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ABSTRACT

Motivation: Optical flow is a key method used for quantitative motion

estimation of biological structures in light microscopy. It has also been

used as a key module in segmentation and tracking systems and is

considered a mature technology in the field of computer vision.

However, most of the research focused on 2D natural images,

which are small in size and rich in edges and texture information. In

contrast, 3D time-lapse recordings of biological specimens comprise

up to several terabytes of image data and often exhibit complex object

dynamics as well as blurring due to the point-spread-function of the

microscope. Thus, new approaches to optical flow are required to

improve performance for such data.

Results: We solve optical flow in large 3D time-lapse microscopy

datasets by defining a Markov random field (MRF) over super-voxels

in the foreground and applying motion smoothness constraints be-

tween super-voxels instead of voxel-wise. This model is tailored to

the specific characteristics of light microscopy datasets: super-voxels

help registration in textureless areas, the MRF over super-voxels effi-

ciently propagates motion information between neighboring cells and

the background subtraction and super-voxels reduce the dimension-

ality of the problem by an order of magnitude. We validate our ap-

proach on large 3D time-lapse datasets of Drosophila and zebrafish

development by analyzing cell motion patterns. We show that our

approach is, on average, 10� faster than commonly used optical

flow implementations in the Insight Tool-Kit (ITK) and reduces the

average flow end point error by 50% in regions with complex dynamic

processes, such as cell divisions.
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1 INTRODUCTION

Automated computational techniques are essential for the
quantitative analysis of cellular dynamics using time-lapse light

microscopy. For example, to quantitatively reconstruct the

development of large multi-cellular organisms such as entire

Drosophila and zebrafish embryos, tens of thousands of cells

need to be segmented and tracked at high spatial resolution

(McMahon et al., 2008; Tomer et al., 2012) (Fig. 1).

Such analyses are of fundamental importance to understanding

the development of biological tissues, to reconstructing func-
tional defects in mutants and disease models and to quantita-

tively dissecting the mechanisms underlying the cellular building
plan of entire complex organisms (Keller et al., 2008). However,

many computational challenges are encountered when perform-

ing key tasks, such as image registration, cell segmentation and
cell tracking, in complex microscopy datasets (Khairy et al.,

2008; Li et al., 2007; Lou et al., 2011; Preibisch et al., 2010;
Rubio-Guivernau et al., 2012).

Optical flow computation is one of the central tasks used to
perform quantitative motion estimation of biological structures

in time-lapse light microscopy, from the subcellular level to the
tissue scale (Abramoff and Viergever, 2002; Buibas et al., 2010;

Delpiano et al., 2011; Roberts et al., 2010). Optical flow is

defined as the vector field capturing the motion of brightness
patterns between adjacent volumes in time (Horn and Schunck,

1981; since our examples are 3D images, we use the term
‘volume’ to refer to the datasets used in optical flow computa-

tion. However, our approach and code work also for 2D

images). On the cellular level, optical flow information can the-
oretically be obtained from single-cell tracking data. However,

comprehensive and accurate cell tracking in complex multi-
cellular organisms is currently an open research problem

(Tomer et al., 2012, Lou et al., 2011). Here, optical flow methods

can be useful for analyses of group dynamics, which do not
require single-cell resolution, or, conversely, as the first module

in a larger cell tracking framework. In this latter scenario, the
flow information informs the tracking algorithm and helps

improving results for regions exhibiting complex or fast cell

dynamics.
Optical flow computation has been the object of decades of

research, and it is considered a mature technology in many com-
puter vision applications (Baker et al., 2011). However, most

approaches have been tested in relatively small 2D natural
images, which are dense and rich in edges and texture informa-

tion. The Middlebury database (Baker et al., 2011) used as a

benchmark in the computer vision community is a good example
of these types of images. Fluorescence microscopy volumes of

biological structures are qualitatively very different from natural
images (Fig. 1). They are sparse (in datasets similar to Figure 1,

80–95% of voxels are background; throughout the text, we use

the term ‘voxel’ to generically refer to each intensity value in a
dataset independent of the dimensionality of the data) and con-

tain relatively textureless objects, which typically appear blurred*To whom correspondence should be addressed.
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owing to the point spread function of the microscope and the

characteristics of commonly used fluorescent labeling strategies.

Moreover, neighboring objects with similar appearance and mul-

tiple motions in the same volume are very common. Finally,

microscopy volumes tend to be much larger than natural

images, which demands computationally efficient approaches.

