
Vol. 30 no. 1 2014, pages 31–37
BIOINFORMATICS ORIGINAL PAPER doi:10.1093/bioinformatics/btt310

Sequence analysis Advance Access publication June 3, 2013

Informed and automated k-mer size selection for genome

assembly
Rayan Chikhi1 and Paul Medvedev1,2,*
1Department of Computer Science and Engineering and 2Department of Biochemistry and Molecular Biology,
The Pennsylvania State University, University Park, PA 16802, USA

Associate Editor: Gunnar Ratsch

ABSTRACT

Motivation: Genome assembly tools based on the de Bruijn graph

framework rely on a parameter k, which represents a trade-off be-

tween several competing effects that are difficult to quantify. There

is currently a lack of tools that would automatically estimate the best k

to use and/or quickly generate histograms of k-mer abundances that

would allow the user to make an informed decision.

Results: We develop a fast and accurate sampling method that con-

structs approximate abundance histograms with several orders of

magnitude performance improvement over traditional methods. We

then present a fast heuristic that uses the generated abundance histo-

grams for putative k values to estimate the best possible value of k.

We test the effectiveness of our tool using diverse sequencing data-

sets and find that its choice of k leads to some of the best assemblies.

Availability: Our tool KMERGENIE is freely available at: http://kmergenie.

bx.psu.edu/.

Contact: pashadag@cse.psu.edu

Received on March 19, 2013; revised on April 23, 2013; accepted on

May 25, 2013

1 INTRODUCTION

Genome assembly continues to be a fundamental aspect of high-

throughput sequencing data analysis. In the years since the first

methods were developed, there have been numerous improve-

ments, and the field is now rich with tools that provide biologists
several options (Bankevich et al., 2013; Chikhi and Rizk, 2012;

Luo et al., 2012; Peng et al., 2012; Ribeiro et al., 2012; Simpson

and Durbin, 2011; Zerbino and Birney, 2008). Many of these

tools are based on the de Bruijn graph framework, where reads

are chopped up into k-mers (substrings of length k) (Pevzner
et al., 2001). The de Bruijn graph is constructed with nodes

being the (k – 1)-mers and the edges being the k-mers present

in the reads. Broadly speaking, an assembler constructs the

graph, performs various graph simplification steps and outputs
non-branching paths as contigs—contiguous regions that the as-

sembler predicts are in the genome.

Recently, there have been several meta-analyses of assemblers
that have pointed to systematic shortcomings of current methods

(Alkan et al., 2011; Bradnam et al., 2013; Earl et al., 2011;

Salzberg et al., 2011). The Assemblathon competitions

(Bradnam et al., 2013; Earl et al., 2011) demonstrated that

assembling a dataset still requires significant expert intervention.

One issue is many assemblers’ lack of robustness with respect to

the parameters and the lack of any systematic approach to

choosing the parameters. In de Bruijn-based assemblers, the
most significant parameter is k, which determines the size of

the k-mers into which reads are chopped up. Repeats longer
than k nucleotides can tangle the graph and break-up contigs;

thus, a large value of k is desired. On the other hand, the longer

the k the higher the chances that a k-mer will have an error in it;
therefore, making k too large decreases the number of correct

k-mers present in the data. Another effect is that when two reads
overlap by less than k characters, they do not share a vertex in

the graph, and thus create a coverage gap that breaks-up a

contig. Therefore, the choice of k represents a trade-off between
several effects.
Because some of these trade-offs have been difficult to math-

ematically quantify, there has not been an explicit formula for

choosing k taking into account all these effects. It is possible to
calculate some bounds based on estimated genome size and

coverage (e.g. by applying Lander–Waterman statistics); how-
ever, such estimates do not usually take into account the

impact of repetitiveness of the genome, heterozygosity rate or

read error rate. In practice, k is often chosen based on previous
experience with similar datasets. More thorough approaches

compare assemblies obtained from different k values; however,
they are time consuming, as a single assembly can take days for

mammalian-size genomes. A more informed initial choice for k

can be made by building abundance histograms for putative
values of k and comparing them. The abundance histogram

shows the distribution of k-mer abundances (the number of oc-
currences in the data) for a single k value. Such histograms can

provide an expert with valuable information for choosing k;

however, the time to construct such a histogram can take up
to a day for just a single value of k (Marçais and Kingsford,

