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ABSTRACT

Motivation: Accurate estimation, comparison and evaluation of read

mapping error rates is a crucial step in the processing of next-

generation sequencing data, as further analysis steps and interpret-

ation assume the correctness of the mapping results. Current

approaches are either focused on sensitivity estimation and thereby

disregard specificity or are based on read simulations. Although con-

tinuously improving, read simulations are still prone to introduce a bias

into the mapping error quantitation and cannot capture all character-

istics of an individual dataset.

Results: We introduce ARDEN (artificial reference driven estimation of

false positives in next-generation sequencing data), a novel bench-

mark method that estimates error rates of read mappers based on

real experimental reads, using an additionally generated artificial ref-

erence genome. It allows a dataset-specific computation of error rates

and the construction of a receiver operating characteristic curve.

Thereby, it can be used for optimization of parameters for read

mappers, selection of read mappers for a specific problem or for fil-

tering alignments based on quality estimation. The use of ARDEN is

demonstrated in a general read mapper comparison, a parameter

optimization for one read mapper and an application example in

single-nucleotide polymorphism discovery with a significant reduction

in the number of false positive identifications.

Availability: The ARDEN source code is freely available at http://

sourceforge.net/projects/arden/.

Contact: renardb@rki.de

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

Throughout the past years, the rapid development of next-gen-

eration sequencing (NGS) technologies has shaped computa-

tional biology. The analysis of large amounts of data from

sequencing runs, which regularly reaches millions of reads, is a

key challenge in retrieving biological information. Hence, a

common part of most NGS applications is to perform a read

mapping, the search of given read sequences in a much larger

reference sequence.

Various methods have been published to efficiently solve the

read mapping problem. Popular mappers include Bowtie2

(Langmead and Salzberg, 2012), mrsFAST (Hach et al., 2010),

BWA (Li and Durbin, 2009) and RazerS (Weese et al., 2009).

For a comprehensive overview on current read mappers, we refer

the reader to (Fonseca et al., 2012).

However, it is difficult to judge whether a mapping result is

appropriate for a given dataset and how to efficiently compare

read mappers and how to choose their increasingly large number

of tuning parameters. These challenges in read mapping become

particularly apparent in the search for genomic variations, such

as single-nucleotide polymorphisms (SNPs). By definition, the

sequence of reads indicating SNPs differs from the reference

genome. Hence, the difficulty is to distinguish true SNPs from

sequencing errors or computational mapping errors. The distinc-

tion between error and variant is not obvious in case a read does

not match perfectly to the reference. Here, the parameterization

of a read mapper plays a crucial role. Using only default settings

may result in imperfect mappings, as they might be optimized for

certain organisms or sequencing platforms. Allowing mismatches

may result in a high number of mappings, but these may be error

prone and have a low quality. In contrast, requiring a high simi-

larity might hinder the detection of SNPs. Thus, a method for

evaluation and quality control is required to find an optimal

setting for a read mapper. To the best of our knowledge, quality

control of read mappers is primarily based on sensitivity meas-

urements (Holtgrewe et al., 2011) or relies on read simulation as

in, e.g. Huang et al. (2012), Oliver (2012) and Ruffalo et al.

(2012), as, in general, no ground truth is available for NGS ex-

periments. However, we observed that adequate read simulations

are difficult to achieve and prone to introduce a bias. It is infeas-

ible to model all influence factors on data acquisition and the

continuously improving sequencing chemistry poses a challenge

to keep simulations up to date. Further, the correlation between

simulation result and a specific real dataset is inexplicit, as it is

challenging to set parameters such as the error rate of the instru-

ment a priori. To avoid this bias, we developed ARDEN (artifi-

cial reference driven estimation of false positives in NGS data),

which takes the opposite approach: rather than replacing reads

by a simulation with a known ground truth, ARDEN uses real

reads and a simulated decoy reference genome for generating

confidence measurements. Thereby, ARDEN is able to estimate

and to control the number of incorrect alignments.
Similarly to the widely used decoy strategy in proteomics