Here, we present a new algorithm for optical flow estimation

tailored to large fluorescence light microscopy 3D time-lapse

datasets as the one shown in Figure 1. The key idea is to

define a model that takes into account the specific characteristics

of time-lapse microscopy data. In particular, we define a Markov

random field (MRF) over super-voxels to improve registration in

textureless areas, propagate motion information efficiently be-

tween neighboring structures and speed up computations by

reducing the complexity of the problem.

1.1 Optical flow techniques

In this paragraph, we highlight some of the fundamental insights

introduced over the past few decades. We refer the reader to

Baker et al. (2011) for a recent comprehensive review. First,

Lucas and Kanade (1981) proposed a local approach by solving

the optical flow independently in small rectangular regions that

partition the entire volume. This approach produces a sparse

field because it is ill posed for large regions with uniform

appearance. In contrast, Horn and Schunck (1981) introduced
a global method, where the flow is calculated at each voxel in-
stead of a rectangular region by introducing smoothness con-

straints between adjacent voxels as a regularization strategy.
This approach produces a dense field, but it cannot resolve
motion discontinuities. Black and Anandan (1996) introduced

robust metrics, instead of the traditional L2 norm, to improve
results in motion discontinuity boundaries and regions with in-
tensity changes between volumes. Bruhn et al. (2005) merged the

benefits of all of these previous approaches in a combined local-
to-global approach, where a robust Horn and Schunck formula-
tion was solved at different spatial scales, effectively incorporat-

ing the benefits of the approach by Lucas and Kanade. Other
relevant insights are the application of different weights to each

of the smoothness terms to add robustness against motion dis-
continuities, the detection of occluded regions (Ayvaci et al.,
2010) and the application of a smoothing filter to the flow

after each iteration of the optimization procedure (Sun et al.,
2010; Thirion, 1998) to improve accuracy. Over the years,
there has also been progress on real-time optical flow, especially

with recent Graphics Processing Unit (GPU) implementations
(Werlberger et al., 2009). Unfortunately, software incorporating
the most recent advances is not publicly available, and it is not

clear whether some of these techniques can be scaled to large 3D
datasets according to the timing reported in the benchmarks by
Baker et al., (2011).

Most biomedical optical flow applications tend to implement
and report results using similar methodologies to the ones ex-
plained earlier in the text without tailoring them to the charac-

teristics of the data. For example, Pock et al. (2007) presented a
total variation (TV)-L1 optical flow model for clinical datasets.

However, even with the use of image pyramids to solve the prob-
lem efficiently, this approach was still slow for large 3D datasets,
and it did not always outperform the Insight ToolKit (ITK) im-

plementations. ITK is a multi-threaded Cþþ library for N-di-
mensional image registration and segmentation, and it is the
most common baseline for comparing the performance and ac-

curacy of new algorithms in the bioimaging domain. Many
recent articles use similar strategies to target specifically
time-lapse light microscopy datasets (Delpiano et al., 2011;

Lombardot et al., 2008; Pizarro et al., 2011), which demonstrate
the general interest in applying optical flow to the type of data-
sets presented in this article. In the following sections, we present

an optical flow formulation specifically tailored to solving optical
flow for 3D time-lapse microscopy volumes. We show that our
method is 10� faster and reduces the average flow end point

error (EE) by 50% for complex dynamic processes, such as cell
divisions, with respect to optical flow algorithms available in the

ITK library.

2 APPROACH

First, we use a conservative foreground/background segmenta-
tion to consider only useful pixels. Background removal avoids
the optical flow ambiguity in large uniform uninformative re-

gions of the volume and improves computational efficiency.
Second, we use a region-based approach to improve performance
in the textureless objects. Glocker et al. (2008) proposed a similar

approach by dividing the image in a rectangular grid. However,

Fig. 1. (A) Rendering of 3D volume obtained with SiMView light-sheet

microscopy (Tomer et al., 2012). Each of the objects represents a single

cell nucleus marked by a fluorescent reporter in a Drosophila embryo.

Dimensions are 602� 1386� 110 voxels per volume (0.4� 0.4� 2.0mm3

voxel size). The embryo is �550mm long and 200mm in diameter.

(B) Optical slices of the volume visualized in (A). (C) Enlarged view of

two superimposed consecutive time points. Multiple motions, such as cell

divisions and cell migration, occur in the same volume

374

F.Amat et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/29/3/373/257856 by guest on 09 April 2024



as shown in Table 3, rectangular grids do not adapt well to

sparse signals and degrade performance, as a single rectangular

region can contain two objects with different dynamics. Prinet

et al. (2006) and Xu et al. (2008) also presented region-based

approaches to optical flow. However, their segmentation as-

sumptions cannot be applied to light microscopy images owing

to the lack of edge and color information. Therefore, we use

recent advances in fast super-voxel generation (Achanta et al.,

2012) to group flows into small subsets. We combine the fore-

ground/background mask with non-adjacent super-voxel regions

to generate a volume partition graph over the set of super-voxels.