2011; Rizk et al., 2013).
Our contribution in this article is 2-fold. First, we propose an

accurate sampling method that constructs approximate abun-
dance histograms with an order of magnitude speed improve-

ment, compared with traditional tools based on k-mer

counting. Our method allows an expert user to make an in-
formed decision by quickly generating abundance histograms

for many k values and analyzing the results, either visually or
statistically. Our second contribution is a fast heuristic method

for selecting the best possible value of k, based on the generated

abundance histograms for many values of k. The heuristic is
based on the intuition that the best choice of k is the one that

provides the most distinct non-erroneous (genomic) k-mers to*To whom correspondence should be addressed.

� The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com 31

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/30/1/31/235479 by guest on 09 April 2024

http://kmergenie.bx.psu.edu/
http://kmergenie.bx.psu.edu/
mailto:pashadag@cse.psu.edu


the assembler. Our method can be integrated into assembly pipe-
lines so that the choice of k is made automatically without user

intervention.
We implement our methods in a publicly available tool

called KMERGENIE. We test KMERGENIE’s effectiveness using

three sequencing datasets from a diverse set of genomes:

Staphylococcus aureus, human chromosome 14, and Bombus
impatiens. First, we find that our approximation of the histogram

is close to the exact histogram and easily separable from histo-

grams for nearby values of k. Next, we judge the accuracy of
KMERGENIE’s choice of k by assembling the data for numerous k

values and comparing the quality of the assemblies. We find that

KMERGENIE’s choice leads to the best assemblies of S.aureus and

B.impatiens, as measured by the contig length (NG50), and to a
good assembly of chr14 that represents a compromise between

contig length and the number of errors.

2 METHODS

Our method can be summarized as follows. We start by generating the

abundance histograms for numerous putative values of k. We then fit a

generative model to each histogram to estimate how many distinct k-mers

in the histogram are genomic (i.e. error-free). Finally, we pick the value of

k that maximizes the number of genomic k-mers. We now describe each

step in detail.

2.1 Building the abundance histograms

Consider a multiset of reads R from a sequencing experiment. For a given

value of k, each read is seen as a multiset of k-mers. For instance with

k¼ 3, the read ATAGATA is the multiset of five 3mers (ATA, TAG,

AGA, GAT and ATA). By taking the union of all reads, a dataset of

reads is also seen as a multiset of k-mers. Each k-mer is said to have

abundance, which is the number of times it appears in the multiset. A

common function used to understand the role of k is the abundance

histogram. For a given abundance value i, the function tells the

number of distinct k-mers with that abundance.

One way to calculate the abundance histogram is to first run a k-mer

counting algorithm. A k-mer counting algorithm takes a set of reads and

outputs every present k-mer along with its abundance. The abundance

histogram can then be calculated in a straightforward way. K-mer count-

ing is itself a well-studied problem with efficient solutions and tools,

although even efficient implementations can take hours or days on

large datasets (Marçais and Kingsford, 2011, Rizk et al., 2013). Such a

solution would be inefficient for generating histograms for multiple

values of k, as one would need to run the k-mer counter multiple times.

Instead, we propose to create an approximate histogram by sampling

from the k-mers, an idea explored in a more general setting by Cormode

et al. (2005). The pseudocode of our algorithm is shown in Algorithm 1.

Intuitively, we use a parameter " to dictate the proportion of distinct

k-mers we sample. We pick a hash function �� : fA,C,G,Tgk ! ½0::��

that uniformly distributes the universe of all possible k-mers into " buck-

ets. In our implementation, we adopted a state-less 64 bits hash function

[RanHash, page 352 in (Press et al., 2007)]. We then count the abun-

dances of only those k-mers that hash to 0. The abundance histogram is

then computed from the k-mer counts, scaling the number of k-mers with

a given abundance by ".

The running time of the algorithm is OðjRjð‘� kÞÞ, where ‘ is the read

length. The expected memory usage is Oðm=�Þ, where m is the number of

distinct k-mers in R. Although the asymptotic running time is the same as

for an exact k-mer counting algorithm, the total overhead of adding

k-mers to a hash table is reduced by a factor of ". Similarly, although

the memory usage is asymptotically the same as for an exact k-mer

counter, the decrease by a factor of " can make it feasible to store the

hash table in random access memory.