(Elias and Gygi, 2007), our decoy approach is used to estimate

the number of false-positive read mappings. This is motivated by

the assumption that the number of hits on the decoy genome

provides an estimate of the expected number of false positives in

the original genome. The expectancy is that the occurrence of

one hit on the decoy genome (considered as a random hit) has*To whom correspondence should be addressed.
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approximately the same probability as an incorrectly mapped

read on the original reference genome. This leads to an approxi-

mation of a false discovery rate (Choi and Nesvizhskii, 2008). As

no read simulation is necessary, ARDEN is applicable on every

dataset and adjusts to the specific sequencing runs. Thus, it can

be applied as a concurrent quality control and allows adjusting

specificity settings separately for single experiments and the ex-

clusion of potentially incorrect mappings from subsequent ana-

lyses. Further, it provides a novel approach to benchmark read

mappers or different read mapping settings. We demonstrate the

applicability of ARDEN in several evaluations: first, we use

ARDEN for a basic read mapper comparison. Further, we de-

termine the best parameter setting for a specific read mapper,

and, finally, we show a specific application example for SNP

discovery.

2 METHODS

The analysis of a given set of NGS reads includes three major steps and

one optional post-processing step, as illustrated in Figure 1. The first step

is the creation of an artificial reference genome. This genome serves as a

decoy for the read mapper; this strategy is comparable with the false

discovery rate approach in proteomic peptide identification using a re-

versed sequence decoy database (Elias and Gygi, 2007). In the second

step, an alignment is performed. The reads are mapped to the reference,

as well as to the artificial reference genome using the same settings. The

third step is the analysis of the resulting mappings in terms of sensitivity

and specificity based on the comparison of the number of mappings with

the artificial reference genome (considered as indicators of false positives)

and to the reference genome. In the following, each step is explained in

detail.

2.1 Creating an artificial reference genome

First, ARDEN creates an artificial reference genome (A) only differing

from the reference (R) in single-nucleotide substitutions. Neither struc-

tural changes nor insertions or deletions (indels) are introduced. The aim

is to change the original reference in a way that none of the input reads

has the same origin in R and A. If this is achieved, any hit on A can be

classified as a random hit (see Section 2.3 for more details). At the same

time, the artificial reference genome requires a maximal similarity to the

reference genome to avoid the introduction of any biases. For instance, a

change of the GC-content could change the performance of the mapper.

Hence, the resulting artificial reference genome is still close to the original

sequence, but contains substitutions in a pre-defined distance. These mis-

matches are randomly chosen, but fulfill the (optional) conditions that a

substitution does not change the following properties between A and R:

(i) the nucleotide distribution and thus the GC-content,

(ii) the amino acid distribution,

(iii) the amino acid neighborhood,

(iv) any putative start/stop codons.

A rudimentary gene predictor is implemented to ensure that condition

(iv) is not violated. Note that this algorithm is only designed to detect

basic open reading frames and, therefore, does not respect splice sites.

It has been shown that these characteristics are specific for each or-

ganism (Botzman and Margalit, 2011; Foerstner et al., 2005) and have a

major impact on sequencing (Benjamini and Speed, 2012; Schwartz et al.,

2011). Especially the amino acid properties are essential, as random sub-

stitutions could lead to a bias in the structural folding of the correspond-

ing proteins (Dill and MacCallum, 2012).

Instead of optimizing the conditions (i)–(iv) by an objective function,

we choose an exact algorithm to guarantee that the distributions as well

as the neighborhood stay the same. This is achieved by exploiting the

degeneration of the genetic code. An example iteration for the algorithm

to obtain the artificial reference genome is illustrated in Figure 2. The

algorithm works as follows:

(1) Choose randomly a position n in the translated protein sequence

(first frame translation of the complete genome) and its corres-

ponding codon cn.

(2) Store the amino acids at positions n� 1 and nþ 1, as well as the

corresponding codons cn�1 and cnþ1.

(3) Generate a list of possible amino acids whose codon c�i has

Hamming distance ¼ 1 to cn.

(4) Search for every amino acid triplet corresponding to cn�1, c
�
i , cnþ1

from (3) in the protein sequence [respecting the constraints (i)–(iv)]

and stop when one is found at a position posi.

(5) Switch the codon at position n and posi.

(6) Start again with (1) until no valid starting positions are left.