Then, all smoothness constraints are taken between neighboring

super-voxels instead of adjacent voxels, which effectively propa-

gate motion information between close-by cellular structures

with similar motions. This graphical model effectively captures

specific characteristic of time-lapse light microscopy data.

Recently, Gkamas and Nikou (2011) also used super-voxels for

optical flow estimation. They added super-voxels to the

combined local-to-global framework to establish disconnected

motion boundaries between different objects in dense natural

images, which is opposite to the strategy in our MRF model

for microscopy images, showing that time-lapse microscopy

image should be treated differently. Aside from robustness, the

model for optical flow presented here allows us to speed up the

optimization by an order of magnitude. Finally, we show how

standard procedures, such as robust metrics and multi-scale op-

timization schemes, are also effective in the microscopy imaging

domain to improve performance. Our combined framework thus

improves and extends optical flow to the application of

large-scale time-lapse fluorescence light microscopy images.

Figure 2 summarizes the steps described in the next subsections.

3 METHODS

Given two N-dimensional images of the same size, It (source volume) and

Itþ1 (target volume), our final goal is to estimate a motion field vp for

each voxel p to register the target volume to the source volume.

3.1 Image model

When most objects present in the volume are textureless and similar to

each other, single voxels are not very informative. In other words, just

trying to match single intensities leads to poor solutions. Most optical

flow approaches try to guide the registration in textureless areas by

imposing a smoothness constraint between adjacent voxels.

Unfortunately, microscopy volumes tend to contain many background

voxels, which also misguide the smoothness constraint. Thus, we need

better partitioning of the volume to improve optical flow.

First, we generate a foreground/background mask (Fig. 3B) to ignore

voxels containing no information in the volume. This mask can be as

simple as an intensity threshold or any other existing background detec-

tion method. Aside from removing non-informative voxels, the mask also

helps speed up convergence, as it reduces the number of motion vectors vp
we need to estimate. Data sparsity is problematic and advantageous at

the same time, as it precludes the imposition of standard smoothing con-

straints but it allows a reduction in the size of the problem in the flow

calculation.

Once we have a set of foreground voxels, we want to apply the intu-

ition from Xu et al. (2008) that region-based optical flow helps in tex-

tureless areas. Unfortunately, segmentation techniques tend to be

computational costly in large 3D biomedical volumes, and color infor-

mation is often not available. The connected components of foreground

regions contain multiple cells (Fig. 3B), so we cannot use them directly for

segmentation. Moreover, cellular structures change shape in a non-rigid

manner from one time point to another. Thus, it is not advisable to

segment full objects into a single region. Otherwise, the motion model

would be too complex. We take advantage of recent advances by Achanta

et al. (2012) to generate fast super-voxels based on intensity and geomet-

ric distance in the volume. Simple linear iterative clustering (SLIC)

super-voxels segment each nucleus into a small number of regions while

usually respecting the boundaries between different objects (Fig. 3C).

Thus, we can expect that all voxels within a super-voxel should have

similar motion. Results in Table 3 show that super-voxels outperform

fixed-size rectangular regions similar to Lucas and Kanade (1981), as

rectangles can sometimes lie in the middle of two objects with different

dynamics and degrade performance.

The super-voxels form a partition of the elements in the volume fore-

ground. The final step needed to model the volume is to connect neigh-

boring super-voxels to capture common dynamics between regions. We

will define an edge between two super-voxels if their centers of mass are

below a distance threshold dmax. This definition forms an MRF (or

equivalently a partition graph) over the foreground voxels (Fig. 3D),

where we can directly impose smoothness constraints to calculate optical

flow. This setup is necessary because often two regions with coherent

dynamics are completely disconnected by background voxels, so trad-

itional voxel-based regularizations are not as effective.

