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ABSTRACT

Motivation: Messenger RNA expression is important in normal devel-

opment and differentiation, as well as in manifestation of disease.

RNA-seq experiments allow for the identification of differentially

expressed (DE) genes and their corresponding isoforms on a

genome-wide scale. However, statistical methods are required to

ensure that accurate identifications are made. A number of methods

exist for identifying DE genes, but far fewer are available for identifying

DE isoforms. When isoform DE is of interest, investigators often apply

gene-level (count-based) methods directly to estimates of isoform

counts. Doing so is not recommended. In short, estimating isoform

expression is relatively straightforward for some groups of isoforms,

but more challenging for others. This results in estimation uncertainty

that varies across isoform groups. Count-based methods were not

designed to accommodate this varying uncertainty, and consequently,

application of them for isoform inference results in reduced power for

some classes of isoforms and increased false discoveries for others.

Results: Taking advantage of the merits of empirical Bayesian meth-

ods, we have developed EBSeq for identifying DE isoforms in an

RNA-seq experiment comparing two or more biological conditions.

Results demonstrate substantially improved power and performance

of EBSeq for identifying DE isoforms. EBSeq also proves to be a

robust approach for identifying DE genes.

Availability and implementation: An R package containing examples

and sample datasets is available at http://www.biostat.wisc.edu/

�kendzior/EBSEQ/.

Contact: kendzior@biostat.wisc.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

Appropriate expression of a gene’s isoforms via alternative spli-

cing is fundamental to normal development and maintenance in

eukaryotes, and aberrations in alternative splicing are common

in disease (Smith et al., 1989; Stamm et al., 2005; Wang et al.,

2008). Consequently, there is much interest in identifying iso-

forms with expression that varies on average across biological

conditions. High-throughput cDNA sequencing (RNA-seq) ex-

periments provide the potential to identify such differentially

expressed (DE) isoforms on a genome-wide scale, but statistical

methods are required to ensure that accurate identifications are

made.
The statistical methods available for identifying differences in

isoforms in an RNA-seq experiment [e.g. MISO (Katz et al.,

2010), FDM (Singh et al., 2011), Chi-Square test in Howard

and Heber (2010)] have focused on changes in the proportion

of gene-specific reads assigned to an isoform, so-called differen-

tial transcription (DT) or differential splicing (DS). These meth-

ods do not consider changes in overall expression levels and are

therefore not appropriate for identifying DE isoforms. For ex-

ample, consider a gene with two isoforms: the first with average

counts 500 and 1500 in conditions 1 and 2, respectively, the

second with average counts 1000 and 3000 in the two conditions,

respectively. These isoforms would not be DT or DS, given that

the proportion of total reads assigned to each isoform is un-

changed across conditions (1/3 for isoform 1 and 2/3 for isoform

2), but the isoforms would likely be called DE, given there is a

3-fold increase in expression in the second condition. When

isoform-level DE calls are required, count-based methods de-

veloped for identifying DE genes are often applied directly to

estimates of isoform expression (Sandmann et al., 2011). Doing

so is not optimal.
The main problem is that count-based methods expect counts,

or more specifically, an integer summary of reads mapping to a

gene’s constituent exons, and they were not designed to accom-

modate the differential uncertainty induced by isoform expres-

sion estimation. In short, prior to isoform DE inference, each

isoform’s expression must be estimated from aligned reads. For

genes with a single isoform, this problem is rather straightfor-

ward in that all reads mapping to that gene are used to estimate

that isoforms’ expression. For genes with multiple isoforms, iso-

form expression estimation is more difficult, as reads mapping to

exons common to multiple isoforms must be allocated in a way

consistent with each isoform’s expression level, which is the very

quantity being estimated. There are a number of methods avail-

able for estimating isoform expression [RSEM (Li and Dewey,

2011), RSeq (Jiang and Wing, 2009), IsoEM (Nicolae et al.,*To whom correspondence should be addressed.
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2010), Cufflinks (Trapnell et al., 2012) and IQSeq (Du et al.,

2012)]. Whatever method used, due to the increased difficulty

inherent in estimating isoform expression for isoforms with

common constitutive exons, there are varying levels of uncer-

tainty in isoform expression estimates (see Fig. 1). Most

approaches for identifying DE in an RNA-seq experiment

focus on genes [DESeq (Anders and Huber, 2010), edgeR

(Robinson and Smyth, 2007), baySeq (Hardcastle and Kelly,

2010), BBSeq (Zhou et al., 2011)], and do not accommodate

this differential uncertainty. Consequently, they are not appro-

priate for identifying DE isoforms. Another recently developed

approach [DEXSeq (Anders et al., 2012)] may be used for iden-

tifying DE exons, but does not provide information on which

associated isoforms are DE.
When isoform DE is of interest, some count-based methods

(e.g. edgeR) suggest choosing a single isoform [such as the iso-

form with the most counts within a gene or the longest isoform

(Sandmann et al., 2011)] and estimating expression using reads

mapping to the isoforms’ constituent exons. In either case, infor-

mation on other isoforms is lost, and reads mapping to multiple

genes are ignored. A more serious consideration is that erroneous

conclusions may be made due to differences in other isoforms

(see Fig. 1b for an example). Other methods such as

easyRNASeq suggest that one assign all reads mapping to over-

lapping exons to each isoform separately (i.e. count reads map-

ping to exon 2 in Fig. 1b twice, once for each isoform), and then

proceed with a count-based approach. As with the prior

suggestion, this can lead to erroneous conclusions. Specifically,

an isoform may appear to be equally expressed (EE, say isoform

1 in Fig. 1b), even if it is not.
A potentially more robust way to proceed is to estimate each

isoform’s mRNA counts using a method designed specifically to

do so (Jiang and Wing, 2009; Li and Dewey, 2011; Nicolae et al.,

2010; Trapnell et al., 2012) and then apply a count-based ap-

proach directly to expected counts after rounding the expected

counts to the nearest integer. This, too, is not advised.