2.2 Performing the read mapping

Two mappings have to be computed in one ARDEN run: one on the

reference and one on the artificial reference genome. ARDEN is applic-

able to any read mapper as long as the mapping is presented in the

common SAM file format (Li et al., 2009) sorted by read names and

A B C D

Fig. 1. ARDEN workflow. (A) An artificial reference genome is created based on the original genome. (B) In a second step, reads are aligned to both

references using all read mappers of interest. It is important to note that the settings for one read mapper need to be equal for both, the artificial and the

reference genome mappings. (C) Based on the mapping results, a comparison is performed by classifying hits as true positives (TP) and false positives

(FP). This is used to calculate an ROC table and its corresponding AUC. (D) An optional step can be performed to improve the mapping results by

excluding aligned reads with suboptimal properties
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including the MD tag. Refer to the Supplementary Material for a

description of formatting details.

2.3 Analysis

To compare different read mappers, we classify the alignments (hits) of

one read in potential true positives (PTP) and clear false positives (FP).

As we have no ground truth available, we regard each hit on the reference

sequence as PTP. For the mappings on the artificial reference genome, a

distinction in two cases is possible. Intuitively, all alignments on the arti-

ficial reference genome that map to the same position as in the reference

sequence are considered as PTPs. A priori, we assume that no mistake has

been made when for a read the same origin is found in the reference and

artificial genome. Hence, every alignment on the artificial reference

genome that does not have the same origin in the reference is denoted

as distinct false hit and thereby contributes to the FP. The sum of all PTP

and FP is declared as joint hits (JH). Knowing PTP and FP, a global

measure between read mappers can be defined. Addressing the PTP com-

parison, a measure of sensitivity (Sn) is calculated as

Sn ¼
PTP

JH
�M, ð1Þ

where M denotes the fraction of mapped reads. This fraction serves as a

normalization constant to compensate the fact that some alignment stra-

tegies map more reads than others, which may influence the calculation.

Note that this way the read mapping probability normalizes the hit prob-

ability. Even though there are more sophisticated approaches to define

the sensitivity of a read mapper (Holtgrewe et al., 2011), normalizing by

the percentage of mapped reads yields a suitable metric. For FPs, a meas-

ure of specificity (Sp) is defined as

Sp ¼ 1�
FP

JH
�M

� �
: ð2Þ

This follows the intuition that mappers cannot be specific if they tend

to map more reads distinctly on the artificial reference.

Combining these measurements, results in a robust statistical analysis

of the receiver operating characteristic (ROC) and its corresponding area

under the curve (AUC). The ROC curve is created by plotting the sensi-

tivity estimate Sn in relation to the specificity estimate Sp. Hence, the

ROC analysis provides a possibility to identify an optimal trade-off

between the sensitivity of a read mapper and its specificity.

To compute positions on the ROC curve for different trade-offs be-

tween sensitivity and specificity, we filter all reads according to various

alignment features. Thus, features are selected that uniquely define points

on the ROC curve. The set of features comprises the number of gaps in

the alignment, the number of mismatches and a read quality score (RQS),

which is calculated as

RQS ¼
�qr

maxðqbÞ �minðqbÞ þ 1
, ð3Þ

where �qr denotes the average quality [a PHRED-based probability that a

base call is wrong (Li et al., 2009)] of read r, and qb is the base quality for

a base of the sequence of read r. All alignment features contribute equally

to the classification in PTP or FP and have an individual score range. To

reduce the computational effort, we divide each of these individual ranges

into five equally sized intervals, yielding a total maximum of 35 ¼ 243

possible combinations (sub-classes). By defining the sensitivity as well as

the specificity for each sub-class, a point can be drawn in the ROC curve

(Löwer et al., 2012; Sing et al., 2005).

There is no linear relationship between the features, and their impact

on read filtering differs. To ensure that the ROC curve is indeed monot-

onously increasing, we use the envelope of all these points (see

Supplementary Material and Fig. 1 for an illustration) and thus implicitly

select the most suitable filtering criterion based on the trade-off between

sensitivity and specificity. Based on the envelope, an AUC can be calcu-

lated using an approximation of the integral of the ROC curve. This

AUC provides a value for a combined measure of sensitivity and speci-

ficity. All in all, defining the overall sensitivity and specificity and the

AUC for a given read mapper yields a robust method for read mapper

comparison.

2.4 Optional filtering

As an optional step, it is possible to increase the accuracy of any read

mapping result by applying a false discovery rate filter on the input align-

ments (Fig. 1D). This filter is based on the specified feature list and

removes alignments with potentially suboptimal mappings. Hence, it gen-

erates a refined SAM-file only, including alignments that fulfill the user

specified criteria.