3.2 Optimization model

Most approaches in optical flow use the brightness constancy assumption

8p 9vp s:t: I
t
p ¼ Itþ1pþvp

with p, vp 2 R
N

ð1Þ

to pose optical flow as the following optimization problem:

argminv1, ..., vjPj

X
p2P

�D Itp � Itþ1pþvp

� �
þ l

X
p2P

X
q2NðpÞ

wp, q�C vp � vq
� �

ð2Þ

where P is the set of voxels in the volume, NðpÞ are adjacent neighboring

voxels in the volume (using 2N or 3N � 1 connectivity) and �D and �C are

robust cost functions such as Huber penalty, L1, TV or Lorentzian (Black

and Anandan, 1996). The first sum term in Equation (2) with �D can be

considered a unary potential or data term, in which we want to match the

intensity between two volumes. In this context, robust metrics are im-

portant to allow fluctuations in the volume intensity. However, this term

by itself does not offer enough constraints for the motion field vp. Thus,

the second term in Equation (2), referred to as the pairwise potentials or

smoothness term, is incorporated to regularize the solution. Here, robust

metrics are important to allow for discontinuities in the flow field between

different objects in the scene (Black and Anandan, 1996). Finally, it is

common to adapt the smoothness term at the pixel level by defining a

weight wp, q based on edge intensity, effectively reducing the importance

of the smoothness constraint in areas of possible motion discontinuities.

Fig. 2. Block diagram representing the pipeline described in this article to

estimate optical flow. Optical flow is performed over a set of super-voxels

in the volume foreground, and the smoothness constraints are imposed

between neighboring (and possibly non-adjacent) super-voxels instead of

between connected voxels. This approach guides the registration process

of neighboring nuclei with similar dynamics to a better solution than

previous approaches

375

Optical flow for time-lapse microscopy

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/29/3/373/257856 by guest on 09 April 2024



Robust metrics alone and voxel-wise smooth flow assumptions are not

enough to handle the challenges present in microscopy volumes: given the

sparsity, the lack of distinct features between objects and the multiple

dynamics in a single volume, the energy terms defined in Equation (2) are

not strong enough to guide the optimization process to the right min-

imum, as shown in Section 4. Using Equation (2) as a model and the

MRF over super-voxels constructed in Section 3.1, we can define a new

optimization problem:

argminv1, ..., vj<j

X
S2<

X
p2S

�D Itp � Itþ1pþvS

� �
þ l

X
S2<

X
R2NðSÞ

wR,S�C vS � vRð Þ ð3Þ

where < is the set of super-voxels in the graph partition, and we calculate

a single translation vS for each region. The modification to the data term

helps further regularizing the solution in textureless regions to guide the

optimization to the right solution. Moreover, we have reduced the dimen-

sionality of the search by several orders of magnitude (j<j55jPj). In this

case, we decided not to use global affine transformation models, as they

do not fit the large variability in cell dynamics. In contrast, we determined

experimentally that a local affine model was not necessary to capture

those dynamics, so we introduced a compromise with a local translational

flow field for each super-voxel. Finally, we adapted the concept from

Equation (2) of adaptively adjusting the weight wR,S of the smoothness

constraint between connected regions in the graph. However, we cannot

use edge information because regions may not be adjacent to each other.

In our case, we define wR,S as follows:

wR,S ¼ exp �0:5
dR,S
dmax

� �2
( )

volðRÞ þ volðSÞ

2maxA2< volðAÞ
� 	 ð4Þ

where dR,S is the distance between the center of masses of super-voxels R

and S, and volðRÞ is the number of voxels contained in region R.

Intuitively, the first term decreases interaction between super-voxels if

regions are far apart, and the second term decreases interaction if they

do not represent large sets of voxels.

Even with this region-based regularization, the data term is still not

powerful enough to always return the right solution (Table 1), as most of

the objects in the volume look very similar (Fig. 1). In our case, the term

NðSÞ connects entire neighboring regions (not only adjacent voxels),

which agrees with the assumption that we have multiple cells with

common dynamics in some areas. By connecting non-adjacent

super-voxels, the smoothness constraint is imposed much more efficiently

over non-connected objects with similar dynamics.

Setting the correct value for NðSÞ is crucial to achieve good flow esti-

mations. In our case, the size of NðSÞ is controlled by the parameter dSmax,

which defines the maximum distance (in voxels) between two region cen-

troids to consider them neighbors or not. Intuitively, we have reduced the

complexity of NðSÞ to one parameter per node that controls how global

or local we expect object dynamics to be. We can determine an appro-

priate value for the dmax parameter by qualitatively experimenting on

different volumes or testing against some ground truth (Sun et al.,

2008). Tables 1 and 2 show that it is possible to find a single value that

works well across very different motion regimens. However, if the user

has a priori information of cell division locations or group motion, it is

straightforward to locally set the appropriate dmax for each region to

improve accuracy results.