2.2 Generative model for the abundance histogram

Given an abundance histogram, our next step is to infer the number of

distinct genomic k-mers in it. In principle, if we knew the error rate, we

could easily estimate the number of genomic k-mers (not necessarily dis-

tinct) as a proportion of the total number of k-mers. However, such a

simple approach does not allow us to estimate which of the k-mers are

genomic and, hence, does not allow us to estimate the number of distinct

genomic k-mers. Moreover, the error rate is itself a parameter that is not

known before assembly; therefore, it must be estimated as well.

Instead, our approach is to take a generative model and fit it to the

histogram.We can then infer the number of distinct genomic k-mers from

the parameters of the model. Fitting a model to a histogram has been

previously explored in the context of error-correction (Chaisson and

Pevzner, 2008, Kelley et al., 2010). We adopt the model proposed by

Kelley et al. (2010), which we describe here for completeness.

2.2.1 Haploid model The k-mer abundance histogram is a mixture of

two distributions: one representing genomic k-mers and one representing

erroneous k-mers. We use the term copy-number to denote the number of

times a genomic k-mer is repeated in the genome. A genomic k-mer dis-

tribution is itself a mixture of n Gaussians, each Gaussian corresponding

to k-mers with a copy-number 1 � i � n. We fix the maximum copy-

number to n¼ 30. For each copy-number i, the mean �i and variance

�2i of the Gaussian are different values (because of Illumina biases), pro-

portional to the copy-number. Thus, in our model, the mean and variance

ð�1, �
2
1 Þ (for copy-number 1) are free parameters, and the remaining

means and variances are fixed to �i ¼ i�1 and �2i ¼ i�21 . The weights

of the mixture of Gaussians are given by a � distribution, which has a

single free shape parameter s. The erroneous k-mers distribution is mod-

eled as a Pareto distribution with fixed scale of 1 and a free shape par-

ameter �. The mixture between erroneous and genomic k-mers is

weighted by a free parameter pe, which corresponds to the probability

that a k-mer is erroneous. Thus in total, our model has five free param-

eters (�1, �
2
1 , s,�, pe).

2.2.2 Extension to the diploid model In the diploid case, we say that

a k-mer is homozygous if it appears in both alleles and is heterozygous

otherwise. We model the genomic k-mers of a diploid organism as a

mixture of two haploid genomic k-mer distributions Dht and Dhm. A

mixture parameter (ph) controls the proportion of homozygous k-mers

(drawn from Dhm) to heterozygous k-mers (drawn from Dht). The par-

ameters of the two distributions remain free, with the following exception.

As homozygous k-mers are expected to be sequenced with twice the

coverage of heterozygous k-mers, the mean of Dhm is fixed to twice the

mean of Dht. As in the haploid case, we model the erroneous k-mers as

a Pareto distribution with parameter � and a mixture proportion of pe.

Algorithm 1. Compute approximate abundance histograms

Input: An integer k40, a set of reads R, �40.

Output: Approximate abundance histogram of k-mers in R

1: Init empty hash table T, with default values of 0.

2: for all k-mers x in R do

3: if ��ðxÞ ¼ 0 then

4: T½x� ¼ T½x� þ 1

5: end if

6: end for

7: Compute abundance histogram h� of T

8: Let hðiÞ ¼ � � h�ðiÞ for each i

9: Output h

32

R.Chikhi and P.Medvedev

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/30/1/31/235479 by guest on 09 April 2024



In summary, the diploid model has eight free parameters: the variances

(�21 ) and the � shapes (s) for the Dhm and Dht distributions; additionally,

the mean (�1) of Dht, the Pareto shape (�), the error probability (pe) and

the heterozygosity proportion (ph).

2.3 Fitting the model to the histogram

Given the abundance histogram, we can estimate the parameters of the

above model that would be the best fit for the observed histogram.

Similarly to what is done in Kelley et al. (2010), we do a maximum-

likelihood estimation of the parameters using the optim function in R

(BFGS algorithm). Let d be the number of distinct k-mers present in the

histogram. Let bpe be the estimated mixture parameter between the erro-

neous and genomic k-mers in the aforementioned model. Immediately,

bped is an estimate of the numbers of erroneous k-mers and ð1� bpeÞd is an

estimate of the number of genomic k-mers present in the reads.