3 EXPERIMENTAL SET-UP AND RESULTS

The use of ARDEN is demonstrated in three different applica-

tions. First, we perform a general comparison of read mapping

tools on a specific dataset, where we indicate the best mapper in

terms of sensitivity and specificity. Second, we perform a read

mapper parameterization comparison to identify the best setting

for a specific read mapper. Third, we perform a variant calling
where we investigate the impact of ARDEN as a pre-processing

step on the accuracy of variant identifications.

3.1 Comparison of different read mapping tools

As a test dataset, we chose Caenorhabditis elegans reads available
on the Short Read Archive (SRA, accession number

SRR065388). From these reads, we sampled 1 million single-

end reads. As a reference, we used the whole genome assembly

from wormbase (Yook et al., 2012) of C. elegans (Release

WS227). This reference was used along with the artificial refer-

ence genome, which was created using ARDEN (Supplementary

Material for details). To represent different categories of read

mapping approaches, we selected Bowtie2 and BWA as

Fig. 2. Example iteration for creating an artificial reference genome. The

algorithm starts by choosing amino acid D and its codon GAC as the

triplet to mutate. A possible candidate GCC is generated (Hamming dis-

tance 1 to GAC), and the corresponding amino acid triplet YAN serves as

a target sequence. Then all occurrences of YAN in the protein sequence

are checked whether the center amino acid of YAN was generated by a

GCC in the reference sequence. If that is the case and the distance con-

straint is fulfilled, the triplets GAC and GCC and the corresponding

amino acids are switched. No change has been introduced in the nucleo-

tide distribution and in the amino acid neighborhood. Annotations

denote the algorithmic description in Section 2.1
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any-best-mappers (reporting one single best hit), mrsFAST as an

all-mapper (reporting all hits regarding a certain error level)

regarding Hamming distance and RazerS2 configured as an

all-mapper regarding edit distance (Holtgrewe et al., 2011).

Each mapper was applied to the test dataset (all parameters

are available in the Supplementary Material) and analyzed

with ARDEN.

As illustrated in Table 1, the analysis shows that for this data-

set, mrsFAST and RazerS2 are the most sensitive read mappers

and also have the largest AUC. It can also be observed that

although the PTP differ considerably between the mappers, the

achieved sensitivity measurements are still within a comparably

close range. The same holds for the AUC. Here, the normaliza-

tion effect of M becomes apparent: for instance, although

mrsFAST yielded more PTPs than RazerS2,M is slightly smaller

because of ambiguous mappings, which results in a similar AUC.

For this reason, a mapper is regarded as good if it not only yields

many PTPs but if these PTPs also have been derived by mapping

many different reads.
In terms of FPs, Bowtie2 mapped approximately three times

as many reads distinctly to the artificial reference genome com-

pared with RazerS2 and BWA. Thus, the AUC for Bowtie2 is

the lowest, although Bowtie2 achieves the highest fraction of

mapped reads. Hence, many of these reads have been mapped

incorrectly, which is reflected in all three accuracy measurements

(lowest Sn, Sp and AUC). The most specific read mapper in this

example is mrsFAST, but this advantage is affected by the

second lowest M value as pointed out earlier in the text.
The corresponding ROC curve (Fig. 3) and its resulting AUC

metric provides an easily interpretable measure for the perform-

ance of a read mapper. Table 1 can serve as a guideline for the

decision, which read mapper to choose for this particular dataset.

For instance, here RazerS2 is preferable to mrsFAST to gain a

higher sensitivity, at the cost of a decrease in specificity.
Optionally, ARDEN can be used to find a feasible cut-off

based on RQS, number of gaps and number of mismatches to

improve the performance of a specific read mapper (for instance

to minimize Sn loss while maximizing Sp). This can be achieved

by filtering the initial SAM-file based on the results from the

ROC table created by ARDEN. As an example, an excerpt of

the ROC table for Bowtie2 is shown in Table 2 (the complete

table is provided in the Supplementary Material). Table 2 can be

used to define a cut-off for specificity control because here all

alignments are classified according to the used feature set. For

example, instead of using all alignments (Table 1), it is possible to

use a specific group of alignments that are selected depending on

a user defined cut-off on the alignment features (gaps, mis-

matches, RQS) from Table 2. To achieve a better specificity

for Bowtie2 in default settings, it is advisable to choose the

cut-off shown in the highlighted row four of Table 2. When

only alignments with number of gaps � 16, number of mis-

matches � 5 and RQS � 0 are selected, the number of FPs

decreases by �56%, whereas only 1.55% of the PTPs are lost.

