
Vol. 29 no. 5 2013, pages 652–653
BIOINFORMATICS APPLICATIONS NOTE doi:10.1093/bioinformatics/btt020

Sequence analysis Advance Access publication January 16, 2013

DSK: k-mer counting with very low memory usage
Guillaume Rizk1, Dominique Lavenier2 and Rayan Chikhi2,*
1Algorizk, 75013 Paris and 2ENS Cachan Brittany/IRISA, Campus de Beaulieu, 35700 Rennes, France

Associate Editor: Michael Brudno

ABSTRACT

Summary: Counting all the k-mers (substrings of length k) in DNA/RNA

sequencing reads is the preliminary step of many bioinformatics ap-

plications. However, state of the art k-mer counting methods require

that a large data structure resides in memory. Such structure typically

grows with the number of distinct k-mers to count. We present a new

streaming algorithm for k-mer counting, called DSK (disk streaming of

k-mers), which only requires a fixed user-defined amount of memory

and disk space. This approach realizes a memory, time and disk

trade-off. The multi-set of all k-mers present in the reads is partitioned,

and partitions are saved to disk. Then, each partition is separately

loaded in memory in a temporary hash table. The k-mer counts are

returned by traversing each hash table. Low-abundance k-mers are

optionally filtered. DSK is the first approach that is able to count all the

27-mers of a human genome dataset using only 4.0 GB of memory

and moderate disk space (160 GB), in 17.9 h. DSK can replace a

popular k-mer counting software (Jellyfish) on small-memory servers.

Availability: http://minia.genouest.org/dsk

Contact: rayan.chikhi@ens-cachan.org

Received on October 19, 2012; revised on December 26, 2012;

accepted on January 9, 2013

1 INTRODUCTION

Determining the abundance of each distinct k-mer in a set of

sequencing reads is a conceptually simple yet fundamental

task. It is used in many bioinformatics applications related to

sequencing, e.g. genome and transcriptome assembly, variants

detection and read error correction. For de novo assembly, one

is often interested in counting k-mers to discard those with low

abundance, which likely stem from sequencing errors.
State of the art methods for k-mer counting rely on hash tables

(Jellyfish; Marçais and Kingsford, 2011) and/or Bloom filters

(BFCounter; Melsted and Pritchard, 2011). These structures

need to reside in memory for random access. Sequencing errors

induce erroneous k-mers, in a volume typically greater or com-

parable with that of correct k-mers. Hence, counting k-mers for a

human dataset with either a single hash table or a Bloom filter is

a task that requires tens of gigabytes of memory. In Section 2, we

describe a fixed-memory and fixed-disk space streaming algo-

rithm, DSK (disk streaming of k-mers), and its worst-case com-

plexity is analysed in function of the desired memory and disk

usage. In Section 3, DSK is used to count all the 27-mers of a

whole-genome human dataset. The trade-off between memory

and disk space is analysed on two smaller datasets. We conclude

with a discussion of the advantages of DSK over related
methods.

2 METHODS

Algorithm 1 describes the DSK k-mer counting algorithm. The hash

function hð�Þ maps a k-mer to a numeric value in ½0;H�, where H is a

large integer (typically 264). In the following analysis, we make a simplify-

ing assumption. Let d be the total number of distinct k-mers in the input;

we assume that the number of distinct k-mers having a given hash value

x 2 ½0;H� is at most d=H
� �

. In other words, the set of distinct k-mer

values can be uniformly partitioned by this hash function. Each k-mer is

encoded using the classical 2 bits representation in the smallest available

integer type, i.e. using 2 log2ð2kÞd e bits. The abundance of each k-mer is

stored as a 32 bits integer. For convenience, let b ¼ 2 log2ð2kÞd e.