Count-based methods require gene-level counts and conse-

quently do not account for uncertainty inherent in estimated

counts. Furthermore, given that uncertainty varies systematically

for different groups of isoforms, applications of count-based

approaches for isoform level inference result in reduced power

for some classes of isoforms and increased false discoveries for

others. In short, the test statistics used by most methods for DE

gene identification calibrate a difference in expression levels be-

tween conditions by a variance, which is commonly estimated

using the mean–variance relationship observed in data. Figure 1c

shows that this relationship varies dramatically for different

groups of isoforms, where groups are defined by the number

of constituent isoforms of the parent gene (other definitions

are possible as discussed below). Specifically, an isoform of

gene g is assigned to the Ig ¼ k group, for example, where

k ¼ 1, 2 or 3, if the total number of isoforms from gene g is k

(the Ig ¼ 3 group contains all isoforms from genes having 3 or

more isoforms).

(a) (c)

(b)

Fig. 1. Panel (a) shows two hypothetical genes g and g0. Gene g has one isoform, denoted by Ig ¼ 1; gene g0 has two (Ig0 ¼ 2). The problem of estimating

expression for isoforms of g0 is complicated by the fact that reads mapping to exon 2 must be unambiguously assigned to each isoform. This results in

increased uncertainty, on average, in expression estimates for isoforms sharing a parent. Panel (b) shows hypothetical expression of the isoforms from

gene g0 in each of two conditions (assuming differences in library size have been accommodated). If one focuses on the longest isoform (isoform 1) and

uses all reads mapping to its constituent isoforms to estimate its expression, the isoform is called equivalently expressed, as there are 30 (6þ 22þ 2) reads

mapped in condition 1 and 30 (10þ 16þ 4) mapped in condition 2. However, if the expression of other isoforms is considered, it becomes clear that

isoform 1 contains almost twice as many reads in condition 2 as in condition 1 (23 versus 13, respectively). Panel (c) demonstrates how estimation

uncertainty changes as isoform complexity increases. We quantified isoform complexity here by Ig where the Ig ¼ k group represents isoforms from genes

with k isoforms (here isoforms from genes with more than three isoforms are included in the Ig ¼ 3 group; alternative definitions of complexity are

discussed in the text). Shown top right are splines fit to the empirical variance as a function of the mean for all isoforms as well as isoforms within groups

defined by Ig for the two-group human embryonic stem cell RNA-seq experiment described in Section 2; bottom right considers isoforms with average

expression (expected count) in [100, 500]. The range was chosen as it approximates the 50th and 80th percentiles of expression across all isoforms. Shown

are box plots of the variances of these isoforms collectively, and within Ig group. Median variance within each group is shown right

1036

N.Leng et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/29/8/1035/228913 by guest on 20 M
arch 2024



As shown in Figure 1c, there is decreased variability in the

Ig ¼ 1 group, but increased variability in the others, due to the

relative increase in uncertainty inherent in estimating isoform

expression when multiple isoforms of a given gene are present.

This observation is not specific to the dataset and/or the method

used for isoform expression estimation; it is also not specific to

the particular method used for quantifying isoform complexity

(see Supplementary Figs S1–S4 for additional examples). If iso-

forms are analysed collectively, there is reduced power for iden-

tifying isoforms in the Ig ¼ 1 group (since the true variances in

that group are lower, on average, than those derived from the full

collection of isoforms) and increased false discoveries in the

Ig ¼ 2 and Ig ¼ 3 groups (since the true variances are higher,

on average, than those derived from the full collection). These

effects are demonstrated in a simulation study in Section 4 of the

Supplementary Material.
Cuffdiff2 (Trapnell et al., 2013) and BitSeq (Glaus et al., 2012)

account for differential uncertainty in isoform expression esti-

mates and thus appropriately accommodate DE inference at

the isoform level. However, Cuffdiff2 often finds fewer genes

than comparable approaches, and the simulations here suggest

this is a result of lack of power, as opposed to an increased false

discovery rate (FDR) of other methods. BitSeq is a good alter-

native when ranking isoforms is of interest, but it does not pro-

vide a way to control a list of identifications at a desired level of

FDR. Finally, both approaches couple expression estimation

with DE inference, and are not applicable to expression estimates

obtained separately (e.g. via RSEM or one of the other methods

mentioned above). As other expression-estimation methods have

demonstrated higher precision and continue to be improved,

methods for DE inference that accept expression estimates dir-

ectly are desirable.
Taking advantage of the merits of empirical Bayesian (EB)

methods, we developed an approach called EBSeq for inference

in an RNA-seq experiment. Although its main advantage over

other approaches is in its ability to identify DE isoforms, results

from simulations and case studies demonstrate good perform-

ance for identification of DE genes as well.