Choosing this cut-off improves the specificity from 0.929 to

0.969.

3.2 Comparison of different parameterizations for one

read mapper

ARDEN not only facilitates the evaluation of different read

mappers for a given dataset but also the comparison of different

parameterizations to derive the optimal setting for a read mapper

on a specific dataset. Without any a priori knowledge, a set of

mapping parameters can be tested on the artificial ground truth

provided by ARDEN. We demonstrate the usefulness of this

strategy on an example using Bowtie2 with different settings

on the same dataset as in Section 3.1. As Bowtie2 provides

pre-defined settings, we chose three of them and also designed

one custom setting. The pre-defined settings used here are very

Table 1. Comparison of the sensitivity (Sn) and specificity (Sp) of different read mappers using a C.elegans dataset with 1 million single-end reads

Mapper PTP FP Sn Sp AUC M

BWA 981515 25 438 0.895 0.977 0.896 0.919

RazerS2 4590 324 25 151 0.921 0.995 0.92 0.926

Bowtie2 945 238 77 084 0.874 0.929 0.859 0.945

mrsFAST 6528 165 328 0.92 1 0.92 0.92

Note: M refers to the fraction of mapped input reads. The exact parameters for each mapper are available in the Supplementary Material. The analysis was performed using

the analysis module of ARDEN. All values are rounded to three decimal digits. For each column best values are marked in bold.

Fig. 3. Example of a ROC curve for Bowtie2 generated by ARDEN.

Here, we used a C.elegans dataset with 1 million single-end reads.

Selected cut-off parameters for RQS, number of gaps and number of

mismatches are accentuated in the plot
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fast, default and very sensitive, whereas the custom setting is simi-

lar to the default setting along with the �N ¼ 1 option (error in

seed allowed). Table 3 shows the differences between the per-

formances of the four settings. The number of mapped reads is

�94:5% and is thereby similar for all four settings. Although the

custom setting was the only setting allowing mismatches in the

seeds, Bowtie2 mapped most false positives when configured as

very sensitive (it contributes�28% to the sum of all FP) and least

in the very fast configuration, which contributes �21% to the

sum of all FP. Therefore, the very fast setting yields the highest

AUC value (Table 3).
As most results are similar (in PTP, FP and M), the AUC

values are narrowly distributed (0.851–0.875). For this dataset,

the very fast configuration is preferable to the other settings, as it

yields the highest sensitivity, as well as the highest specificity.

Based on ARDEN, the user has the choice to derive more sen-

sitive or more specific results (guided by the artificial ground

truth). For example, also the custom setting might be a good

choice, as it yields more PTPs than the very fast modus, whereas

it still has a higher Sn and Sp than the very sensitive option. Note

that it might still be possible to improve a chosen setting by

decreasing the number of FPs. This can be achieved as outlined

in Section 3.1 by analyzing the ROC tables provided by

ARDEN.

3.3 Improving SNP calling

In general, ARDEN can be applied before any application

requiring read mapping, as it provides information on the map-

ping accuracy and can help to select alignments with a desired

trade-off between sensitivity and specificity. To investigate the

impact of ARDEN on analysis results, we apply ARDEN to an

SNP calling problem. We simulated a SNP ground truth on the

complete genome of Escherichia coli str. K-12 substr. MG1655

(accession: NC_000913) and chromosome 21 of Homo sapiens

(accession: NC_000021) and evaluated the impact of our

method on the accuracy of variant calling. Similar to the experi-

mental set-up described by Ruffalo et al. (2012), we created two

new genomes based on the original ones by randomly introdu-

cing 150 single point mutations to the E.coli genome and 1000 to

chromosome 21 of H.sapiens. To avoid any biases by mutations

introduced during a read simulation process, we chose to use two

real datasets, for E.coli from the Ion Torrent community and

for H.sapiens from the SRA (accessions DOC-1443 and

DRX000307, respectively; see Supplementary Material for

details). The artificial reference genomes were created using the

parameters described in the Supplementary Material. The map-

pings are computed using Bowtie2, RazerS2 [RazerS3 (Weese

et al., 2012)] and BWA and samtools mpileup (Li et al., 2009)

were applied for variant calling (refer to the Supplementary

Material for details).
Table 4 shows the results for the E.coli genome. The category

filtered refers to all reads remaining after the application of a cut-

off determined by the ROC analysis with ARDEN, whereas in

all, all the alignments reported by the mappers are retained.