2.4 Finding the optimal k

Our key insight is that the best value of k for assembly is the one that

provides the most distinct genomic k-mers. To see this, consider the

number of distinct k-mers in the reference genome. Observe that as k

increases, this number also increases and approaches the length of the

genome, as a consequence of repeat instances becoming fully spanned by

k-mers. Thus, a high number of distinct genomic k-mers allows the as-

sembler to resolve more repetitions. In the ideal scenario of perfect cover-

age and error-free reads, the best value of k for assembly would be the

read length. However, the read coverage is typically imperfect, and reads

are error-prone, requiring a more nuanced approach.

First, consider obvious high and low thresholds: for k close to the read

length, it is unlikely that all the k-mers in the reference are present in the

reads because of imperfect coverage. On the other hand, note that any

genome will contain all k-mers for a small enough k (e.g. the human

genome contains all possible 4mers). This is due to the fact that a signifi-

cant chunk of a genome behaves like a random string.

Next, we examine the values of k between these two thresholds.

Essentially, two effects are competing. The shorter a k-mer is, the more

likely it is (i) to appear in the reads, but also (ii) to be repeated in the

reference. For a typical sequencing depth and values of k near the read

length, it is likely that only a small fraction of the k-mers from the ref-

erence genome appears in the reads [effect (i)]. However, unless the

sequencing depth is insufficient for assembly, there exists the largest

value k0 at which nearly all the k-mers in the reference genome are present

in the reads for k � k0. Thus, decreasing k below k0 only contributes to

making more k-mers repeated [effect (ii)].

From these observations, we conclude that the number of distinct

genomic k-mers in the reads is likely to reach a maximum value. At

this value, all the k-mers in the reference genome are likely to appear

in the reads; thus, the assembly at this k-mer length nearly covers all the

genome. Also, the assembly is likely to be of high contiguity as a large

number of distinct k-mers imply that more repetitions are fully spanned

by k-mers.

3 RESULTS

3.1 Datasets and assemblers

We benchmarked KMERGENIE using data from the Genome

Assembly Gold-standard Evaluation (GAGE), which was previ-

ously used to evaluate and compare different assemblers

(Salzberg et al., 2011). We used three datasets from three

genomes of different sizes: S.aureus (2.8Mb), human chromo-

some 14 (88Mb) and B.impatiens (250Mb). The datasets contain

5/62/497mil Illumina reads of length 101/101/124 bp (respect-

ively). The coverages are 167/70/247�.
For each dataset, the GAGE study published the assembler

that produced the best results, along with its most effective for-

mula (including commands and parameters). To assess how our

predicted k values relate to the quality of assemblies, we choose,

for each dataset, the de Bruijn assembler and formula that pro-

duced the best results in the GAGE study. For S.aureus and

chr14, this was Velvet 1.2.08 (Zerbino and Birney, 2008) with

the parameters given on the GAGE website. For B.impatiens,

we used SOAPdenovo2 (Luo et al., 2012) using the GAGE

recipe and no additional parameters. All experiments were run

on a 32-core machine (Xeon E7-8837 @ 2.67GHz) with 512GB

random access memory.

3.2 Performance of KMERGENIE’s choice of k

We ran KMERGENIE on all three datasets with putative k values

of 21, 31, 41, 51, 61, 71 and 81 and a sampling frequency of

� ¼ 1000. The optimal values of k were predicted to be 31 for

S.aureus, 71 for chr14 and 51 for B.impatiens. We then assembled

each dataset using both the optimal and other reasonable values

of k. The results of each assembly are shown in Table 1. The

decision of what constitutes the ‘best’ assembly is complicated

because of the inherent trade-offs (Bradnam et al., 2013; Earl

et al., 2011; Salzberg et al., 2011). We, therefore, evaluated

each assembly using three common quality measures: the

contig NG50 length, the assembly size and the number of assem-

bly errors. Contig NG50 is defined as the length at which half of

the predicted genome size is contained in contigs longer than this

length. Contigs were obtained by splitting reported scaffolds at

each undetermined nucleotide. The size was measured as the sum

total length of contigs4500bp. The Error column reflects the

number of mis-joins called by the QUAST software (Gurevich

et al., 2013). Note that for B.impatiens, there is no reference

available; hence, it is not possible to measure the number of

errors. QUAST reports an assembly error as a position in the

assembled contigs where one of the following mis-assembly

events occur: (i) the left flanking sequence aligns over 1 kb

away from the right flanking sequence on the reference, or (ii)