2 METHODS

2.1 EBSeq: an empirical Bayes model for identifying DE

genes and isoforms

EBSeq requires gene counts or estimates of isoform expression,

but it is not specific to any particular estimation method (e.g.

RSEM, Rseq, Cufflinks or another method may be used). The

general model is developed for isoform analysis. The gene-level

model is a special case discussed at the end of this section. The

model assumes the expected count for isoform i in gene g and

sample s is distributed as Negative Binomial, Xgi , s, where

g ¼ 1, 2, . . . ,G, s ¼ 1, 2, . . . ,S and i ¼ 1, 2, . . . ,Ng; Ng denotes

the number of isoforms of gene g. Specifically, we assume that

within condition C, XC
gi, s
jrgi, 0 ls, q

C
gi
� NBðrgi, 0 ls, q

C
gi
Þ, where ls rep-

resents the library size in sample s and may be defined as the total

number of reads or obtained by TMM (Robinson and Oshlack,

2010), Median Normalization (Anders and Huber, 2010) or

Upper Quartile Normalization (Bullard et al., 2010). Since the

total number of reads may be adversely affected by outliers from

PCR or other artifacts, the latter three methods are recom-
mended. The EBSeq code defaults to Median Normalization,

but Quantile Normalization is also available. Within this frame-
work, the mean and variance are given by: �C

gi
¼ rgi, 0 ð1� qCgi Þ=q

C
gi

and ð�Cgi Þ
2
¼ rgi, 0 ð1� qCgi Þ=ðq

C
gi
Þ
2.

A prior distribution describes fluctuations in technical and
biological variation: qCgi j�,�

Ig � Betað�,�Ig Þ. The hyper-param-

eter � is shared across isoforms while � depends on Ig, accom-
modating the systematic differences in variability among the Ig
groups. Ig quantifies a measure of isoform complexity and may
be defined by the user as the number of isoforms from a gene, as

described in the previous section, or from an isoform’s mapp-

ability score or credibility interval as provided by some isoform
expression-estimation approaches.
When RNA-seq reads in two biological conditions are avail-

able, identifying DE isoforms corresponds to identifying those
isoforms for which �C1

gi
6¼ �C2

gi
. Since rgi, 0 is common across

conditions, this is analogous to identifying those isoforms for
which qC1gi 6¼ qC2gi . Letting p denote the prior probability of DE,

counts are modelled by the mixture distribution
ð1� pÞf

Ig
0 ðX

C1,C2
gi
Þ þ pf

Ig
1 ðX

C1,C2
gi
Þ where XC1,C2

gi
represents gi’s

read counts across the two conditions; f0 and f1 are the predictive
distributions under EE and DE, respectively:

f
Ig
0 ðX

C1,C2
gi
Þ ¼

YS
s¼1

Xgi, s þ rgi, s � 1

Xgi, s

� �" #

�

Beta �þ
PS
s¼1

rgi, s,�
Ig þ

PS
s¼1

Xgi, s

� �
Betað�, �Ig Þ

ð1Þ

and

f
Ig
1 ðX

C1,C2
gi
Þ ¼ f

Ig
0 ðX

C1
gi
Þf
Ig
0 ðX

C2
gi
Þ ð2Þ

Estimates of the isoform-specific means and variances are

obtained via method-of-moments, and the four global hyper-
parameters (�, �Ig¼1, �Ig¼2 and �Ig¼3) are obtained via the

expectation-maximization (EM) algorithm (Dempster et al.,
1977) (see Section 6 of the Supplementary Material for further

details). With parameter estimates in hand, the posterior prob-
ability of DE (or EE) is obtained via Bayes’ rule. A mixture

model with additional components may be used when data
from more than two conditions are available (an example is

provided in Section 6 of the Supplementary Material). Unless
otherwise noted, all calculations were carried out in R (R

Development Core Team, 2009); package and annotation ver-
sions are given in Section 1 of the Supplementary Material.

2.2 Simulated data

We followed the simulation set-up of Robinson and Smyth

(2007) by defining counts as Negative Binomial with isoform-
specific mean in sample s and condition C given by ls�

C
gi

and

variance ls�
C
gi
ð1þ ls�

C
gi
�gi Þ. The library size factors for both the

isoform and gene-level simulations were randomly simulated
from Uniform (0.8, 1.3). One hundred simulated datasets were

generated for each scenario considered.
Sim I: Isoform expression for each of 30 802 isoforms, four

lanes in each of two conditions, is generated by sampling un-

known parameters ð�gi ,�gi Þ from the case study comparing
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embryonic stem cells (ESCs) with induced pluripotent stem cells

(iPSCs). The number of isoforms and sample sizes are taken to

match those in the case study. The percentages of DE isoforms

were set at 2, 4 and 5% in the Ig ¼ 1, 2 and 3 groups, also to

match the case study data. Parameters for isoforms belonging to

the same gene are sampled together to preserve dependence

within isoforms common to a single gene. For DE isoforms,

�C1
gi
¼ �C1

gi
� �gi where �gi is sampled from the 95–97% quantile

of fold changes in sample means across conditions; for EE

isoforms �C1
gi
¼ �C2

gi
.