When calling SNPs on the filtered results the number of TPs

remains constant, whereas the number of FPs is reduced by a

varying degree (strongly reduced with 72.04% for RazerS2,

whereas slightly reduced with 5.05% for BWA). The filtering

had almost no effect on Bowtie2. The cut-off for BWA was

chosen at (RQS �0/gaps �6/ mismatches � 2), for Bowtie2 at

Table 2. Excerpt from a resulting ROC table using Bowtie2 and ARDEN

RQS GAPS MM PTP FP Sn Sp M

0 16 27 945238 77 084 0.874 0.929 0.945

0 16 10 941245 73 445 0.866 0.932 0.941

0 3 10 936150 72 564 0.857 0.934 0.936

0 16 5 930631 34 217 0.847 0.969 0.931

0 3 5 926103 33 771 0.839 0.969 0.926

27.215 3 5 775 33 0.0 0.99 0.001

Note: The columns RQS, GAPS andMM indicate the cut-off parameters to divide the alignments in sub-classes. For instance, the first row includes a sub-class that includes all

alignments that have an RQS� 0, gaps� 16 and mismatches (MM)� 27.

Table 3. Comparison of different parameterizations for Bowtie2

Setting PTP FP Sn Sp AUC M

Very fast 944 473 63344 0.885 0.941 0.875 0.945

Default 945 238 77084 0.874 0.929 0.859 0.945

Custom 944 768 78304 0.873 0.928 0.856 0.945

Very sensitive 945 487 84281 0.868 0.923 0.851 0.946

Note: The settings reflect pre-defined configurations of Bowtie2 (very fast, default and very sensitive), as well as a custom configuration that adds the �N ¼ 1 option to the

default setting. For each column, best results are highlighted in bold.
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(RQS �0/gaps �2/ mismatches � 4) and for RazerS2 at (RQS

�0/gaps �4/ mismatches � 2). The complete ROC tables are

provided in the Supplementary Material along with the sensitiv-

ity and specificity table.
Table 5 summarizes the results for the application on chromo-

some 21 of H.sapiens. In addition to the simulated ground truth,

the results were compared with public available SNP data

retrieved via the UCSC table browser [track: All SNPs (137)]

(Karolchik et al., 2012). The reduction of false positives is

again more pronounced for RazerS3 and BWA than for

Bowtie2 with a maximum of 54.33% reduced false positives for

RazerS3. On the H.sapiens dataset, RazerS3 and BWA lost 5.42

and 7.51% TPs, respectively, whereas the TPs increased on the

Bowtie2 mapping. When only considering the simulated ground

truth, the TP loss was 51% for all mappers (Supplementary

Material). The cut-off for BWA was chosen at (RQS �0/gaps

�9/ mismatches � 2), for Bowtie2 at (RQS �0/gaps �13/

mismatches � 4) and for RazerS3 at (RQS �0/gaps �14/

mismatches � 4).

4 DISCUSSION

ARDEN is a method for the identification and control of false

positives in mappings of NGS data, for which we demonstrate a

broad range of applications.

ARDEN allows the comparison of mapping algorithms on

any dataset of interest rather than relying on a simulated dataset

with potentially differing properties. The here presented com-

parison study also gives insight into characteristic algorithmic

properties of different classes of read mappers. For example,

fewer reads are expected to map distinctively to different pos-

itions on reference and artificial reference for Hamming-based

methods, such as mrsFAST. For these approaches, a single point

mutation does not change the start or end position of an align-

ment that falls into the same region on the reference and the

artificial reference. Moreover, Hamming-based methods have

harder constraints for finding an alignment, as they only consider

substitutions. Because of the seed and extend step, index-based

methods suffer from a higher probability for mapping a read to

the same region but on a different shifted position. Thus, two

classes of errors may contribute to false-positive alignments,

shifted alignments and alignments that map to diverse regions.

