrogen bond is usually defined by

bond length(s) and angle(s) between a donor and an acceptor

(Baker and Hubbard, 1984; Frishman and Argos, 1995; Wade

and Goodford, 1993). Therefore, adding angular information to

a statistical potential can be expected to improve the accuracy in

assessing TF–DNA binding affinity and specificity.
In this article, we present an orientation-dependent, knowl-

edge-based potential derived from a non-redundant set of TF–

DNA complex structures through converting the observed fre-

quencies of base-residue pairs with respect to both distances

and angles to a potential based on Boltzmann’s principle. The

performance of the new potential was assessed through binding

affinity prediction and TF–DNA rigid docking. The results show

much better accuracy in TF–DNA binding affinity prediction and

rigid TF–DNA docking with the new orientation potential when

compared with the residue potential without angle information.

2 METHODS

2.1 Datasets

A non-redundant dataset of 160 TF–DNA complex structures was first

generated from PDB for deriving the new orientation potential

(Supplementary Table S1) (Berman et al., 2000). These complex struc-

tures were solved by X-ray crystallography with resolutions 3.5 Å or

better and R-factors of at most 0.3. The TFs in the complexes have

40–1000 amino acids. Redundant TF chains are removed with a sequence

identity cutoff of 55%. To eliminate any potential bias when constructing

a non-redundant dataset in structural bioinformatics, it would be ideal to

use a lower sequence identity cutoff. However, when only a limited

number of complex structures are available, there are drawbacks for se-

lecting representatives with a lower cutoff, as discussed in previous stu-

dies. First, statistical analysis based on a small dataset would suffer the

low-count problem, particularly in cases with a large number of combin-

ations of cases (Luscombe et al., 2001). Second, homologous TFs can

bind to different DNA sequences, and the binding patterns may be

unique to the specific TF–DNA complex. Inclusion of these entries

may maximize the diversity of protein–DNA interactions (Kim and

Guo, 2009; Luscombe et al., 2001; Prabakaran et al., 2006). Therefore,

there is a trade-off between the degree of redundancy and the statistical

significance of the potentials. Taking both into account, we settled on a

cutoff of 55%.

For TF–DNA docking evaluations, we used our previously developed

rigid TF–DNA docking benchmark (Kim et al., 2011). This benchmark

contains 38 non-redundant cases that are classified into two groups in

terms of expected docking difficulty. Each case in the benchmark is a TF–

DNA binding unit defined as an entity of a DNA double-helix and one or

more TF-chains that interact with each other with at least three residue–

residue contacts based on a heavy-atom distance cutoff of 4.5 Å. The TFs

in the 38 complexes have535% sequence identity and do not have over-

lap with the 160 complexes for potential development based on the selec-

tion criteria.

2.2 Development of the orientation potential

For the development of our new orientation potential, we applied a simi-

lar statistical approach used in developing the multi-body potential (Liu

et al., 2005). Owing to the limited number of non-redundant TF–DNA

complexes, we only consider distance and angle information while drop-

ping the multi-body term. Figure 1 illustrates the angle used for the new

potential. The angle ’ represents the angle between two vectors. One

vector is defined based on the DNA bases, which is either from N9 to

N1 for adenine and guanine or from N1 to C4 for cytosine and thymine

(Fig. 1A and B). The other vector is a projection of the residue sidechain

vector (from the C� atom to the sidechain centroid) onto the base plane

(Fig. 1C). A pseudo C� position is calculated for glycine as described

previously (Liu et al., 2005). For glycine and alanine, C�–C� vector is

used instead, as there are no heavy atoms beyond the C� position of the

sidechain. The angles are grouped into three bins (�60� �’50�, 0� � ’

560�, and �120� �’5�60� and 60� �’5120�). To further reduce the

total number of possible combinations, some residues are grouped to-

gether based on both the physicochemical properties of amino acids and

the low raw count in known TF–DNA complexes. In this study, ALA,

ILE, LEU, PRO and VAL are combined into one group, whereas SER

and THR belong to another group.

The distance r between a residue and a base is represented by the

distance between the centroid of the residue sidechain and the centroid

of the base. The bin width is set at 1 Å with a distance cutoff of 15 Å,

meaning there is no interaction between a residue and a base if they are

separated by415 Å. The correction of the observed fractions of inter-

actions, owing to incomplete training set, is first carried out by introdu-

cing two exponential parameters (� and �) for the fraction of interacting

residues Wresidue and the fraction of interacting bases Wbase, respectively

(Equation 1). In Equation 1, Nij(r, ’) is the corrected number of inter-

actions between protein residue i and DNA base j, and N0
ij
(r,’) is the

initial number of interactions between protein residue i and DNA base j.