3.3 Implementation details

To generate super-voxels, we use the available source code for SLIC

super-voxels (Achanta et al., 2012). Achanta et al. (2012) is appealing,

as we can control the expected size of each super-voxel and its complexity

is linear in the number of voxels, making it a reasonable choice for large

3D volumes. Even if the volume consists of grayscale data, the generated

super-voxels (Fig. 3C) still respect most object boundaries. Since we have

a foreground mask, we tested two approaches: (i) first calculate

super-voxels over the entire volume and then apply the mask; or

(ii) first apply the mask and then calculate super-voxels only in the fore-

ground. Empirically, both approaches provide similar results, so we use

the second approach because it is faster.

To solve the optimization in Equation (3), we use the Limited memory

Broyden, Fletcher, Goldfarb and Shanno quasi-Newton method made

available by Byrd et al. (1994). In particular, �D and �C are both defined

with the Huber cost function (Huber, 1981). Even though the Huber cost

function has a discontinuous second derivative, Li (1995) proved that the

function is regular enough to converge using quasi-Newton methods. We

use five-point finite difference along each dimension as well as tri-linear

interpolation to compute derivatives with subvoxel accuracy at any point

in the target volume. We filter the raw data with a small Gaussian

(� ¼ 1:5) in each direction to smooth the gradient calculations. Finally,

as suggested in previous studies, we use a Gaussian pyramid on the vol-

umes to produce a coarse-to-fine solution of the flow. This pyramid not

only helps avoiding local minima in the optimization to resolve larger

displacements, but also speeds up convergence (Table 3). We also down-

sample the foreground/background mask and the super-voxels

accordingly. All these calculations are performed using a scale parameter

along each dimension, as it is common in microscopy volumes to have

anisotropic sampling along different axes.

4 RESULTS

We evaluate our approach in scanned light-sheet microscopy

datasets. Light-sheet microscopy provides exceptionally high

imaging speeds while minimizing the energy load on the

Fig. 3. Step for constructing an MRF over the super-voxels on the volume foreground to partition the volume and perform robust optical flow. (A) 2D

slice of raw data from Figure 1. We show only a slice to simplify the visualization, but the method is implemented in 3D. (B) Outline of the foreground

mask obtained with a trained classifier in Ilastik (Sommer et al., 2011). Some connected components correspond to multiple nuclei. (C) Slice of 3D SLIC

(Achanta et al., 2012) super-voxels calculated over the foreground. Super-voxels respect object boundaries of nuclei in the same foreground connected

component. (D) Edges added between neighboring super-voxels to generate an MRF. Each node Vi represents a super-voxel in panel C. This is the final

volume partition model where we perform optical flow. We impose the smoothness conditions over entire super-voxels instead of voxelwise
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biological specimen, and has thus emerged as an essential tool for

life sciences. This combination of capabilities is invaluable for

live imaging applications and enables quantitative imaging of

cellular dynamics throughout the development of complex or-

ganisms such as entire Drosophila and zebrafish embryos (Fig.

1 and videos in the Supplementary Material). Light-sheet micro-

scopes often produce terabytes of image data per specimen,

which need to be analyzed with efficient computational

approaches.
We tested our approach in two different biological model

systems using previously published datasets of Drosophila

(Tomer et al., 2012) and zebrafish (Keller et al., 2008). Two

videos are included in the Supplementary Material to show the

complete results of the optical flow estimation and how it allows

analyzing different motion patterns for different groups of cells.

Each volume of the Drosophila dataset consists of

602� 1386� 110 voxels (179 MB in UINT16), and each pair

of time points was processed in 3min with our method (all

Central Processing Unit (CPU) running times reported in this

article were determined on a workstation with Intel� Xeon�

X5690 CPU with 3.47GHz clock rate). In total, we processed

50 time points (9 GB of data) following a cell division wave in

early development.

Each volume of the zebrafish dataset consists of

1064� 1034� 500 voxels (379 MB in UINT16), and each pair

of time points was processed in 9min with our method. In total,

we processed 220 time points (83 GB of image data) to follow

epiboly and the formation of the body axis.

Additional evaluation of the proposed and baseline methods

using synthetic data is provided in the Supplementary Material.

We simulate fluorescent nuclei images with different types of

motion (linear, cell division and Brownian), different

signal-to-noise ratios, different cell densities and different photo-

bleaching settings to show that our method is applicable to dif-

ferent types of fluorescence microscopy techniques and cell

dynamics.