In general, this leads to a higher error rate for mappers, such as

Bowtie2 or BWA, than for Hamming distance-based methods.

Also, in general, edit distance mappers align a higher percentage

of mapped reads (in comparison with Hamming distance map-

pers) at the cost of an increased probability of false mappings.

The reason is that edit distance mapping has relaxed constraints

for finding an alignment than Hamming distance mapping, as it

allows substitutions and indels. Accordingly, RazerS2 (config-

ured in edit distance mode) and Bowtie2 mapped a higher

Table 4. Comparison of SNP calling using all alignments and SNP calling with a set of filtered (Filt.) alignments defined by ARDEN on a modified

E.coli genome

Mapper True positives False positives

All Filt. � in % All Filt. � in %

BWA 127 127 0 198 188 �5.05

Bowtie2 126 126 0 225 224 �0.44

RazerS2 130 130 0 701 196 �72.04

Note: The ground truth contained 150 simulated SNPs. ARDEN decreases the number of FP while retaining all TPs. The effect of filtering depends on the particular mapper

and the respective results of ARDEN. For Bowtie2, BWA and RazerS2, the percentage of all alignments that have been removed by the filter are �6:8%, �2:5% and

� 3:4%, respectively. The relative difference between the All and Filt. category is denoted as �.

Table 5. Comparison of SNP calling using all alignments and SNP calling with a set of filtered (Filt.) alignments defined by ARDEN on a modified

chromosome 21 of H.sapiens

Mapper True positives False positives

All Filt. � in % All Filt. � in %

Bowtie2 45 342 45805 þ1.02 10191 10 144 �0.46

RazerS3 46 592 44069 �5.42 56954 26 010 �54.33

BWA 48715 45058 �7.51 15681 9612 �38.7

Note: TPs were compared with a simulated ground truth containing 1000 simulated SNPs and to public available SNP data (a more detailed distinction is available in the

Supplementary Material). For RazerS3 and BWA, the filtering with ARDEN considerably reduced the numbers of FPs along with a comparably small loss of TPs. For

Bowtie2, the number of FPs is decreased along with a gain in TPs. The relative difference between the All and Filt. category is denoted as �.
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fraction of reads than mrsFAST at the cost of specificity.

However, BWA did not achieve a higher fraction of mapped

reads because it only reports alignments with up to four mis-

matches, and mrsFAST was configured to map with at most

five mismatches (refer to the Supplementary Material).
Note that the ability of ARDEN to improve mappings

strongly corresponds to the reporting strategy of the mapper.

This fact is demonstrated by Table 3: for instance, Bowtie2,

which reports the single best alignment (any-best) has a decreased

specificity because it makes a random decision for one alignment

in cases where n equally good alignments exist. In those cases, the

mapping tool makes an error in n�1
n cases because it has a uni-

formly distributed probability to pick the wrong alignment. If all

best mappings are reported, ARDEN can distinguish correct and

incorrect alignments without random choices. Hence, the infor-

mation lost during the any-best report hinders the capacity to

improve the alignment. For this reason, methods reporting all or

all-best alignments for one read (e.g. RazerS2) have a higher

chance to be improved by ARDEN, as more suboptimal hits

allow a stronger effect on distinguishing random hits and true

positives.

ARDEN allows a dataset-specific optimization of mapping

parameters based on the ground truth derived by the artificial

reference genome. ARDEN gives an estimate for the trade-off

between sensitive and specificity for any parameter setting. For

instance, we observed that Bowtie2 achieved the best perform-

ance when configured as very fast, which opposed the initial ex-

pectation. This is valuable information, as it is the fastest of all

settings and still the most sensitive. In addition, ARDEN allows

the determination of a cut-off where higher error levels stop the

improvement of the alignment accuracy but start increasing the

number of random hits (FP). Instead of choosing very sensitive as

the setting that yields the highest percentage of mapped reads

(M), the focus shifts to finding a mapping with comparable M

and few false positives (e.g. very fast). This is important to note,

as we see that taking only the percentage of mapped readsM as a

general measure of goodness of a read mapper is a common, but

suboptimal strategy. Here, we emphasize that maximizing M

could lead to error-dominated alignments. Thus, we generally

advise to optimize settings for a specific dataset rather than rely-

ing on default settings. For example, the custom setting also

yielded a better sensitivity and specificity than the very sensitive

mode. This again differs from our expectation, as we assumed

that allowing errors in the seed leads to a lower specificity.
Further, ARDEN can be applied to filter alignments to im-