they overlap by41kb, or (iii) the flanking sequences align on

opposite strands or different chromosomes. For S.aureus, the

assembly with the chosen k had the best NG50 and size but

had more errors than other assemblies. For chr14, the assembly

with the chosen k did not have the best NG50 or size (although it

was close), but did have significantly less errors. For B.impatiens,

the chosen k gave an assembly with the best NG50 and second

best size (the number of errors is unknown, as there is no refer-

ence). Overall, KMERGENIE’s choice of k led to the best assem-

blies of S.aureus and B.impatiens, as measured by the NG50 and

assembly size, and to a good assembly of chr14 that represents a

compromise between NG50/assembly size and the number of

errors.

KMERGENIE is multi-threaded, it uses one thread per k value.

For a single thread, the running time and memory usage of

KMERGENIE is shown in Table 2. We also compared the speed

of our approximate histogram generation with what could be

achieved by the exact k-mer counting method DSK (Rizk

et al., 2013). KMERGENIE ran 6–10 times faster than DSK,

33

Informed and automated k-mer size selection

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/30/1/31/235479 by guest on 09 April 2024



confirming that our sampling approach leads to significant

speed-ups. For the largest dataset (B.impatiens), the total

wall-clock time of KMERGENIE with k-mer set

f21, 31, 41, 51, 61, 71, 81g using seven threads is 3 h. Note that

assembling B.impatiens using SOAPdenovo2 requires �30 CPU

hours for a single value of k (10 wall-clock hours, eight threads).

3.3 Comparison with VelvetOptimizer and VelvetAdvisor

We are aware of only two other methods that have been pro-

posed to optimize k. VelvetOptimizer (abbreviated VO) is an

unpublished tool that attempts to optimize k by performing a

Velvet assembly for each odd k value between 19 and 79 and

picking the one that yields the highest scaffold N50 (Seemann,

http://dna.med.monash.edu.au/�torsten/velvet_advisor). It then

determines coverage cut-off parameters that yield the longest

assembly in contigs41kb. As this requires doing 30 assemblies,

using VO on the chr14 data would require close to half a

CPU-year. We, therefore, were not able to evaluate VO on

chr14 or the even larger B.impatiens.
We did execute VO on the S.aureus dataset, using the default

optimization parameters. Each Velvet assembly requires�40min

of CPU time, resulting in 20h computation (although this can be

parallelized). VO selected the assembly with k¼ 41, with ex-

pected coverage value of 12 and cut-off value of 6.47.

Compared with the assembly based on KMERGENIE’s choice of

k¼ 31 (shown in Table 1), VO’s assembly has slightly higher size

(2.85 versus 2.83 kb), significantly lower contig NG50 (11.6 ver-

sus 19.4kb) and significantly more errors (23 versus 10). The VO

assembly has a higher scaffold N50 (734 versus 257 kb), but this

high N50 value may be misleading: QUAST reports a NGA50

value (corrected scaffold NG50) of 11.6 kb for the VO assembly

and 110.2kb for KMERGENIE assembly. We conclude that

KMERGENIE’s choice of k leads to a better assembly than VO’s

in this case. We note, however, that we believe the main advan-

tage of KMERGENIE over VO’s approach is that it is orders of

magnitude faster (2 mins versus 20h) and is applicable even when

VO is not feasible (e.g. chr14 and B.impatiens).
Another method is the unpublished tool Velvet Advisor

(Gladman and Seemann, http://bioinformatics.net.au/software.

velvetoptimiser.shtml). It uses a formula to recommend a value

of k, given the number of reads, the read length and the esti-

mated genome length. Velvet Advisor recommends k¼ 81 for the

S.aureus dataset, k¼ 51 for the chr14 dataset and k¼ 85 for the

B.impatiens dataset. The k value for the chr14 dataset leads to a

good assembly, but for S.aureus and B.impatiens, the assemblies

using these values are poor.