Low count effects are removed by an offset parameter �. A cutoff on the

number of interactions Ncutoff is set to 1.
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Nij r, ’ð Þ ¼

N0
ij r, ’ð Þ

W�
residue
�W�

base
�F rð Þ

N0
ij r, ’ð Þ

W�
residue
�W�

base
�F rð Þ
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8><
>:

for N0
ij r, ’ð Þ4Ncutoff

for N0
ij r,’ð Þ � Ncutoff

ð1Þ

The two exponential parameters (�, �) and the offset parameter � are

optimized using a Z-score optimization approach (see detailed description

for Equations 6 and 7). F(r) is a distance normalization function for

removing the distance effect. We used F(r)¼ 0.535*(r^3.345) as described

previously (Liu et al., 2005). After the correction of the observed inter-

action frequency with those parameters, we convert the frequency to the

potential by Boltzmann law (Equations 2–4).

pijðr,’Þ ¼
Nijðr,’ÞP
i, j Nijðr,’Þ

¼
e�Eijðr,’Þ=kTP
i, j e
�Eijðr, ’Þ=kT

¼
e�Eijðr, ’Þ=kT

Z
ð2Þ

Equation 2 describes the relationship between the observed probability

pij(r, ’) and the statistical thermodynamic interaction energy Eij(r, ’) of

an interaction between residue i and base j with a distance r and an angle

’, where T is temperature, k is Boltzmann constant and Z is the partition

function. The uniform density reference is used for each distance-angle

bin (Equation 3), where pijðr, ’Þ is the mean probability of the interactions

between residues and bases with a distance r and an angle ’. Energy

E0
ij
(r, ’) for the final potential is shown in Equation 4, where E r,’ð Þ is

the reference mean energy.

X
i, j
pijðr,’Þ ¼ 1, pðr, ’Þ ¼

P
i, j pijðr, ’ÞP

i, j 1
¼

1

15� 4
¼

1

60
ð3Þ

E0
ijðr, ’Þ ¼ Eijðr,’Þ � Eðr,’Þ

¼ �kT lnðpijðr, ’Þ � ZÞ � lnðpðr, ’Þ �ZÞ
� �

¼ �kT � ln
pijðr,’Þ

pðr,’Þ

� �
¼ �kT � ln 60� pijðr, ’Þ

� � ð4Þ

The interaction energy E for a protein–DNA complex is the sum of the

energies E
0

ij
(r, ’) of all residue-base interactions (Equation 5). In Equation

6, Zt, the critical Z-score, is the gap between the native energy Enative-t of

complex t, and the average energy of the decoys5Et4 and �(Et) is the

standard deviation of the decoy energies. An average Z-score for M

complexes is computed as in Equation 7. Z-score optimization is per-

formed to derive �, � and � by a Monte Carlo simulated annealing ap-

proach. The cooling rate is set at 0.998 with a convergence of 10�6. The

goal is to minimize the average Z-score by changing the parameter values

of �, � and � using the native and decoy complexes of the 160 TF–DNA

complexes. In this work, parameters �, � and � are 0.644, 0.787 and

0.440, respectively.

E ¼
X

i

X
j

X
r

X
’
E0
ijðr,’Þ r � 15Å ð5Þ

Zt ¼
Enative�t � Eth i

�ðEtÞ
ð6Þ

Z ¼ ln

P
t e

Zt

M

� �
ð7Þ

2.3 Assessment of the orientation potential

2.3.1 Binding affinity We compared the predicted binding affinity

with the experimental binding-free energies of 25 protein–DNA com-

plexes (PDBID: 1aay, 1apl, 1az0, 1azp, 1bc7, 1bhm, 1bp7, 1ca5, 1cdw,

1cma, 1cw0, 1ecr, 1glu, 1hcr, 1ipp, 1lmb, 1nfk, 1oct, 1par, 1qrv, 1tro,

1run, 1tsr, 1ysa, 1ytf). These complexes were selected from the dataset

with 30 complexes used by Xu et al. (2009). The five complexes that

appeared in our 160-complex dataset for potential development are not

considered.