Each k-mer m present in S is examined niters ¼ vb=D
� �

times (once per

iteration) and is written to disk only once, at the ðhðmÞmod nitersÞ-th it-

eration. Using the uniform repartition hypothesis, a multi-set of

v=niters � D=b
� �

k-mers are written to disk at each iteration. As each

k-mer is encoded using b bits, the maximal disk usage of the algorithm

is D bits.

The maximal memory usage of the algorithm is M bits, as Steps 7–11

require constant memory, and Steps 12–17 load a single partition in T

that requires exactly M bits. With an open-addressing mechanism, each

distinct k-mer occupies exactly (bþ 32) bits in T. To prove that the algo-

rithm terminates, it suffices to show that T never overflows, i.e. strictly

Algorithm 1. The DSK algorithm

1: Input: The set S of sequences, k-mer length k, target memory usage M

(bits), target disk space D (bits) and hash function hð�Þ

2: v
P
s2S

jsj � kþ 1ð Þ (Number of k-mers)

3: niters v � 2 log2ð2kÞd e=D
l m

(Number of iterations)

4: np
vð2 log2ð2kÞd e þ 32Þ

0:7nitersM

& ’
(Number of partitions)

5: for each iteration i ¼ 0::niters do

6: Initialize a set of empty lists fd0, :::, dnp g stored on disk

7: for each sequence s in S do

8: for each k-mer m in s do

9: if ðhðmÞmod nitersÞ ¼ i then

10: j hðmÞ=niters mod np
11: Write m to disk in dj
12: for each index j ¼ 0::np do

13: Initialize a hash table T with M bits of memory

14: for each k-mer m in dj do

15: T½m�
T½m� þ 1, if m is present in T
1, otherwise

�
16: output ðm,T½m�Þ for each m in T

17: Delete T

18: Delete fd0, :::, dnp g

*To whom correspondence should be addressed.

652 � The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/29/5/652/253092 by guest on 20 M
arch 2024

http://minia.genouest.org/dsk

less than M/(bþ 32) distinct k-mers are inserted in T. At each iteration

ðv=nitersÞ, k-mers are split into np partitions. Each partition contains at

most v=ðnitersnpÞ � 0:7M=ðbþ 32Þ
� �

k-mers. In the worst case, all these k-

mers are distinct; thus, the load factor is upper-bounded by 0.7 (a classical

threshold above which hash table performance degrades).

The time complexity of Steps 7–11 (including the iteration loop) is

Oðv2b=DÞ. The algorithm creates ðnitersnpÞ � vðbþ 32Þ=ð0:7MÞ
� �

tempor-

ary hash tables, inserting at most ð0:7M=ðbþ 32Þ
� �

elements in each.

Hash tables accesses and insertions (Step 15) are done in constant ex-

pected time with open-addressing, as long as the load factor is strictly51

(which was proved earlier in the text). Hence, the expected time complex-

ity of Steps 12–17 (including the iteration loop) is O(v). Thus, Algorithm

1 runs in expected time Oðv2b=DÞ: The algorithm runs in expected linear

time with respect to v when D ¼ �ðvÞ, e.g. setting D equal to the sum of

input bases. In practice, the simplifying assumption on the uniform re-

partition of the hash function h does not hold exactly. Some partitions

contain a slightly larger number of distinct k-mers than v=H
� �

. Hence,

the actual disk usage of the algorithm is slightly above D, and the load

factor of T could, in theory, be40.7 (because of high k-mer redundancy,

this is not the case in practice).

3 RESULTS

In Table 1, we compared the execution time and memory usage

of DSK with Jellyfish (version 1.1.5) and BFCounter (version

0.2) on a human genome Illumina dataset. The target disk

usage of DSK was set to 160 GB, equal to the size of the

reads file. As the algorithm relies heavily on I/O to the disk,

we also tested DSK with a solid-state drive (DSK-SSD). The

reads file was placed on a standard hard disk drive, and parti-

tions of redundant k-mers were written on a 256 GB SSD. In this

configuration, we noticed the algorithm is no longer limited by

disk I/O and could benefit from multi-threading. The two for

loops lines 7 and 12 were parallelized using openMP (four

threads). DSK-SSD ran for 3.5h using 4� 1 GB of memory.