4.1 Baseline and ground truth

We compare our results with two common implementations of

optical flow for 3D biomedical volumes available in the ITK

(Ibanez et al., 2003). Lombardot et al. (2008) discussed these

implementations in the context of time-lapse light microscopy

for organism development at single-cell resolution. In particular,

we use the multi-scale ITK-demon optical flow, which imple-

ments a multi-scale version of Thirion’s demon algorithm

(Thirion, 1998), as our first baseline. The algorithm has complex-

ity OðjPjÞ, where jPj is the number of voxels in the volume, and

solves Equation (2) with �CðrÞ ¼ �DðrÞ ¼ r2. The second baseline

is a modification of the ITK-demon algorithm using regulariza-

tion of the second derivative of the flow instead of the first order,

which has been shown to provide better convergence properties

for certain types of volumes (Fischer and Modersitzki, 2004).

This algorithm has complexity OðjPjlogjPjÞ, and we will refer

to it as ITK-curvature throughout the text. Both implementa-

tions are written in Cþþ using multi-threaded and multi-scale

techniques for efficient handling of large biomedical datasets.
To quantitatively assess performance, we manually segmented

nuclei in two different regions of adjacent time points in the

Table 3. Resulting accuracy when not using some of the modeling and

implementation techniques explained in Sections 3 and 3.3, for the test

region with cell divisions (Fig. 4C)

Method EE EE EE EE AUC Time (s)

90%ile 95%ile 99%ile 100%ile

None 0.70 0.93 1.03 1.35 0.80 0

Default 0.47 0.56 0.84 1.20 0.92 185

Pyramid levels¼ 2 0.46 0.57 1.03 1.11 0.92 178

Pyramid level¼ 1 0.70 1.01 1.37 1.61 0.88 320

L2 0.51 0.62 0.89 1.21 0.91 181

Voxel-based 0.94 1.05 1.39 1.45 0.81 1754

SLIC step¼ 3 0.85 0.98 1.31 1.19 0.84 191

SLIC step¼ 7 0.49 0.61 1.11 1.76 0.92 169

Grid step¼ 3 0.93 1.04 1.29 1.41 0.83 170

Grid step¼ 5 0.84 0.97 1.34 1.42 0.86 161

Grid step¼ 7 0.69 0.78 1.31 1.51 0.88 153

Watershed 0.45 0.55 0.85 1.40 0.92 174

The most significant improvement is obtained by moving from a voxel-based regis-

tration to a super-voxel–based registration. However, all elements described in this

article improve optical flow accuracy. The default method refers to our method with

the parameters defined in Section 4.2. Section 1.3 in the Supplementary Material

contains a full description of implementation decisions involved in the deactivation

of algorithmic modules for each row in this table.

Table 1. Stability and importance of parameter dmax to improve accur-

acy, for the test region without cell divisions

Method EE EE EE EE AUC

90%ile 95%ile 99%ile 100%ile

None 0.79 0.89 1.01 2.19 0.77

Our, dmax¼ 10 0.13 0.34 1.86 2.27 0.93

dmax¼ 25 0.12 0.15 0.39 1.51 0.98

dmax¼ 40 0.13 0.16 0.34 0.48 0.97

ITK-demon 0.19 0.29 0.45 0.58 0.97

ITK-curvature 0.41 0.55 0.83 1.34 0.89

Each entry in the table is equivalent to a data point in the plots from Figure 5A. EE

X% ile indicates theXth percentile of the list of EE errors for all nuclei in the ground

truth annotation.

Table 2. Stability and importance of parameter dmax to improve accu-

racy, for the test region with cell divisions

Method EE EE EE EE AUC

90%ile 95%ile 99%ile 100%ile

None 0.93 1.03 1.35 1.47 0.76

Our, dmax¼ 10 0.40 0.51 0.76 1.23 0.93

dmax¼ 25 0.47 0.56 0.84 1.20 0.92

dmax¼ 40 0.48 0.58 0.78 1.08 0.92

ITK-demon 0.86 0.98 1.28 1.39 0.84

ITK-curvature 0.81 0.91 1.28 1.58 0.82

Each entry in the table is equivalent to a data point in the plots from Figure 5B. EE

X% ile indicates theXth percentile of the list of EE errors for all nuclei in the ground

truth annotation.
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Drosophila dataset using the software package Imaris (Bitflow).