2.3.2 Discrimination of native structures from decoys Z-scores

were calculated to test how well the new potential can discriminate the

native protein–DNA complex from docking decoys. The 2000 lowest root

mean square deviation (RMSD) docking decoys for each of the 27 DNA–

protein complexes (PDBID: 1a1i, 1a73, 1au7, 1bc8, 1ckq, 1d02, 1dfm,

1dmu, 1eon, 1f4k, 1g9z, 1h8a_a, 1h8a_b, 1hlv, 1jko, 1l3l, 1mjo, 1mnn,

1pdn, 1qna, 1tc3, 1tro, 1zme, 2hdd, 3bam, 3pvi, 6pax) were selected from

the 45 cases used by Robertson and Varani (Robertson and Varani, 2007)

after removing the 18 complexes that are in our dataset for potential

development to avoid potential biases. Z-scores were calculated as

described in Equation 6. The RMSD was computed between the back-

bone heavy atoms of the native DNA and the docked DNA structure

after fixing the protein positions.

2.3.3 Rigid TF–DNA docking The performance of the orientation

potential in rigid TF–DNA docking was assessed with our previously

developed protein–DNA docking program (Liu et al., 2008). The pro-

gram uses a Monte Carlo simulated annealing approach to search for a

docked TF–DNA conformation with the optimal interaction energy. The

energy function consists of binding affinity and van der Waals packing

energy. The primary role of adding the packing energy to the docking is

to guide the docking process without affecting the final docked structures

(its contribution to the final energy approaches zero as the random walk

progresses). The movements include rotations with a step size of 2� and

translations with a step size of 0.1 Å. The simulation stops when it con-

verges or it reaches a total number of 1.5 million steps. Two hundred

independent Monte Carlo simulations were carried out for each TF–

DNA complex. Protein and DNA are harmonically constrained with a

cutoff of 14 Å between the protein pocket and the centroids of DNA. We

tested the performance of the new orientation potential on our previously

developed TF–DNA rigid docking benchmark (Kim et al., 2011). To

evaluate the docking accuracy, we compared the docked DNA

Fig. 1. Schematic representation of vectors for defining the angle ’.

Vectors for the DNA bases [(A) purines; (B) pyrimidines] are shown in

red arrows. The definition of angle ’ between residue sidechain and DNA

base is shown in (C)

324

T.Takeda et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/29/3/322/257563 by guest on 09 April 2024



conformations with the corresponding DNA structures in the native TF–

DNA complexes by fixing the protein positions and calculated the

RMSDs between the predicted and the native complex using DNA back-

bone heavy atoms.

3 RESULTS AND DISCUSSION

3.1 Binding affinity and decoy discrimination

We first tested how well the new potential can predict the binding
affinity. Figure 2 shows the correlations between experimental

binding affinity and the predicted binding affinity using either
the orientation potential (Fig. 2A) or the multi-body potential, a

knowledge-based residue level potential developed by Liu et al.

(Fig. 2B) (Liu et al., 2005). The correlation coefficient between
the predicted binding affinity with orientation potential and

the experimental energy is 0.57 (P-value¼ 0.01), whereas the
multi-body potential has a correlation coefficient of 0.41

(P-value¼ 0.02). The performance of the orientation potential

is on par with vFIRE, an all-atom, knowledge-based DFIRE
function that includes volume fraction (correlation coefficients

0.57 for the orientation potential versus 0.55 for vFIRE) (Xu
et al., 2009).

Our main goal of this study is to develop a better and efficient

potential for improving TF–DNA docking performance. Thus, it

is important to assess the potential’s capability for discriminating

the native or near native structures from decoy structures. We

tested it on a docking decoy set by Robertson and Varani (see

Methods) and demonstrated the discriminative power based on

Z-scores: Z-score¼ (Enative�Eavg)/S, where Enative is the pre-

dicted binding affinity for the native complex, and Eavg and S

are the average and standard deviation of the binding affinities of

decoy complexes, respectively. A higher Z-score, especially a

positive Z-score, would suggest a lower discriminative power.