prove the overall specificity. Our experiments showed that RQS

is the strictest of all three filter dimensions, as one single low base

call probability will have a strong negative effect on the score. In

addition, Hamming distance alignments do not incorporate gaps

in the alignments and will thereby not profit from the gap cut-off

dimension. In practice, such an alignment filtering based on the

ROC table leads to an improvement of the overall quality of

mappings. This has a positive effect on follow-up analyses, as

we demonstrated in a SNP calling application. In our experi-

ment, the filtering allowed a correction of up to 72% of falsely

called SNPs with few to zero losses of true positives. This em-

phasizes the strength of the ROC-based filter because consider-

ing reads that have been mapped accurately improves on the

accuracy of SNP calling. ARDEN helps to identify these reads,
e.g. by excluding reads with alignments to distinctively different
positions on the artificial and reference genome. Naturally, these

alignments are prone to errors, and thus disregarding them
avoids incorrect SNP calls. However, Bowtie2 did not benefit
as strongly from the filtering, as it maps reads with more mis-

matches and gaps compared with the other methods. These
alignments are more likely to be incorrect and are thus more
likely not to pass the quality threshold in SNP calling with sam-

tools. Therefore, alignments excluded by ARDEN would have
been excluded anyway by the quality filtering for SNP calling by
samtools. That is why we see a much smaller effect of ARDEN

for Bowtie2 than for other mappers. Note that although sam-
tools provides a robust statistical framework for SNP calling, it

does not perform realignments or de novo assemblies to deal with
complex regions of the genome. For tools supporting these
features, such as GATK (DePristo et al., 2011), the described

filtering effect might be less effective.
One drawback of ARDEN is the runtime and the necessary

post-processing of SAM files. Depending on the mapper and its

characteristics, the run time may remain unchanged or increases
at maximum by a factor of two, as all reads are mapped to both
references. To overcome the problem of increased runtimes, it is

possible to approximate the results for the whole dataset by
sampling a representative number of reads from the complete
set. This smaller set can be used to perform an initial mapping

and the following analysis. Our experiments show that the results
from the complete dataset and the sampled dataset are similar
(see the Supplementary Material). Thus, for most applications,

the computational effort can be safely reduced by using a repre-
sentative sample.
Special care has to be taken when choosing the distance for

substitutions for the creation of the artificial reference genome.
As in general a substitution introduces a mismatch in the align-

ment, it has to be ensured that a read mapper can handle the
increased error level. Thereby, the optimal distance for substitu-
tions in the artificial reference does depend on the read length

and the error threshold for the actual application. Applications
that come with high error levels and thus need highly error tol-
erant read mappers can profit strongly from the approach,

whereas ARDEN is of limited benefit for settings with short
and error-free reads as well as small, non-redundant reference
genomes where alignments are only rarely incorrect.

5 CONCLUSION

Previous approaches to benchmark read mappers either rely on
the true sensitivity for a read mapper based on the mathematical
formulation of the read mapping problem or are based on read

simulations. However, we showed that only considering the sen-
sitivity in read mapping can lead to error-dominated alignments,
whereas read simulations are prone to introduce a large simula-

tion bias to the analysis. Thus, it remains doubtful whether read
simulation results can be transferred to a specific real dataset.
ARDEN overcomes this problem by introducing a decoy refer-

ence as an artificial ground truth to obtain an error measurement
based on the distinct alignments to this decoy genome. This way,
ARDEN can concurrently be run to compute and control the

rate of incorrect alignments for a specific dataset of interest.
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The error measurement allows the dataset specific optimization
of mapping parameters and makes read mappers comparable by
an AUC metric. Moreover, ARDEN provides the possibility to
determine a user-specified cut-off to improve the accuracy of

alignments for a specific read mapper based on sensitivity, spe-
cificity and the corresponding AUC. More accurate mappings
improve the quality of follow-up applications, as we demon-

strated in an SNP discovery experiment where using ARDEN
decreased the number of false positives by up to 72% while
maintaining the majority of true positives.
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