Sim II: Isoform expression for each of 30 802 isoforms is gen-

erated by sampling ð�gi Þ from case study data; �gi is fixed for all

gi. Six sets of simulations are considered to investigate the effects

of systematic changes in variability, one set for each � in

(5 � 10�4, 1 � 10�3, 5 � 10�3, 1 � 10�2, 5 � 10�2, 1 � 10�1); DE

and EE are as in Sim I. This set-up is similar to that considered

in Robinson and Smyth (2007). There, too, �gi is sampled and �
is fixed, but here we simulate isoforms (not genes) and we con-

sider more (and slightly different values) of �. An evaluation of

the exact simulation set-up considered in Robinson and Smyth

(2007) is given in Supplementary Figure S8.

Sim III: Gene expression for each of 20 000 genes is generated

by sampling unknown parameters ð�g,�gÞ from case study data.

Two per cent DE genes are simulated to match the case study

data.
The Supplementary Material provides details on additional

simulations (see Supplementary Material Section 4) and demon-

strates that characteristics observed in the case study data are

reproduced in the simulated datasets considered here (see

Supplementary Fig. S5). Supplementary Figure S8 also shows

results from the simulations considered in the articles introducing

edgeR and baySeq.

2.3 Experimental data

2.3.1 MicroArray Quality Control data The raw read files (fasta
format) were downloaded from SRA SRX016359 and

SRX016367. As part of the MicroArray Quality Control

(MAQC) project, RNA was extracted from one sample of

human brain tissue (HBR) and one sample of mixtures of tissues

(UHR); seven replicates from each sample are considered here.

To obtain gene counts using HTSeq, reads were aligned to

the human RefSeq Hg18 transcripts using Bowtie (Langmead

et al., 2009) and TopHat (Trapnell et al., 2009), allowing

for no multiple matches (HTSeq requires that multi-reads are

discarded) and two mismatches. HTSeq was applied to obtain

gene counts for 18 780 genes, in which 16 518 were expressed

(with median expression greater than 0). To obtain estimates

of expression via Cufflinks (Trapnell et al., 2010), Bowtie and

Tophat were applied allowing for up to 20 multiple matches

and two mismatches. Expression was then estimated using

Cufflinks (Trapnell et al., 2010) for 18 780 genes and 30802

isoforms, in which 17 152 genes and 26 210 isoforms were

expressed.

2.3.2 Thomson Lab data; ES versus iPS cell lines We analysed
RNA-seq data from the James Thomson Lab at the Morgridge

Institute for Research at UW-Madison. Details on the samples

are given in Phanstiel et al. (2011); the particular samples

considered here as well as alignment and expression estimation
vary from that reported in Phanstiel et al. (2011) as follows. We

evaluate RNA-seq reads from embryonic stem (ES) cell lines H1,
H7, H9 and H14 and induced pluripotent stem (iPS) cell lines

DF4.7, DF6.9, DF19.7 and DF19.11. We filter 42-base pair
reads to remove adapters in each lane. To obtain gene counts

via HTSeq, reads were aligned to the human RefSeq Hg18 tran-
scripts using Bowtie and TopHat, allowing for no multiple

matches and two mismatches. HTSeq was then applied to

obtain gene counts for 18 780 genes, in which 15671 were ex-
pressed. To obtain estimates of gene and isoform expression via

Cufflinks, Bowtie and Tophat were applied, allowing for up to
20 multiple matches and two mismatches. Expression was then

estimated using Cufflinks.
Two other datasets (Gould Lab and Smith Lab) are shown in

Figure 2c; details on these datasets may be found in Section 2 of
the Supplementary Material.

2.4 Identification of DE genes and isoforms

EBSeq is compared with baySeq (1.1.0), BitSeq (1.2.1), Cuffdiff2

(2.0.1), DESeq (1.8.2) and edgeR (2.6.3). Further information on
package defaults, annotation versions and other software is given

in Section 1 of the SupplementaryMaterial. To quantify evidence

in favour of DE, EBSeq and baySeq provide posterior probabil-
ities whereas DESeq, edgeR and Cuffdiff2 provide P-values,

which are adjusted for multiplicities using Benjamini–Hochberg
(DESeq, edgeR) or by converting to q-values (Cuffdiff2). To

construct a list of DE genes/isoforms with target two-sided
FDR a, we considered those genes/isoforms for which the pos-

terior probability of DE was �1� a (baySeq and EBseq) or
those genes/isoforms for which adjusted P-values were �a

(DESeq, edgeR, Cuffdiff2). BitSeq provides the posterior prob-

ability of a positive log-ratio (PPLR) for rank ordering isoforms,
but does not detail how to use the PPLR to control FDR for

two-sided test. Consequently, BitSeq is evaluated when ranking
isoforms, but not when FDR controlled lists are considered.