Overall, the orientation potential outperforms the multi-body

potential based on Z-score comparisons (Fig. 3). All except for

one case (1ckq) with orientation potential have negative

Z-scores, whereas there are eight complexes (1d02, 1hlv, 1l3l,

1tc3, 1tro, 1zme, 3bam and 3pvi) having positive Z-scores calcu-

lated with the multi-body potential. We should point out that the

binding affinities calculated from the orientation and multi-body

potentials are at a similar scale, otherwise the direct comparison

of Z-scores would be less meaningful.
In addition to Z-score comparison, another way to test the

performance improvement of the new potential is to assess the re-

lationship between the binding affinity of a decoy and the struc-

tural distance between this decoy structure and the native

complex in terms of RMSD. Two such examples, 1a1i and

1l3l, are shown in Figure 4 (A–C for 1ali; D–F for 1l3l), in

Fig. 2. Correlation analysis between the predicted binding affinity and

the experimental binding affinity [-log(Kd) unit]. (A) Predicted binding

affinity with the orientation potential; (B) Predicted binding affinity

with the multi-body potential

Fig. 4. Scatter plots of RMSDs versus the predicted binding affinities for

1a1i (A–C) and 1l3l (D–F). (A and D) multi-body potential; (B and E)

orientation potential; (C and F) DDNA2 potential

Fig. 3. Comparison of Z-scores between the orientation potential (filled)

and the multi-body potential (open). The entries are arranged from left to

right based on sorted Z-scores of orientation potential
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which we compared the binding affinities predicted by the orien-

tation potential, multi-body potential and DDNA2. DDNA2 is

a program for predicting protein–DNA binding affinity using

a knowledge-based, atomic-level potential (Xu et al., 2009).

Consistent with the Z-score data, the orientation potential clearly

performs better than the multi-body potential and achieves a

similar performance to DDNA2. Similar results were observed

in other cases (Supplementary Fig. S1). To quantitatively com-

pare the performance of the orientation potential with the

multi-body potential and DDNA2, we counted the number of

‘false positive’ decoys in each of the 27 cases. A decoy is con-

sidered as a ‘false positive’ if its binding affinity is lower than the

binding affinity of the native structure, and its RMSD with re-

spect to the native structure is 45 Å. The number of false

positives using the orientation potential is much smaller than

that using the multi-body potential. The performance of the

orientation potential is close to that of DDNA2, which is an

atomic-level potential (Supplementary Fig. S2).
It is worth mentioning that the decoy set by Robertson and

Varani was not designed for testing only TFs (Robertson and

Varani, 2007). In addition to TFs, the 27 complexes also contain

other DNA-binding proteins, including nine restriction endo-

nucleases and five others. Although the orientation potential

was developed using a set of TFs, no obvious differences were

observed between TFs and non-TF complexes. This is not sur-

prising, as majority of these non-TF proteins are specific DNA-

binding proteins. The key difference though is the high occur-

rences of aspartate and glutamate involved in metal coordination

and catalytic activities in these enzymes compared with TFs

(data not shown) (Pingoud et al., 2005).

3.2 Assessment of the orientation potential in rigid

TF–DNA docking prediction

TF–DNA rigid docking was carried out with either the orienta-

tion or the multi-body potential using our previously developed

Monte Carlo-based protein–DNA docking program (Liu et al.,

2008). The TF–DNA docking benchmark with 21 easy and 17

hard targets was used for performance comparison (Kim et al.,

2011). The docking results based on 200 independent Monte

Carlo simulations for each case are shown in Table 1 (for orien-

tation potential) and Supplementary Table S2 (for multi-body

potential). Each table shows the docking energy and RMSD for

both the conformation with the lowest energy and the conform-

ation with the smallest RMSD.
Figure 5 shows that the docking accuracy with the orientation

