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ABSTRACT

Summary: A significant proportion of eukaryote genomes consist of

transposable element (TE)-derived sequence. These elements are

known to have the capacity to modulate gene function and genome

evolution. We have developed RetroSeq for detecting non-reference

TE insertions from Illumina paired-end whole-genome sequencing

data. We evaluate RetroSeq on a human trio from the 1000

Genomes Project, showing that it produces highly accurate TE calls.

Availabilty: RetroSeq is open-source and available from https://

github.com/tk2/RetroSeq.

Contact: tk2@sanger.ac.uk

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

Transposable elements were first discovered in maize by Barbara

McClintock in the early 20th century and have since been found

in almost every organism (McClintock, 1950). They are often

referred to as genomic parasites and most are relics of ancient

viral infections. In large eukaryote genomes such as human and

mouse, TEs make up almost half of the genome (Gogvadze and

Buzdin, 2009). There are two distinct classes of TEs: class I retro-

elements that move by a ‘copy and paste’ fashion and the less

prevalent class II DNA transposons that operate by a ‘cut and

paste’ mechanism. Within the retroelements, there are two

distinct classes, the long terminal repeat (LTR)-bound elements

and the non-LTR elements. In the human genome, there are two

main types of non-LTR elements, namely the short interspersed

nuclear elements (SINE) and long interspersed nuclear elements

(LINE). Within these classes, the Alu and L1 subfamilies are

known to remain functionally active and polymorphic. In labora-

tory mice, the LTR-bound elements (also known as endogenous

retroviral elements—ERVs) can be divided into several subfami-

lies and are known to be responsible for up to 10% of spontan-

eous mutations (Maksakova et al., 2006).
With the advent of next-generation sequencing technologies, it

has become feasible to catalogue all types of molecular variation

including insertions of large sequences such as TEs. Previously,

Hormozdiari et al. (2010) developed VariationHunter, Quinlan

et al. (2011) developed Hydra and Lee et al. (2012) developed

Tea for finding non-reference TE insertions. Several other

authors have used unpublished pipelines for finding

non-reference TEs in human samples (Stewart et al., 2011;

Ewing and Kazazian, 2011). Furthermore, a number of authors
have developed TE insertion site junction sequencing assays

and computational methods to detect non-reference TEs

(Akagi et al., 2008; Iskow et al., 2010).
In this article, we present our software, RetroSeq, which can

be used to discover non-reference TE insertions from whole

genome sequencing data with high accuracy. Previously, we
used RetroSeq to create a comprehensive catalogue of just over

one hundred thousand polymorphic SINE, LINE and ERV

elements across 17 mouse strains (Nellaker et al., 2012). Using
data from a trio of northern and western European ancestry

(CEU) from the 1000 Genomes Project, we show how

RetroSeq can be used to create an accurate set of TE calls.

2 METHODS, RESULTS, DISCUSSION

The input to RetroSeq is a binary alignment file (BAM) file, a

reference genome and a library of mobile element sequences or
a BED file of the locations of known TE elements in the reference

genome. The BAM file should contain both the mapped pairs and

the pairs with one end unmapped. RetroSeq is implemented in
Perl and uses SAMtools (Li et al., 2009) to access the BAM files.

RetroSeq has been tested with alignments derived from both

MAQ (Li et al., 2008) and BWA (Li and Durbin, 2009).
RetroSeq operates in two phases, the first being the discovery

phase where discordant mate pairs are detected and assigned to

a TE class (Alu, SINE, LINE, etc.) using either the annotated TE
elements in the reference and/or aligned with Exonerate (Slater

and Birney, 2005) to the supplied library of transposable element

sequences. The calling phase uses the anchoring mates of the TE

candidate reads from the previous step and clusters these based on
their genomic location, and the strand towhich they are aligned to

(SupplementaryFig. S1). Forward- and reverse-strand clusters are

created from the anchor reads and the clusters are then merged
into regions around putative break points. RetroSeq profiles the

density of the matched forward and reverse clusters and uses any

available soft-clipped reads to refine the break points of the TE
insertion (see Supplementary Methods).

To evaluate the performance of RetroSeq, we obtained high
depth (475�) Illumina HiSeq data produced at the Broad

Institute (ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/

working/20120117_ceu_trio_b37_decoy/) for a CEU trio (father
NA12891, mother NA12892 and the female offspring NA12878)

from the 1000 Genomes Project and used Retroseq, Tangram

(Marth group, unpublished data) and Tea (Lee et al., 2012) to*To whom correspondence should be addressed.
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find Alu and L1 insertions in each individual (Table 1). This trio

was previously part of a survey of Alu and L1 elements in a 1000
Genomes pilot project follow-up study (Stewart et al., 2011); how-
ever, the sequencing data available at the time provided lower

Illumina sequencing coverage for each genome (9–16�), which
hindered the sensitivity of Alu and L1 detection (Chip Stewart,
personal communication). For Alu elements, the sensitivity of

RetroSeq and Tangram is497% for all three individuals, with
Tea slightly lower (see Table 1). For L1 elements, the sensitivity of
all the methods is uniformly lower, with RetroSeq and Tangram
performing best. However, when we look at the RetroSeq false

negative rates by TE type in the trio, we do not see a significant
difference in the rates for L1 (6.3%) over Alu (6.8%) calls.
We can estimate an upper false discovery rate in the child by

examining the calls relative to the expected inheritance patterns.
If we consider the calls private to the child as false positives, the
false discovery rate of the callers varies significantly

(Supplementary Table S1), with RetroSeq having the lowest
overall rate (7.7%), followed by Tangram (12.1%) and Tea
(14.3%). If we take the calls shared by the parents and not

found in the offspring, we can estimate the upper false negative
rate for RetroSeq in the offspring at 6.7%. We can use the
PCR-validated calls with precise break points to examine
the accuracy of the break points estimated by RetroSeq.

Supplementary Figs S2–S4 show the distribution of the break
points found by RetroSeq around the PCR-validated break
points. In NA12878, the vast majority (92%) of the break

points are within �50bp of the PCR break points, with 40%
being within 10bp (Supplementary Fig. S4).
The coverage for these samples is extremely high (475�), so it

is useful to ask what is the effect on the sensitivity of TE calling
when the sequencing depth is lower. Therefore, we sub-sampled
the data from sample NA12878 at various depths and plotted the

sensitivity relative to (i) the PCR-validated calls and (ii) the inter-
section of the computational calls from Stewart et al., 2011 and
RetroSeq. Supplementary Fig. S5 shows that there is a significant
drop off in sensitivity at depths lower than 20�, with the sensi-

tivity of the computational calls490% at 40� coverage. Thus, in
the context of TE calling in low coverage populations, data from
multiple individuals could be pooled to increase the sensitivity of

TE discovery.
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Table 1. Comparison of TE calls for the CEU trio for RetroSeq, Tangram (Marth group, unpublished data) and Tea (Lee et al., 2012)

RetroSeq Tangram Tea

Type Sample Total PCR Total PCR Total PCR

Alu NA12891 1038 0.97 1192 0.98 1127 0.92

NA12892 1046 0.98 1185 0.98 1078 0.92

NA12878 1078 0.98 1326 0.99 1038 0.89

L1 NA12891 121 0.81 190 0.81 286 0.81

NA12892 127 0.88 219 0.88 262 0.76

NA12878 174 0.82 227 0.87 168 0.84

The ‘Total’ column is the number of calls predicted by each caller and the ‘PCR’ column indicates the sensitivity of the methods relative to the PCR-validated calls from

Stewart et al. (2011).
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