3.4 Effect of sampling and the fit of the statistical model

As the main purpose of the histograms is to contrast the differ-

ences between different k values, we measure the accuracy of our

approximate histogram by comparing it at a fixed k value (51)

with the exact distribution of k¼ 51 and the exact distributions

of nearby k (41 and 61). The results for our three datasets are

shown in Figure 1. We observe that the sampled histogram clo-

sely follows the exact one and easily discriminates between other

k values when such discrimination is possible from the exact

counts.
We illustrate the effect of k on the abundance histogram for

chr14 in Figure 2. In this case, the histogram is dominated by a

mixture of a distribution for erroneous k-mers and one for gen-

omic k-mers. As k increases, the genomic distribution shifts left

and becomes more narrow, resulting in a larger overlap with the

erroneous distribution.
Figure 2 also shows the fit of our model to the histogram.

Even though the human genome is diploid, its heterozygosity

rate is small enough that we model the k-mer abundance histo-

gram using the haploid statistical model. The high copycounts

seem to be inaccurately fitted, but note that the log-scale ampli-

fies the difference in low abundances. For B.impatiens, on the

other hand, the haploid model does not lead to a good fit, likely

because of a possibly higher polymorphism rate. Figure 3 shows

the difference in fit between using a haploid and diploid model

for B.impatiens.

Table 1. Quality of assemblies for different values of k

Assembly Contig NG50 (kb) Size (Mb) Errors

S.aureus (Velvet)

k ¼ 21 0.5 7.65 0

k ¼ 31 19.4 2.83 10

k ¼ 41 11.7 2.81 6

k ¼ 51 4.6 2.80 9

chr14 (Velvet)

k ¼ 41 2.4 74.56 764

k ¼ 51 4.0 79.92 843

k ¼ 61 5.4 82.10 431

k ¼ 71 4.7 81.89 251

k ¼ 81 1.8 74.18 153

B.impatiens (SOAPdenovo2)

k ¼ 41 5.4 224.05

k ¼ 51 10.4 229.71

k ¼ 61 9.5 230.36

k ¼ 71 5.9 226.11

k ¼ 81 2.5 207.11

Note: The value of k predicted by KMERGENIE is underlined.

Table 2. Resource utilization of KMERGENIE compared with a k-mer

counting-based approach (DSK)

Organism CPU time Memory usage of

KMERGENIE (GB)

DSK KMERGENIE

S.aureus 2min 11 s 0.1

chr14 48min 7min 0.1

B.impatiens 7.5 h 1.2h 0.4

Note: We executed KMERGENIE and DSK for a single value of k (81) using one

thread. KMERGENIE was executed with a sampling frequency of � ¼ 1000. DSK used

5GB of memory.

34

R.Chikhi and P.Medvedev

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/30/1/31/235479 by guest on 09 April 2024

http://dna.med.monash.edu.au/~torsten/velvet_advisor
http://dna.med.monash.edu.au/~torsten/velvet_advisor
http://bioinformatics.net.au/software.velvetoptimiser.shtml
http://bioinformatics.net.au/software.velvetoptimiser.shtml


3.5 Relation of the number of distinct genomic k-mers to

assembly quality

An important component of our method is the prediction of the

number of distinct genomic k-mers from the abundance histo-

gram. Our underlying assumption is that providing the assembler

with more distinct genomic k-mers leads to more of these k-mers

being used in contigs and to longer contigs. To measure this

effect, we plot (as a function of k) the number of distinct genomic

k-mers predicted from the histogram, the number of distinct

k-mers used in the assembly, the NG50 of the assembly and

the number of distinct k-mers in the reference (Fig. 4).

For S.aureus and chr14, the number of distinct genomic

k-mers in the assembly approximately mirrors the number of

ones predicted in the input, with the exception of extreme k

values. For B.impatiens, the variations of the predicted number

of k-mers do not match the variations of the number of distinct

(a) (b) (c)

Fig. 1. The accuracy of the sampling method. The panels reflect the three datasets: S.aureus (a), chr14 (b) and B.impatiens (c). Each plot shows the exact

histogram curves for k¼ 51 (solid black curve), k¼ 41 (dash-dot red curve) and k¼ 61 (dashed green curve). The approximate (sampled) histogram is

shown using black dots. Note that y is shown on a log-scale, exaggerating the differences at lower y values

Fig. 3. The abundance histogram and optimized model for B.impatiens, k¼ 41, using a haploid (left) and a diploid model (right), on a y log scale. In both

graphs, the black histogram curves are the actual k-mer histogram, and the red (solid) curve is the maximum-likelihood fit using our model. In the diploid

model graph, the green (dot-dashed) curve models the heterozygous k-mers and the blue (dashed) curve models the homozygous k-mers.