potential is significantly better than that with the multi-body

Table 1. Rigid docking results using orientation potential on rigid dock-

ing benchmark set

Class PDBID Conformation with

the lowest energy

Conformation with

the smallest RMSD

RMSD (Å) Edocking RMSD (Å) Edocking

Easy 1aay 0.96 �210.26 0.94 �208.08

1an2 0.62 �158.29 0.6 �156.72

1jj4 0.81 �147.16 0.66 �142.28

1jt0 24.2 �96.53 5.07 �87.86

1lmb 0.32 �127.49 0.32 �127.49

1qn4 0.37 �302.72 0.16 �301.16

1qpi 24.36 �102.29 12.26 �72.29

1sax 0.39 �356.55 0.36 �353.64

1tro 0.7 �206.91 0.21 �203.89

1z9c 1.93 �148.96 1.84 �146.41

1zs4 0.17 �193.43 0.14 �188.99

2ac0 0.39 �225.61 0.38 �223.84

2cgp 0.56 �255.63 0.52 �252.22

2e1c 0.28 �220.63 0.19 �217.09

2it0 6.3 �135.85 6.08 �126.05

2or1 1.62 �186.78 0.39 �177.79

2yvh 16.81 �109.73 13.5 �104.7

3clc 1.37 �149.86 1.37 �149.86

3dnv 0.79 �171.79 0.74 �170.66

3e6c 0.31 �200.28 0.12 �197.33

3gz6 1.35 �241.93 0.58 �236.42

Hard 1b01 0.6 �142.22 0.56 �141.23

1by4 27.6 �74.98 9.69 �50.49

1cma 5.09 �134.55 1.62 �106.67

1gxp 36.71 �98.82 1.08 �91.65

1h8a 16.01 �98.06 15.83 �97.96

1hjc 2.64 �102.36 2.43 �100.08

1r8d 6.89 �106.5 5.79 �91.28

1rio 60.41 �58.85 23.86 38.33

1xpx 19.69 �88.91 2.21 �58.17

1zme 20.29 �117.21 3.07 �88.43

2bnw 8.45 �136.83 2.25 �117.88

2c6y 0.49 �157.92 0.41 �156.61

2fio 28.67 �140.85 18.66 �93.61

2irf 0.39 �135.64 0.3 �132.51

2rbf 6.09 �117.52 4.4 �108.04

2zhg 28.91 �170.1 0.5 �138.28

3hdd 4.32 �135.93 3.88 �132.91

Fig. 5. Docking results on the rigid TF–DNA docking benchmark. The

docking performance is evaluated based on either the lowest docking

energy or the smallest RMSD using either the orientation potential (A,

C, E, G) or the multi-body potential (B, D, F, H). The filled and the

patterned columns represent the easy cases, whereas the open and the

gray boxes represent the hard docking targets. Two different RMSD

cutoffs are used to tally the successful cases, 1 Å (A, B, C, D) or 3 Å

(E, F, G, H)
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potential. Docking simulations with the orientation potential re-
constructed 16 (42%, 13 easy and 3 hard targets) TF–DNA

complexes with RMSDs of �1 Å (Fig. 5, column A), whereas

only eight (21%, six easy and two hard targets) complexes with

RMSDs of �1 Å were reconstructed with the multi-body poten-
tial (Fig. 5, column B). When the evaluation was done using the

smallest RMSD, we found that 19 of 38 complexes (50%, 15 easy

and 4 hard targets) have at least one docked conformation with

RMSD51 Å using the orientation potential (Fig. 5, column C);

only 10 (26%, eight easy and two hard targets) have at least one

docked conformation with RMSD 51 Å for docking with
multi-body potential (Fig. 5, column D). We found similar per-

formance improvement when using 3 Å as the RMSD cutoff.

Docking with the orientation potential predicted 21 (55%, 17

easy and 4 hard cases) based on the lowest energy and produced
26 (68%, 17 easy and 9 hard cases) targets with docked structures

having53 Å RMSD (Fig. 5E and G), whereas the multi-body

potential docking correctly predicted nine (24%, seven easy and

two hard cases) and produced 16 (42%, 12 easy and 4 hard cases)

targets with docked structures having53 Å RMSD (Fig. 5F and

Fig. 6. Scatter plots of docking energy against RMSD of the 200 predicted docking conformations for each target. Three docking targets, 1aay, 1qn4 and

1cma, are shown either with the orientation potential (A, C, E) or the multi-body potential (B, D, G). The insets are the enlarged portions for docked

structures in the gray circles
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H). The results also support the classification of docking diffi-

culty based on the interaction strength between protein and

DNA (Kim et al., 2011). Both potentials made much more cor-

rect prediction for the easy cases than for the hard cases (Fig. 5,

Table 1 and Supplementary Table S2).

Docking with the orientation potential correctly reconstructed

eight more targets with �1 Å RMSD based on the lowest dock-

ing energy (Table 1, Supplementary Table S2 and Fig. 5). Target

1aay represents one of these eight cases (Fig. 6A and B). Docking

with the orientation potential produced 12 near-native structures

with RMSDs of �1 Å (inset plot in Fig. 6A), whereas docking

with the multi-body potential failed to produce any near-native

structures (Fig. 6B).
Owing to the statistical nature of the Monte Carlo docking

algorithm, another way to assess the docking performance is to

check the ‘easiness’ (or difficulty) of finding a ‘hit’ in docking

simulations (Wu et al., 2012). For example, if only one of the 200

docked TF–DNA conformations is a correct structure, it is

highly possible that a second docking experiment for this

target with 200 independent simulations fails to reconstruct a

native or near-native structure. On the other hand, it would be

easier to make consistent and correct predictions if more

near-native structures are reconstructed from 200 independent

Monte Carlo docking simulations. One such example is shown

in Figure 6 (C and D). Docking simulations for 1qn4 resulted in

correct predictions with both the orientation and the multi-body

potentials based on the lowest docking energy. The numbers of

near-native conformations, however, are dramatically different.