Non-expressed genes and isoforms are filtered out prior to
applying baySeq, DESeq, edgeR and EBSeq. The non-expressed

genes and isoforms are defined as the ones with zero median
expression across all the samples. Cuffdiff2 also removes genes

or isoforms with low expression, but has additional criteria that
concern whether an isoform contains enough reads in each locus

and whether one or more replicates produce a value for the tran-
script outside of the confidence interval generated when pooling

replicates together. Acceptable isoforms are called ‘OK’ in

Cuffdiff2.

2.5 Identification of outliers

To identify putative outliers in the case studies, for each gene we
evaluated Dixon’s Q-statistic (Dixon, 1950) as well as the fold

change ratio (FCRatio). A Dixon’s Q-statistic for a collection of
values is defined as the gap over range, where gap is the absolute

difference between the potential outlier in question and the
number closest to it; the range is the max minus min. For each

gene in each condition, we calculated Dixon’s Q-statistics for the

smallest and the largest value. The sample with the largest
Dixon’s Q-statistic was defined as the potential outlier for that

gene; and the largest Dixon’s Q-statistic (over the two
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conditions) was taken as the Dixon’s Q-statistic for the gene. The

FCRatio is the ratio of the fold change without the outlier over

the fold change with the outlier. A gene containing an outlier will

have a Dixon’s Q-statistic near 1 and FCRatio far from 1.

3 RESULTS

Simulation studies were conducted to investigate the operating

characteristics of EBSeq and to assess how EBSeq compares with

competing approaches. As detailed in Section 2, each simulated

dataset derives counts from a Negative Binomial model. The

Negative Binomial assumption is common to each method con-

sidered here (Anders and Huber, 2010; Hardcastle and Kelly,

2010; Robinson and Smyth, 2007; Trapnell et al., 2012), and

should therefore not provide advantage, or lack thereof, to any

one method in particular. Furthermore, the form of the variance

is not one we assumed in EBSeq; rather, it was prescribed in the

simulation set-up of Robinson and Smyth (2007). Three sets of

simulations are considered here. Additional simulations are eval-

uated in Section 4 of the Supplementary Material.
For evaluation of isoform-level inference, EBSeq is compared

with Cuffdiff2 and BitSeq. It is important to note that Cuffdiff2

and BitSeq are not stand-alone packages that accept counts dir-

ectly. Rather, Cuffdiff2 requires as input aligned reads that are

subsequently processed through Cufflinks to estimate counts;

BitSeq is similar, requiring that reads are processed through

BitSeq stage 1. This is important, as in the isoform simulation

studies (Sims I and II), simulated counts were transformed back

to reads as was done in RSEM (Li and Dewey, 2011); the reads

were then processed via Cufflinks (or BitSeq stage 1) prior to

analysis. The transformation is not possible with simulated gene

counts, as multiple read count configurations can give rise to the

same overall gene count, and as a result, Cuffdiff2 is not evalu-

ated in the gene simulations; it is evaluated at the gene-level on

both MAQC project and case study data. BitSeq is not evaluated

in any gene-level analysis, as the PPLR provided for each iso-

form is derived from isoform-specific Markov Chain Monte

Carlo (MCMC) samples, and no information is provided on

combining the chains to derive a gene-level PPLR.

3.1 Simulation-based evaluation of EBSeq, Cuffdiff2 and

BitSeq for identifying DE isoforms

Table 1 shows the power and FDR for EBSeq and Cuffdiff2

averaged across 100 Sim I simulations for a target FDR of

5%. Cuffdiff2 deems some isoforms unacceptable prior to ana-

lysis. Acceptable isoforms are called ‘OK’ in Cuffdiff2, and so

results are reported for all genes as well as those deemed ‘OK’ by

Cuffdiff2. Because BitSeq provides PPLR for rank ordering iso-

forms, but does not specify how to use PPLR to construct a list

of DE isoforms with a target FDR, it is not shown in Table 1.

BitSeq is evaluated in the ROC curves shown in Figure 2.
As shown in Table 1, Cuffdiff2 has well controlled FDR, but

reduced power compared with EBSeq (�44% versus �72%); the

FDR of EBSeq is slightly elevated (�8%). Panel (a) of Figure 2

shows qualitatively similar results for lists of varying size, not

determined by targeting a specific FDR. In particular, the ROC

curves [empirical true positive rate (TPR) versus empirical false

positive rate (FPR) for lists of increasing size] show that the TPR

is higher than Cuffdiff2 for lists provided by EBSeq for all FPRs

considered. BitSeq also provided higher TPR than Cuffdiff2

across all FPRs, and showed comparable performance with

EBSeq.