Each region represents different dynamic regimens (Fig. 4). We

then manually assigned correspondences between segmented

nuclei to calculate the displacement (Fig. 4). Given that the

nuclei are textureless, we cannot assign unique voxel-to-voxel

correspondences, and thus, our ground truth evaluates center

of mass displacement for each nucleus. We use the flow EE

metric

EEðpÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
n¼1

vGTp � v�p

� �2vuut ð5Þ

defined by Otte and Nagel (1994) to measure accuracy. Here p is

the center of mass for a given nucleus, vGTp is the ground truth

flow at centroid p and v�p is the estimated flow for each individual

algorithm. v�p is estimated as the mean flow of all voxels con-

tained within the segmentation mask for each nucleus in the

ground truth. Because a nucleus is usually split in several

super-voxels, this estimation can be seen as a weighted average

of the calculated optical flow for each super-voxel proportional

to its size. Section 1.1 in the Supplementary Material contains

statistics on the accuracy of the ground truth vGTp .
Once we have EEðpÞ for all nuclei, we can compute different

statistics to compare accuracy of different methods. Figure 5

displays the full cumulative distribution of errors, while

Tables 1, 2 and 3 display different figures of merit, summarizing
the information in the cumulative distribution. In particular, we

show several percentiles of the EEðpÞ distribution and the area
under the curve (AUC). This last figure of merit is typically used
in computer vision applications with precision-recall curves, as it

summarizes the entire distribution in a single number. We nor-
malize the maximum AUC to 1 to simplify the comparison.

4.2 Results in light-sheet microscopy data

For the purpose of a quantitative performance analysis, we se-
lected two regions from two consecutive time points in the
Drosophila dataset and performed a ground truth annotation

for both of them. Figure 5A shows comparative results for the
first test region between time points 39 and 40. This region com-

prises 214 cells with an average diameter of 11 voxels moving all
in the same direction, although at different speeds. In this ex-
ample, the motion between cells is coherent, and thus, smooth-

ness constraints are sufficient in most voxels to compensate for
lack of texture. In this case of simple dynamics, our method has

an average EE of 0.07, whereas the best ITK method has an
average EE (normalized by nuclei diameter) of 0.10. However,
tested on the same hardware, our implementation is consistently

10� faster. In particular, it takes 3min to converge for each 3D

Fig. 4. (A) Motion field (black: ground truth, red: estimate by our approach) projected on the X–Y plane for a subregion of the volume in Figure 1 with

smooth flow. Each arrow corresponds to a nucleus centroid. (B) Same as (A) for motion field estimated by the baseline method multi-scale ITK-demon

(blue). (C) Enlarged subregion of (A) and (B). (D) Same as (A) for a subregion where cells are dividing, which translates into non-smooth dynamics for

neighboring nuclei. Our approach is still able to predict the correct motion for 99% of the nuclei. Supplementary Movie S1 shows the raw data and the

output of our optical flow algorithm side by side for the entire time series. (E) Same as (B) for the subregion presented in (D). The complex dynamics

complicate setting a global motion smoothing parameter that works for all nuclei at the same time. (F) Enlarged subregion of (D) and (E). Most of the

ITK flow (blue) results as zero because it cannot adapt to the complex motion pattern
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volume, whereas both ITK algorithms require �30min for the

same task. One of the main reasons for the speed improvement is

the dimensionality reduction achieved with super-voxels. As an

example, in this particular stack, there were 1 117 920 foreground

voxels, which resulted in 19 274 super-voxels, reducing the size of

the optimization problem �60-fold.
Figure 5B shows a very different scenario from the same stack:

in this part of the embryo, nuclei are synchronously dividing, and

the motion field transitions very rapidly from smooth to

non-smooth. In total, we performed a ground truth annotation

for 309 cells with an average diameter of 10 voxels between time

points 38 and 39. In this case, our method has an average EE

(normalized by nuclei diameter) of 0.16, and the best ITK method

has an average EE of 0.32. Figure 4A and Table 2 also show that

�1% of the nuclei are assigned to the wrong location using our

method (Supplementary Fig. S1 shows an enlarged view of the

location exhibiting the largest error). This error is due to the fact

that neighboring nuclei divide synchronously and two daughters

from different mother cells collide, causing the MRF to pull one

of them to the wrong location. This region of the volume pushes

the limits of optical flow, as touching neighboring objects do not

have a coherent motion and suffer displacements larger than the

object size.

Tables 1 and 2 show the stability of parameter NðSÞ in

Equation (3). The accuracy results change gradually with the

value of dmax, and this allows us to use the same value for all

regions and still outperform other approaches. The only excep-

tion is 1% of the nuclei in the first test region, which need an

increase in the smoothness constraint to be guided to the correct

location, especially at the edges of the MRF (Fig. 4A). In our

case, we used dmax ¼ 25 voxels for both the Drosophila and

zebrafish dataset, which is slightly more than the expected near-

est neighbor distance between adjacent nuclei (23 isotropic

voxels). This result indicates that, in general, superior results

are obtained by directly considering motion information between

neighboring cells in the smoothness term, which cannot be

achieved with the usual pixel-wise regularization approaches.