There are nine for the orientation potential and only one for the

multi-body potential (Fig. 6C and D).

The orientation potential correctly predicted all the cases that

were reconstructed using the multi-body potential with 1cma as

the only exception (Fig. 6E and F). The energy-RMSD scatter-

plot for all the docking targets are shown in Supplementary

Figure S3. Figure 7 demonstrates major improvement in produ-

cing more near-native structures (51 Å) when using the orienta-

tion potential for rigid docking than those with the multi-body

potential. The number of ‘hits’ based on 3 Å cutoff is shown in

Supplementary Figure S4.
Owing to the relatively small size of the benchmark set, we

further performed the rigid docking experiments on a larger set

with 66 TF–DNA complex structures. To construct a larger

dataset, a higher sequence identity cutoff is necessary owing to

the limited number of TF–DNA complex structures in PDB.

These 66 complexes have570% protein sequence identity with

resolutions of 3.5 Å or better. We observed a similar performance

improvement to the benchmark set. Docking with the orientation

potential resulted a significantly better docking accuracy in each

category (�20% improvement) when compared with the

multi-body potential (Supplementary Figure S5, Supplementary

Tables S3 and S4). We also noticed that the docking accuracy of

this large dataset is better than the benchmark. The difference

can be a result of two contributing factors. One is that the re-

dundancy level of the large set (70% sequence identity cutoff) is

higher than that in the benchmark (535% sequence identity).

The other is that the large set has more entries with larger pro-

tein–DNA interaction interface (Supplementary Fig. S6) as we

showed earlier that a complex with larger protein–DNA inter-

action interface is relatively easier to predict than the ones with

smaller interaction interface (Kim et al., 2011).

Fig. 7. The number of successfully docked structures on the rigid docking benchmark. The total number of independent docking simulations for each

target is 200, and the RMSD cutoff is set at 1 Å
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Taken together, we observed a much better docking perform-

ance for the orientation potential in reconstructing complexes in

terms of finding the native or near-native conformations (Fig. 5,

Supplementary Figs S5 and S6). Docking with the orientation

potential also produced more near-native structures than the

multi-body potential when using the same docking procedure

(Fig. 5, Supplementary Figs S5 and S6). In addition, the com-

putation time using the new orientation potential is only slightly

more than that with the multi-body potential, 51� 20.6 min

versus 42� 18.2min based on the 66 docking targets

(Supplementary Fig. S7).

4 CONCLUSION

We have developed an orientation-dependent, knowledge-based

residue-level potential and assessed its performance with a var-

iety of tests—binding affinity prediction, decoy discrimination

and rigid TF–DNA docking. The new potential has a much

better protein–DNA binding affinity prediction capability than

our previously developed multi-body residue-level potential. Our

results also show that the performance of this residue-level,

orientation potential is close to some of the atomic-level poten-

tials, such as vFIRE, though it is less accurate than cFIRE or

vcFIRE (Xu et al., 2009). This is not surprising, as the atom-level

potentials have more detailed information on the interaction.

However, the main purpose of this new, coarse-grained potential

is for improving TF–DNA docking predictions. A coarse-

grained potential has an advantage in addressing the dynamic

nature of macromolecules, as it is less sensitive to small conform-

ational changes.
Although the use of atomic details offers the accuracy in scor-

ing, the rugged energy landscape and the time-consuming energy

calculations at atomistic level can get a docking simulation

trapped in the local minima (Ayton et al., 2007; Bradley et al.,

2005; Flores et al., 2012; Kim and Hummer, 2008; Poulain et al.,

2008), making a thorough sampling of the conformational space

nearly impossible. The common strategy in many protein folding

or docking studies is to apply a multi-scale approach by explor-

ing the conformational space first at the residue-level and then

refining the structure(s) at the atomistic level (Chen and Xu,

2006; Murphy et al., 2003; Vreven et al., 2011).