A closer look into the DE calls from the Sim I simulations

reveals that operating characteristics are sensitive to �, which
determines within-isoform variability. To demonstrate the ef-

fects, panel (b) of Figure 2 shows power and FDR for six

other sets of simulations where � is fixed at a specific value (de-

tailed in Sim II). The solid lines show that the power of both

methods decreases as variability (�) increases, with a greater loss

in power for Cuffdiff2; the dashed lines show that FDR increases

slightly but remains well-controlled for both methods. Panel (c)

shows the cumulative distribution functions (CDFs) of � in four

empirical datasets as well as the average CDF from 100 Sim I

simulations to demonstrate that the values of � considered in

panel (b) are typical of those observed in data. Panel (c) also

demonstrates systematic differences between the three datasets

with biological replicates and the MAQC data. Given that the

MAQC data is made up of technical replicates, it is not surpris-

ing to observe relatively smaller values of � compared with

(a) (b) (c)

Fig. 2. Panel (a) shows ROC curves (TPR versus FPR). The curves are obtained from averaging over 100 Sim I simulations. Cuffdiff2 deems some

isoforms unacceptable prior to analysis; isoforms deemed acceptable by Cuffdiff2 are denoted ‘OK’; and results are reported here for both (see Section 2

for more details). Panel (b) shows the operating characteristics of EBSeq and Cuffdiff2 as a function of �, described in Sim II. The solid and dashed lines

indicate power (TPR) and FDR, respectively, at 5% target FDR. Note that BitSeq provides a PPLR for rank ordering isoforms, but does not detail how

to use the PPLR scores to control FDR for two-sided test. Consequently, BitSeq is evaluated when ranking isoforms in Panel (a), but not when

FDR-controlled lists are considered in Panel (b). Panel (c) shows the CDF of � in four empirical datasets, detailed in Section 2 and the Supplementary

Material, as well as the CDF averaged across 100 Sim I simulations
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datasets having biological reps. However, since the operating

characteristics of DE identification methods vary with � [as

shown in panel (b)], an evaluation of methods based on

MAQC data alone is cautioned. Below we evaluate methods

using MAQC as well as simulated data.

3.2 Evaluation of EBSeq, Cuffdiff2, DESeq, edgeR and

baySeq for identifying DE genes using MAQC and

simulated data

To evaluate EBSeq as well as other methods for gene-level infer-

ence, we use data from the MAQC Project (Consortium, 2006) as

well as simulated datasets. The RNA-seq data from the MAQC

Project has been widely used to evaluate RNA-seq quantification

and normalization methods (Bullard et al., 2010; Li and Dewey,

2011). In particular, Taq-Man qRT-PCRmeasurements for 1000

genes are available; the 716 of these having consistent annota-

tions in the RefSeq Hg18 reference are often used as a

gold-standard for evaluation (for more details, see Li and

Dewey, 2011).
To evaluate baySeq, DESeq and edgeR, counts were obtained

via HTSeq; expression was estimated via Cufflinks to evaluate

Cuffdiff2. Since EBSeq can accept counts or estimated counts as

input, it is evaluated on both HTSeq-derived counts as well as

Cufflinks-processed data. Of the 716 gold-standard genes, EBSeq

and Cuffdiff2 identify 530 and 490 DE genes, respectively, at a

target FDR of 5%. Although the majority of identifications are

common to both approaches, some insight may be gained by

considering those genes identified exclusively by each approach

(57 are found by EBSeq but not Cuffdiff2 and 17 are identified

by Cuffdiff2 but not EBSeq). The top panel of Figure 3 shows

differences in these genes. In particular, the genes identified ex-

clusively by EBSeq reproduce in the RT-PCR measurements

[panel (a)], and they have larger fold changes [panel (b)], suggest-

ing that most of the additional genes found by EBSeq are in fact

true discoveries.

Panel (c) shows ROC curves for all methods derived using the

same thresholds as in Bullard et al. (2010). Specifically, we define

genes with an absolute value of log2 qRT-PCR fold change42 as

DE; genes with absolute value of log2 qRT-PCR fold change

50.2 are defined as EE. Using these thresholds, 286 of the 716

genes are classified as either DE (200) or EE (86). When the FPR

is520%, panel (c) shows that EBSeq performs best across all the

methods; baySeq is slightly better than DESeq and edgeR, while

Cuffdiff2 shows the lowest power. When FPR is430%, baySeq,

DESeq, edgeR, EBSeq and Cuffdiff2 (‘OK’) perform similarly.

The ROC curves based on another threshold in Bullard et al. are

shown in panel (d).
Each of the count-based methods was also applied to 100 Sim

III datasets. Table 2 shows the power and FDR of each method

at 5% target FDR averaged over the 100 simulated datasets. In

short, all methods have well-controlled FDR. EBSeq shows the

highest power (�79%), with DESeq and edgeR showing com-

parable performance (�73%), and although baySeq seems to

outperform DESeq and edgeR with respect to ranking genes

(as demonstrated in the ROC curves shown in Fig. 3c and d),

it has lower power (�61%) than both DESeq and edgeR when

FDR is controlled at 5%. Section 4 of the Supplementary

Material shows that FDR is affected by outliers. In particular,

although the FDR of edgeR is well-controlled overall, simulation

results suggest that the false calls that are made by edgeR are

almost always in genes with outliers. The ROC curves averaging

100 Sim III datasets are shown in Supplementary Figure S10.

3.3 Case study of human embryonic stem cell lines

To further evaluate and compare methods, we analyse data from

an experiment comparing human ES cell lines with iPS cell lines

using DESeq, edgeR and baySeq (with expression counts ob-

tained from HTSeq) as well as Cuffdiff2 (with expression

(a)

(c) (d)

(b)

Fig. 3. Panel (a) shows the fold changes (log2 scale) from RNA-seq

versus PCR for the 57 genes identified by EBSeq but not Cuffdiff2 and

the 17 genes identified by Cuffdiff2 but not EBSeq out of the 716

gold-standard genes from the MAQC dataset. Panel (b) shows box

plots of the absolute value of RNA-seq fold changes (log2 scale) for the

same 57 and 17 genes, as well as the 2131 and 457 genes identified ex-

clusively by EBSeq and Cuffdiff2, respectively, in the full set of genes.