Other components of the mixture are not shown

Fig. 2. The abundance histograms for chr14 with k values of 21, 41 and 81 (on a y log scale). Each plot also shows a curve corresponding to the

optimized statistical model (haploid)

35

Informed and automated k-mer size selection

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/30/1/31/235479 by guest on 09 April 2024



k-mers present in the assemblies. We postulate that this discrep-

ancy may be due to heterozygosity, and note that the agreement

between NG50 and our prediction is sufficient for our purpose.
For all three organisms, the NG50 rises and falls in accordance

with the number of predicted distinct genomic k-mers. We also

observe that KMERGENIE overestimates the number of distinct

genomic k-mers when compared with the reference k-mers. A

part of this is likely because of heterozygosity, which is not

captured in the haploid reference. However, it may also partially

indicate room for improvement in our statistical model and/or

optimization.
For the lowest values of k in the S.aureus and B.impatiens

datasets, the assemblers produce a much larger assembly than

expected. We conjecture that this is due to a mis-estimation in the

assemblers of what constitutes an erroneous k-mer (as with low

k-mer sizes, erroneous k-mer has higher abundance than with

high k-mer sizes). We verified this conjecture in the S.aureus

dataset, by manually assembling S.aureus with Velvet using

k¼ 21 and a larger coverage cut-off value forced to 7 (experi-

mentally found). The new Velvet assembly size is 2.8Mb, which

is much closer to the reference size than the 7.65Mb assembly

with automatic coverage cut-off. Thus, this indicates that larger

assemblies are artifacts made by assemblers rather than an actual

increase of genomic k-mers.

4 DISCUSSION

Although we have presented a method that attempts to find the

best value of k for assembly, we would like to note several limi-

tations inherent in this approach. First of all, KMERGENIE may in

some instances report that a best value of k cannot be found

because it is not able to fit the generative model to the abundance

histograms. This could simply be due to a limitation of our

model or the optimization algorithm, but it could also be due

to a difficulty inherent in the data. For example, data from single

cell experiments have uneven coverage (Chitsaz et al., 2011),

violating a basic assumption of our model. Similarly, data

from metagenomic or RNA-seq experiments do not come from

a single genome, and their histograms have different properties.

In these cases, it has been observed that there is often no single

best k, and that combining the assemblies from different k can be

beneficial. Although KMERGENIE does not suggest a k in these

cases, it provides the abundance histograms that can be useful in

determining the best assembly approach.
We have demonstrated our approach to be useful for de

Bruijn-based assemblers. Other assemblers, such as SGA

(Simpson and Durbin, 2011), follow the alternate string overlap

graph approach, in which reads are not chopped up into k-mers.

These assemblers do not have the k parameter but do have an

alternate parameter for the minimum length of a non-spurious

overlap. Although a formal relation between these parameters

has not been established, they play a similar role in affecting the

assembly results. We, therefore, consider it an interesting direc-

tion for future research to extend our approach to select the best

overlap parameter for string overlap graph assemblers.

Finally, we wish to emphasize that our benchmark did not

attempt to produce the best possible assembly for each organism.

Rather, we are restricting ourselves to what a ‘typical’ user might

do with the data: run single assembly software on un-corrected

data and possibly try several k-mer values. To get the best pos-

sible assembly, one would have to explore the Cartesian product

of several assemblers, several read error-correction methods and

several k-mer values, which is often a prohibitively long task.

Notably, because we did not select the best error-correction

method for each assembler/organism, the assemblies reported

in Table 1 have lower contig N50 (and also scaffold N50, data

not shown) than those reported in the GAGE benchmark.