However, Table 2 also shows that in extreme cases of incoherent

motion, such as during cell division, we could benefit from redu-

cing dmax to 10 voxels. In this particular case, a cell division

detector (Huh et al., 2011) could be used to detect such events

and locally adjust the value of dmax. Supplementary Tables S1

and S2 in the Supplementary Material present a more

detailed analysis by decomposing the accuracy results in

Table 2 between dividing and non-dividing nuclei. An extended

accuracy analysis using synthetic data is provided in the

Supplementary Material, which further supports the conclusions

of this section.
Table 3 shows that all elements introduced in Sections 3 and

Section 3.3 are necessary to obtain the best accuracy and per-

formance. In particular, a region-based (SLIC super-voxels in

our case) and a multi-scale approach (of at least two levels) are

critical to define an appropriate data term and to avoid local

minima in Equation (3), respectively. Moreover, the use of

super-voxels that adapt to the sparse signal instead of fixed-size

rectangular-like regions [as suggested by Glocker et al. (2008)]

improves accuracy as long as the super-voxels have a minimum

size. As the table entry using watershed shows, any oversegmen-

tation method producing reasonable super-voxels adapted to the

sparse data could be used within this framework.
All results discussed in this section were obtained with fixed

parameters. For our method, we use l ¼ 800, three levels in the

pyramid and dmax ¼ 25. For Huber penalty, we use �D ¼ 40,

which indicates intensity values are well preserved between

frames, and �C ¼ 3. Finally, for the SLIC super-voxels, we use

STEP ¼ 5 and m ¼ 10 [see Achanta et al. (2012) for details]. For

both ITK implementations, we performed an optimal parameter

search using the ground truth to obtain the best performance.

Additionally, we use three pyramid levels for their multi-scale

scheme and applied the foreground mask filter for a fair com-

parison. Finally, we tested ITK algorithms on the raw stacks and

on cubic interpolated stacks to generate isotropic sampled voxels

to confirm that anisotropy in the data along the z-axis was not

compromising performance. The final results (data not shown)

were undistinguishable, so we performed all comparisons with

the anisotropic data because execution time was shorter.

Fig. 5. Optical flow results for light-sheet microscopy using different methods. See text for details on ground truth definition. X-axis represents the EE

for each nucleus centroid normalized by the equivalent diameter of each nucleus. As a rule of thumb, values5 0.5 are considered good for most

quantitative applications, whereas values4 1.0 are not good. Values between 0.5 and 1.0 are acceptable, but flow tracking has a higher error rate.

Method labeled as ‘None’ represents the original displacement without flow estimation. Panel A shows results on data from Figure 4A and B. Panel B

shows results on data from Figure 4D and E. Our method improves accuracy over all baselines in both scenarios, on average, by 23%
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5 DISCUSSION

We developed and tested a new model for optical flow tailored to

microscopy volumes, in which a large fraction of the objects are

textureless and similar in appearance. Moreover, the information

in the volume tends to be sparse because many voxels do not

contain any information and cellular dynamics can be very vari-

able. A key idea in our approach is to generate a volume parti-

tion graph over the foreground voxels, and to perform optical

flow directly on that model instead of computing it at the voxel

level. This model is tailored to the specific characteristics of

time-lapse light microscopy datasets, as it provides the regular-

ization needed to solve optical flow robustly for these types of

volumes. At the same time, our method reduces the complexity

of the problem by an order of magnitude, which is an invaluable

advantage when working with large 3D datasets.

In Section 4.1, we showed that the method might fail in some

extreme cases for �1% of the nuclei, when neighboring nuclei

move in opposite directions. In those scenarios, we are left only

with the data term to determine the correct flow. Thus, a possible

future direction would be to use different features or point de-

scriptors in the volume intensity to increase robustness of the

data term (Brox and Malik, 2011; Liu et al., 2008). It is also

possible to constrain the flow field to a diffeomorphism, as

two objects cannot originate from the same source point.

Finally, if a faster implementation is required, it is straightfor-

ward to parallelize the computation of the data term in Equation

(3) for each super-voxel using GPU technology. At the moment,

this operation takes �40% of the time for each function evalu-

ation in the quasi-Newton method, and it is thus a primary can-

didate for code optimization.
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