Panel (c) shows ROC curves for baySeq, DESeq, edgeR, Cuffdiff2 and

EBSeq. Cuffdiff2 and EBSeq are applied to gene expression estimated via

Cufflinks. Results from EBSeq applied to gene expression counts derived

from HTSeq are similar (data not shown). The ROC curves based on

another threshold in Bullard et al. are shown in panel (d)

Table 1. Isoform simulation results

Methods Power (%) FDR (%)

Cuffdiff2 33.6 0.2

Cuffdiff2(OK) 44.4 0.2

EBSeq 72.2 8.2

The empirical power and FDR for EBSeq and Cuffdiff2 averaged

across 100 Sim I simulations where target FDR was set at 5%.

Cuffdiff2 deems some isoforms unacceptable prior to analysis.

Operating characteristics are reported overall, as well as within

those deemed acceptable (‘OK’) by Cuffdiff2. Standard errors on

average power (FDR) were52% (0.2%) and are not shown.
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estimated via Cufflinks). EBSeq is evaluated on both HTSeq-

and Cufflinks-processed data. DESeq, edgeR, baySeq and

Cuffdiff2 identify 127, 377, 34 and 54 DE genes at 5% FDR,

respectively. EBSeq identifies 334 from HTSeq counts and 351

from Cufflinks estimated counts. These results are largely con-

sistent with those observed in the simulation studies.
Recall that gene-level simulations and MAQC analysis dem-

onstrate that EBSeq has slightly increased power over DESeq

and edgeR; baySeq and Cuffdiff2 are underpowered compared

with these other approaches; and all methods have well-

controlled FDR. They also suggest that the false discoveries

that are identified by edgeR are likely due to outliers. In the

case study, EBSeq finds more genes than DESeq; baySeq and

Cuffdiff2 find far fewer than either method; edgeR identifies

most genes. As we have no gold standard in this case study, it

is difficult to assess whether the genes identified exclusively by

EBSeq (or edgeR) are the result of improved power (i.e. they are

true discoveries) or an increased FDR. As we detail below, a

close consideration of the genes identified exclusively by each

method suggests that EBSeq shows improved power.
In particular, panels (a) and (b) of Figure 4 show the number

of genes found by each approach. There are 114 genes found by

DESeq, edgeR and EBSeq via HTSeq-processed data; 161 genes

found exclusively by EBSeq (neither DESeq nor edgeR find

these); and 197 found exclusively by edgeR (neither DESeq nor

EBSeq find these). Figure 4c shows box plots of Dixon’s

Q-statistics for these 114, 161 and 197 genes. As shown, the

genes exclusively identified by edgeR tend to have higher

Dixon’s Q-statistics, and are therefore more likely to contain

outliers. Of course a gene may contain an outlier and still be

DE. To assess this possibility, Figure 4d considers how a

gene’s fold change changes when its most extreme value is

removed, as quantified by the FCRatio. If a gene’s most extreme

value is not largely responsible for the DE call, fold changes with

and without the value will remain largely unchanged, and

FCRatio will be near one (see Section 2). As shown, edgeR

tends to favour genes with FCRatios far from 1, suggesting

that the genes identified may be due to a single outlier in an

otherwise EE gene. Supplementary Figure S11 shows nine

(a) (c) (e)

(f)(d)(b)

Fig. 4. Results are shown for the human embryonic stem cell case study, which compares ESCs with iPSCs. Panel (a) shows a Venn diagram of the genes

identified as DE by DESeq, edgeR or EBSeq using HTSeq for quantification. Panel (b) shows a Venn diagram of the genes identified by Cuffdiff2 and

EBSeq using Cufflinks-processed data. Panel (c) shows box plots of Dixon’s Q-statistics in three groups of genes—the 114 identified by DESeq, edgeR

and EBSeq; the 161 identified by EBSeq but not DESeq or edgeR; and the 196 identified by edgeR but not DESeq or EBSeq. Panel (d) shows the

FCRatios and Dixon’s Q-statistics of the genes identified exclusively by each method, but not the other four methods (in this panel, five methods are

compared). Note that baySeq, Cuffdiff2, DESeq, edgeR and EBseq (via HTSeq) identify 34, 54, 127, 377 and 334 DE genes, respectively, at 5% FDR.