There are improvements that we have left for future work. The

first direction is to determine how our method could be applied

to non-uniform coverage. Although a single best k value for

Fig. 4. Relation of the number of distinct genomic k-mers to assembly quality. We show the results for the three datasets: S.aureus (left), chr14 (middle)

and B.impatiens (right). We plot the number of distinct genomic k-mers predicted from the histogram from our model, the number present in the

reference and the number present in the assembly. We also show the NG50 of the assembly

36

R.Chikhi and P.Medvedev

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/30/1/31/235479 by guest on 09 April 2024



metagenome and transcriptome assembly is unlikely to exist,
perhaps useful information could be extracted from the histo-
grams constructed on such datasets. The second direction is to
explore ways of improving the accuracy of our statistical model,

potentially leading to more accurate estimates of the number of
distinct genomic k-mers.

ACKNOWLEDGEMENTS

The authors would like to thank Qunhua Li and Francesca
Chiaromonte for useful discussions. We gratefully acknowledge
the support of the Genomics Institute of the Huck Institutes of

the Life Sciences.

Conflict of Interest: none declared.

REFERENCES

Alkan,C. et al. (2011) Limitations of next-generation genome sequence assembly.

Nat. Methods, 8, 61–65.

Bankevich,A. et al. (2013) SPAdes: a new genome assembly algorithm and its ap-

plications to single-cell sequencing. J. Comput. Biol., 19, 455–477.

Bradnam,K.R. et al. (2013) Assemblathon 2: evaluating de novo methods of

genome assembly in three vertebrate species. arXiv preprint arXiv:1301.5406.

Chaisson,M.J. and Pevzner,P.A. (2008) Short read fragment assembly of bacterial

genomes. Genome Res, 18, 324–330.

Chikhi,R. and Rizk,G. (2012) Space-efficient and exact de Bruijn graph represen-

tation based on a bloom filter. In: Algorithms in Bioinformatics, Lecture Notes in

Computer Science. Vol. 7534, Springer-Verlag Berlin, Heidelberg, pp. 236–248.

Chitsaz,H. et al. (2011) Efficient de novo assembly of single-cell bacterial genomes

from short-read data sets. Nat. Biotechnol., 29, 915–921.

Cormode,G. et al. (2005) Summarizing and mining inverse distributions on data

streams via dynamic inverse sampling. In: Proceedings of the 31st international

conference on Very large data bases. VLDB Endowment, Norway, pp. 25–36.

Earl,D.A. et al. (2011) Assemblathon 1: a competitive assessment of de novo short

read assembly methods. Genome Res., 21, 2224–2241.

Gurevich,A. et al. (2013) QUAST: quality assessment tool for genome assemblies.

Bioinformatics, 29, 1072–1075.

Kelley,D.R. et al. (2010) Quake: quality-aware detection and correction of sequen-

cing errors. Genome Biol., 11, R116.

Luo,R. et al. (2012) SOAPdenovo2: an empirically improved memory-efficient

short-read de novo assembler. GigaScience, 1, 1–6.

Marçais,G. and Kingsford,C. (2011) A fast, lock-free approach for efficient parallel

counting of occurrences of k-mers. Bioinformatics, 27, 764–770.

Peng,Y. et al. (2012) IDBA-UD: a de novo assembler for single-cell and metage-

nomic sequencing data with highly uneven depth. Bioinformatics, 28, 1420–1428.

Pevzner,P.A. et al. (2001) An Eulerian path approach to DNA fragment assembly.

Proc. Natl Acad. Sci. USA, 98, 9748–9753.

Press,W.H. et al. (2007) Numerical Recipes 3rd Edition: The Art of Scientific

Computing. Cambridge University Press, Cambridge.

Ribeiro,F. et al. (2012) Finished bacterial genomes from shotgun sequence data.

Genome Res., 22, 2270–2277.

Rizk,G. et al. (2013) DSK: k-mer counting with very low memory usage.

Bioinformatics, 29, 652–653.

Salzberg,S.L. et al. (2011) GAGE: a critical evaluation of genome assemblies and

assembly algorithms. Genome Res., 22, 557–567.

Simpson,J.T. and Durbin,R. (2011) Efficient de novo assembly of large genomes

using compressed data structures. Genome Res., 22, 549–556.

Zerbino,D.R. and Birney,E. (2008) Velvet: algorithms for de novo short read as-

sembly using de Bruijn graphs. Genome Res., 18, 821–829.

Informed and automated k-mer size selection

37

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/30/1/31/235479 by guest on 09 April 2024