Although this experiment required specific hardware, it is

worth noting that the running time of DSK can be greatly

reduced with an SSD and multi-core parallelism.
To further assess the trade-off between time, memory and disk

usage, we executed DSK (using a standard hard drive) on two

smaller Escherichia coli and Drosophila ananassae datasets, with

various target memory and disk usage parameters (Figure 1). For

the executions with 100 MB and 1 GB memory usage, the run-

ning time of DSK on both datasets decreases as the target disk

space increases. This is a consequence of the decreasing number

of iterations niters. The running times reach a plateau at roughly

the reads file size (where niters ¼ 1). The execution time generally

seems to be unaffected by the target memory usage. However, at

the smallest tested memory usage (10 MB), the execution time on

both datasets is slightly higher, possibly because of consecutive

disk writes to a large number of partitions. Note that in practice,

the memory usage of DSK cannot be arbitrarily low: it is limited

by the number of files that can be simultaneously opened on the

system (partitions fd0, . . . , dnp g are all opened simultaneously).

4 DISCUSSION

Contrary to other methods, DSK does not provide random

access to k-mer counts. However, it benefits from three strong

points:

� Low-memory usage: Only an arbitrarily small subset of k-

mers is loaded in memory at any time. In contrast,
BFCounter stores all the k-mers with count � 2 in a hash

table. In principle, Jellyfish can use arbitrarily small hash

tables; however, storing the intermediate results requires a

prohibitive amount of disk (� 1 TB for human genome

reads using a hash table of size 5 GB).

� Parameters are automatically inferred: The only mandatory

argument is the k-mer length. Optionally, target memory

and disk usages can be specified. Jellyfish and BFCounter

require the user to specify a hash table size and an

upper-bound on the number of distinct k-mers, respectively.

� Supports arbitrarily large values of k: As opposed to up to 32

for Jellyfish (unbounded for BFCounter).

Funding: ANR MAPPI, ANR-10-COSI-0004.

Conflict of Interest: none declared.

REFERENCES

Marçais,G. and Kingsford,C. (2011) A fast, lock-free approach for efficient parallel

counting of occurrences of k-mers. Bioinformatics, 27, 764–770.

Melsted,P. and Pritchard,J. (2011) Efficient counting of k-mers in DNA sequences

using a bloom filter. BMC Bioinformatics, 12, 333.

0
20

0
40

0

E. coli DNA

Disk space (MB)

T
im

e
(s

)

115 1150 4600

0
50

0
10

00

Drosophila RNA

Disk space (MB)

T
im

e
(s

)

148 743 2975

Memory (MB)

10 100 1000

Fig. 1. Execution time of DSK (k¼ 21) as a function of memory and disk

usage, on the E.coli (Illumina DNA SRR001665, 20:8 � 106 reads of aver-

age length 36bp) and D.ananassae datasets (Illumina RNA-Seq

SRR332538, 9:1 � 106 reads of average length 150 bp)

Table 1. Wall-clock time and memory usage for counting 27-mers in

whole-genome human data

Program Time (h) Memory (GB) Disk (GB)

DSK 17.9 4 160

DSK-SSDa 3.5 4 240

BFCounter 41.2 56 0

Jellyfish 3.5 70 211

The dataset used is the NA18507 human genome (SRX016231), unfiltered, consist-

ing of 1.4 billion reads of average length 100bp (160 GB file size). Jellyfish used

eight threads, DSK-SSD used four threads and DSK and BFCounter are

single-threaded. The disk column indicates the temporary amount of disk space

used by each method.
aExecuted on a desktop computer equipped with two hard drives, including an SSD.

653

DSK: k-mer counting

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/29/5/652/253092 by guest on 20 M
arch 2024