Panel (e) shows box plots of each gene’s 75th percentile of expression for the three groups of genes defined in panel (c). Panel (f) shows the CDF of the

75th percentile of expression among the 34, 54, 127, 377 and 334 DE genes identified by each method

Table 2. Gene simulation results

Methods Power (%) FDR (%)

baySeq 60.8 0.4

DESeq 73.4 0

edgeR 73.1 4.6

EBSeq 78.8 2.7

The empirical power and FDR of baySeq, DESeq, edgeR

and EBSeq averaged across 100 Sim III simulations where

target FDR was set at 5%. Standard errors on average

power (FDR) were52.5% (1.4%) and are not shown.
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genes identified exclusively by edgeR having highest Dixon’s
Q-statistic. Many of the genes appear to be EE with a single
outlier, and all of them have very low counts. Figure 4e shows

the box plots of each gene’s 75th percentile of expression in the
groups of 114, 161 and 197 genes. The genes identified exclu-
sively by edgeR have lower expression on average than the other

groups while the genes identified exclusively by EBSeq tend to be
highly expressed. Figure 4f shows the CDFs of each gene’s 75th
percentile of expression in the groups identified by each of the

five methods. Approximately 20% of the genes identified by
edgeR are with 75th percentile of expression520.
Results from the gene and isoform comparisons between

EBSeq and Cuffdiff2 via Cufflinks-processed data are also con-
sistent with the simulation study, with Cuffdiff2 identifying far
fewer genes and isoforms than EBSeq. Specifically, Cuffdiff2

identifies seven isoforms, each of which is identified by EBSeq,
but EBSeq also finds additional isoforms to be DE (935 in total).

Furthermore, in this case study, isoform-level results obtained
from EBSeq are more consistent with gene-level results than
those obtained from Cuffdiff2. Specifically, there are 12404

single-isoform genes. For these, we expect isoform and gene-level
inference to match (i.e. if the isoform is DE, the gene should also
be DE, given there is only a single isoform in that gene). Of the

54 genes identified as DE by Cuffdiff2, 39 have single isoforms;
only 5 of the 39 are also identified as DE isoforms by Cuffdiff2.
Of the 351 genes identified as DE by EBSeq, 226 have single

isoforms and 225 of the 226 are also called DE at the isoform
level by EBSeq. Furthermore, many important genes confirmed
to be DE between ESCs and iPSCs in previous studies (Bock

et al., 2011; Ohi et al., 2011; Phanstiel et al., 2011) are missed by
Cuffdiff2 but not EBSeq, including DPP6, FAM19A5, SOX17

and DNAJC15.

4 CONCLUSIONS

The main difference between EBSeq and the other approaches
considered here is that EBSeq models isoform expression dir-
ectly, as opposed to gene expression, and in so doing accommo-

dates isoform expression-estimation uncertainty. In particular,
estimation uncertainty is partitioned into three groups defined
by isoform complexity (Ig ¼ 1, 2, or 3), following our empirical

observation that uncertainty is increased on average in isoforms
that share a parent gene. EBSeq is not restricted to three groups,

and for some genomes, additional Ig groups may be warranted.
EBSeq is also not restricted to this definition of complexity (see
Implementation below). EBSeq shows increased power over

Cuffdiff2 for identifying DE isoforms. Although developed to
facilitate isoform inference, like Cuffdiff2, EBSeq may also be
used for identifying DE genes. It shows slightly increased power

over most count-based methods in both simulation and case
studies, without major losses in efficiency when outliers are
present.

A second difference is that, unlike most approaches that clas-
sify non-DE genes as EE, EBSeq is based on a parametric
mixture model, which facilitates evaluation of the posterior prob-

abilities associated with DE, as well as EE. The particular par-
ameterization provides closed form predictive distributions that
facilitate efficient computation. However, diagnostics should

always be checked to ensure model fit (see Section 7 of the

Supplementary Material). Once posterior probabilities are

obtained from a well-fit model, a user may identify an FDR-

controlled list of EE genes. This may be of particular interest

for genes with more than one isoform, as compensatory mech-

anisms may give rise to DE isoforms in EE genes, and conse-

quently subtle, yet important, differences may be missed if

focus is placed exclusively on DE genes alone. Using the EE

posterior probabilities from the case study, EBSeq identified 64

EE genes, with DE isoforms contributing at least 30% of the

gene expression (20 are shown in Supplementary Fig. S13).

The mixture model framework also enables comparisons of

more than two biological conditions (see Section 6 of the

Supplementary Material).

5 IMPLEMENTATION

EBSeq is implemented as an R package (R Development Core

Team, 2009), currently available at http://www.biostat.wisc.edu/

�kendzior/EBSEQ/ and soon to be available on Galaxy. EBSeq

requires estimates of isoform expression, estimates of gene ex-

pression, or gene counts, but it is not specific to any particular

estimation method.
For users that prefer RSEM (Li et al., 2010) for expression

estimation, an EBSeq-RSEM pipeline has been developed so that

a user may easily apply RSEM to quantify expression and then

EBSeq to identify DE genes and isoforms. For well annotated

genomes, where isoforms and their corresponding parent genes

are well defined, a user may choose to quantify isoform com-

plexity using three groups defined by Ig, as we have done here.

For genomes that are not well annotated (e.g. for de novo

assembled transcriptomes), a user could use another measure

of isoform complexity. The RSEM-EBSeq pipeline takes reads’

unmappability scores and applies a K-means algorithm to cluster

the isoforms into K uncertainty groups; the number of groups

(K) defaults to 3. The unmappability scores are also provided as

output and, consequently, a user could easily apply a K-means

algorithm with different values of K or apply another clustering

algorithm to define the uncertainty groups. Extensions that allow

for continuous covariates and accommodate ordered conditions

(e.g. time course data) are underway.
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