By introducing an angle term, we were able to achieve much

better prediction accuracy when compared with the multi-body

potential in all the tests. In our current procedure, we adopted

the distance correction function in the multi-body potential with-

out normalizing the angle term (Liu et al., 2005). As the distance

and the angle are related, one potential future improvement of

this orientation potential is to develop a methodology for nor-

malizing a distance and angle function F(r,’).
This novel orientation potential could be useful in develop-

ment of new docking algorithms, especially in flexible TF–

DNA docking in which the starting structures are in unbound

state and undergo conformational change on binding, as our

residue-level potential is less sensitive to conformational changes

(Chen and Xu, 2006; Murphy et al., 2003; Vreven et al., 2011).

We will develop a strategy for applying the new potential to

flexible protein–DNA docking, a much more challenging prob-

lem in structural bioinformatics.

ACKNOWLEDGEMENT

The authors thank Dr Jiancheng Jiang for discussions and com-

ments on the manuscript.

Funding: This work was supported by the National Science

Foundation (DBI0844749 to J.G.).

Conflict of Interest: none declared.

REFERENCES

Angarica,V.E. et al. (2008) Prediction of TF target sites based on atomistic models

of protein-DNA complexes. BMC Bioinformatics, 9, 436.

Ashworth,J. and Baker,D. (2009) Assessment of the optimization of affinity and

specificity at protein-DNA interfaces. Nucleic Acids Res., 37, e73.

Ayton,G.S. et al. (2007) Multiscale modeling of biomolecular systems: in serial and

in parallel. Curr. Opin. Struct. Biol., 17, 192–198.

Babu,M.M. et al. (2004) Structure and evolution of transcriptional regulatory net-

works. Curr. Opin. Struct. Biol., 14, 283–291.

Baker,E.N. and Hubbard,R.E. (1984) Hydrogen bonding in globular proteins.

Prog. Biophys. Mol. Biol., 44, 97–179.

Berman,H.M. et al. (2000) The protein data bank. Nucleic Acids Res., 28, 235–242.

Bradley,P. et al. (2005) Toward high-resolution de novo structure prediction for

small proteins. Science, 309, 1868–1871.

Chen,Z. and Xu,Y. (2006) Structure prediction of helical transmembrane proteins at

two length scales. J. Bioinform. Comput. Biol., 4, 317–333.

Contreras-Moreira,B. et al. (2010) Comparison of DNA binding across protein

superfamilies. Proteins, 78, 52–62.

Donald,J.E. et al. (2007) Energetics of protein-DNA interactions. Nucleic Acids

Res., 35, 1039–1047.

Endres,R.G. et al. (2004) Toward an atomistic model for predicting

transcription-factor binding sites. Proteins, 57, 262–268.

Flores,S.C. et al. (2012) Multiscale modeling of macromolecular biosystems. Brief.

Bioinform., 13, 395–405.

Frishman,D. and Argos,P. (1995) Knowledge-based protein secondary structure

assignment. Proteins, 23, 566–579.

Gao,M. and Skolnick,J. (2008) DBD-Hunter: a knowledge-based method for the

prediction of DNA-protein interactions. Nucleic Acids Res., 36, 3978–3992.

Gopal,S.M. et al. (2010) PRIMO/PRIMONA: a coarse-grained model for proteins

and nucleic acids that preserves near-atomistic accuracy. Proteins, 78,

1266–1281.

Janga,S.C. and Collado-Vides,J. (2007) Structure and evolution of gene regulatory

networks in microbial genomes. Res. Microbiol., 158, 787–794.

Kaplan,T. et al. (2005) Ab initio prediction of transcription factor targets using

structural knowledge. PLoS Comput. Biol., 1, e1.

Kim,R. and Guo,J.T. (2009) PDA: an automatic and comprehensive analysis pro-

gram for protein-DNA complex structures. BMC Genom., 10 (Suppl. 1), S13.

Kim,Y.C. and Hummer,G. (2008) Coarse-grained models for simulations of multi-

protein complexes: application to ubiquitin binding. J. Mol. Biol., 375,

1416–1433.

Kim,R. et al. (2011) Benchmarks for flexible and rigid transcription factor-DNA

docking. BMC Struct. Biol., 11, 45.

Kono,H. and Sarai,A. (1999) Structure-based prediction of DNA target sites by

regulatory proteins. Proteins, 35, 114–131.

Liu,Z. et al. (2005) Quantitative evaluation of protein-DNA interactions using an

optimized knowledge-based potential. Nucleic Acids Res., 33, 546–558.

Liu,Z. et al. (2008) Structure-based prediction of transcription factor binding sites

using a protein-DNA docking approach. Proteins, 72, 1114–1124.

Luscombe,N.M. and Thornton,J.M. (2002) Protein-DNA interactions: amino acid

conservation and the effects of mutations on binding specificity. J. Mol. Biol.,

320, 991–1009.

Luscombe,N.M. et al. (2001) Amino acid-base interactions: a three-dimensional

analysis of protein-DNA interactions at an atomic level. Nucleic Acids Res.,

29, 2860–2874.

Miyazawa,S. and Jernigan,R.L. (1985) Estimation of effective interresidue contact

energies from protein crystal-structures—quasi-chemical approximation.

Macromolecules, 18, 534–552.

Murphy,J. et al. (2003) Combination of scoring functions improves discrimination

in protein-protein docking. Proteins, 53, 840–854.

329

A knowledge-based orientation potential

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/29/3/322/257563 by guest on 09 April 2024

http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/bts699/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/bts699/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/bts699/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/bts699/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/bts699/-/DC1


Pande,V.S. (2011) (Compressed) sensing and sensibility. Proc. Natl Acad. Sci. USA,

108, 14713–14714.

Pingoud,A. et al. (2005) Type II restriction endonucleases: structure and mechan-

ism. Cell. Mol. Life Sci., 62, 685–707.

Poulain,P. et al. (2008) Insights on protein-DNA recognition by coarse grain mod-

elling. J. Comput. Chem., 29, 2582–2592.

Prabakaran,P. et al. (2006) Classification of protein-DNA complexes based on

structural descriptors. Structure, 14, 1355–1367.

Robertson,T.A. and Varani,G. (2007) An all-atom, distance-dependent scoring

function for the prediction of protein-DNA interactions from structure.

Proteins, 66, 359–374.

Siggers,T.W. and Honig,B. (2007) Structure-based prediction of C2H2 zinc-finger

binding specificity: sensitivity to docking geometry. Nucleic Acids Res., 35,

1085–1097.

Sippl,M.J. (1990) Calculation of conformational ensembles from potentials of mean

force. An approach to the knowledge-based prediction of local structures in

globular proteins. J. Mol. Biol., 213, 859–883.

Sippl,M.J. (1995) Knowledge-based potentials for proteins. Curr. Opin. Struct. Biol.,

5, 229–235.

van Dijk,M. and Bonvin,A.M. (2010) Pushing the limits of what is achievable in

protein-DNA docking: benchmarking HADDOCK’s performance. Nucleic

Acids Res., 38, 5634–5647.

van Dijk,M. et al. (2006) Information-driven protein-DNA docking using

HADDOCK: it is a matter of flexibility. Nucleic Acids Res., 34, 3317–3325.

Vreven,T. et al. (2011) Integrating atom-based and residue-based scoring functions

for protein-protein docking. Protein Sci., 20, 1576–1586.

Wade,R.C. and Goodford,P.J. (1993) Further development of hydrogen bond func-

tions for use in determining energetically favorable binding sites on molecules of

known structure. 2. Ligand probe groups with the ability to formmore than two

hydrogen bonds. J. Med. Chem., 36, 148–156.

Wu,J. et al. (2012) High performance transcription factor-DNA docking with GPU

computing. Proteome Sci., 10 (Suppl. 1), S17.

Xu,B. et al. (2009) An all-atom knowledge-based energy function for protein-DNA

threading, docking decoy discrimination, and prediction of transcription-factor

binding profiles. Proteins, 76, 718–730.

Zhang,C. et al. (2005) A knowledge-based energy function for protein-ligand,

protein-protein, and protein-DNA complexes. J. Med. Chem., 48, 2325–2335.

Zhao,H. et al. (2010) Structure-based prediction of DNA-binding proteins by struc-

tural alignment and a volume-fraction corrected DFIRE-based energy function.

Bioinformatics, 26, 1857–1863.

Zhou,H. and Zhou,Y. (2002) Distance-scaled, finite ideal-gas reference state im-

proves structure-derived potentials of mean force for structure selection and

stability prediction. Protein Sci., 11, 2714–2726.

330

T.Takeda et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/29/3/322/257563 by guest on 09 April 2024


