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ABSTRACT

Motivation: Data analysis for metabolomics suffers from uncertainty

because of the noisy measurement technology and the small sample

size of experiments. Noise and the small sample size lead to a high

probability of false findings. Further, individual compounds have nat-

ural variation between samples, which in many cases renders them

unreliable as biomarkers. However, the levels of similar compounds

are typically highly correlated, which is a phenomenon that we model

in this work.

Results: We propose a hierarchical Bayesian model for inferring dif-

ferences between groups of samples more accurately in metabolomic

studies, where the observed compounds are collinear. We discover

that the method decreases the error of weak and non-existent covari-

ate effects, and thereby reduces false-positive findings. To achieve

this, the method makes use of the mass spectral peak data by clus-

tering similar peaks into latent compounds, and by further clustering

latent compounds into groups that respond in a coherent way to the

experimental covariates. We demonstrate the method with three simu-

lated studies and validate it with a metabolomic benchmark dataset.

Availability and implementation: An implementation in R is available

at http://research.ics.aalto.fi/mi/software/peakANOVA/.

Contact: samuel.kaski@aalto.fi.

1 INTRODUCTION

Changes in metabolite concentrations provide insights into dis-

turbances in biological processes that take place in organisms.

Changes in the metabolome are informative, especially about

nutrition and metabolism (Ore�sič, 2009), and about the

immune system (Kau et al., 2011). Chromatography-coupled

mass spectrometry (Plumb et al., 2004) is the standard measure-

ment technology for the untargeted quantification of metabolites

and other small molecules.
The spectral data from the measurement device are known to

be noisy with various sources of uncertainty (Katajamaa and

Ore�sič, 2007), starting from sample preparation and compound

ionization, and ending at peak identification, annotation and

summarization. However, the spectra also have structure

(Steuer, 2006; Rogers et al., 2009) that is useful for the inference

of differences between groups of samples.
Because of the high level of noise, excessive false discovery has

been highlighted among the main risks in the analysis of

metabolomic data (Broadhurst and Kell, 2006). On the other

hand, weak changes are likely to go undetected from observa-

tions of individual compounds (Saccenti et al., 2014).
Singular value decomposition (SVD)-based dimensionality re-

duction techniques, such as analysis of variance (ANOVA)-

simultaneous component analysis (ASCA; Smilde et al., 2005),

have been proposed to identifying interpretable associations be-

tween experimental covariates and multivariate changes in the

metabolome. However, as the decomposition in ASCA operates

on the covariate effects of the standard ANOVA model, the

method does not improve the quantification of the covariate

effects compared with the standard model. Further, SVD has

been applied to interpreting changes in the variance of the sam-

ples in association to the covariates (Jansen et al., 2012), again,

building on the standard ANOVA model.
Outside metabolomics, structured ANOVA-type models have

been proposed to improve the inference of covariate effects: a

Gaussian process-based ANOVA model for spatial data

(Kaufman and Sain, 2010) enables the inference of smooth cov-

ariate effects for nearby data points, and a dependent Dirichlet

process mixture of ANOVA models (De Iorio et al., 2004) can

identify substructure in a designed experiment with low-

dimensional observations of the outcome.

For metabolomics, a Bayesian clustering model (Suvitaival

et al., 2014) has recently been proposed for improving the

inference of covariate effects through the integration of multiple

same-source spectral peaks. Individual spectral peaks have been

argued to be unreliable for the statistical analysis because of their

high level of noise. Although the mass spectrometer produces

multiple peaks that arise from one compound, there so far are

only few methods to integrate these additional observations:

Kuhl et al. (2012), Rogers et al. (2009) and Tikunov et al.

(2012) used multiple peaks to enhance peak annotation, address-

ing a major source of error in the analysis of metabolomic data.

The recently proposed multipeak model for the inference of cov-

ariate effects (Suvitaival et al., 2014) is, to our knowledge, the

first systematic approach for using additional peaks in the stat-

istical analysis of intensity data.

In this work, we aim at reducing the risk of false associations

between experimental covariates and the observed metabolome.

We propose a structured ANOVA-type model that benefits both

from the multiple spectral peaks produced by the mass spectrom-

eter and from the collinear structure (Huopaniemi et al., 2009;

Steuer, 2006) of metabolomic data. Because of the collinearity

that arises from the compounds’ concurrent involvement in

biological processes, it is reasonable to model individual

compounds as members of coherent groups of compounds.*To whom correspondence should be addressed.
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We achieve this by introducing another level of hierarchy to the

peak-clustering model (Suvitaival et al., 2014). We show that by

not only clustering spectral peaks into latent compounds but in

addition by clustering these compounds into coherently respond-

ing latent groups, we can detect weak covariate effects in the data

more accurately.

2 METHODS

The method introduced in this work extends the peak-clustering

model (Suvitaival et al., 2014) to reduce the risk of false discoveries in

highly collinear metabolomic data. We address the problem of small

sample size and low signal-to-noise ratio by introducing stronger struc-

ture to the model. This enables us to detect weak covariate effects that

are present in multiple compounds.

In this section, we describe the proposed hierarchical Bayesian two-

level model. In the equations that follow, we use the indices i, j, m, k and l

to denote the samples, the variables, the first-level clusters, the second-

level clusters and the covariate level of the sample, respectively, as

i=1; . . . ;N ðsamples; i:e: experimental runsÞ;

j=1; . . . ;P ðvariables; i:e:peaksÞ;

m=1; . . . ;M ðfirst-level clusters; i:e: compoundsÞ;

k=1; . . . ;K ðsecond-level clusters; i:e: groups of compoundsÞ;

l=1; . . . ;La ðcovariate level; i:e: sample groupÞ

where N, P, M, K and La are their respective total numbers.

The observed data are the spectral peaks, indexed by j, following their

identification in the samples, indexed by i. However, the association be-

tween the peaks and the compounds, indexed by m, is unknown as is the

total number, M, and the identity of the compounds.

The data on the peaks are organized into two arrays: first, the peak

height information is arranged into a P�by�N matrix X 2 R
P�N, which

after the log -transformation and centering based on the control group,

l=1, is real valued with missing values where a peak was not detected.

Secondly, the peaks’ pairwise similarity information is arranged into the

array Q 2 ½0; 1�N�P�P. We choose to measure the similarity between two

spectral peaks by computing the Pearson correlation between the peaks

over a retention time window. This leads to a measure, where peaks j and

j0, if co-occurring within the retention time window in the sample i, have a

positive similarity value qi;j;j0 . Similarity values for pairs with a

missing peak or a negative correlation coefficient are set to zero and

thus are effectively considered as missing values in the model. The peak

similarity data enable the model to cluster together adduct and

isotope peaks, which have a different mass-to-charge ratio but which

appear at a coinciding retention time.

2.1 Peak clustering based on chromatographic similarity

We follow the approach detailed by Suvitaival et al. (2014) in the

peak-clustering stage, presented briefly here for completeness.

In the following equations for inferring the P�by�M clustering

matrix V, we use the variable "j;j0 � vj; �v
T
j0;� 2 f0; 1g to indicate whether

the peaks j and j0 are in the same or different clusters (1 or 0, respectively).

In the notation, the subset operator ‘�’ indicates that the entire

dimension of the array is included—here, all the M clusters (columns)

of the clustering matrix V.

2.1.1 Peak similarity A pair of peaks from one compound can

only occur close by in retention time, whereas a pair of peaks from

two different compounds does not have such restriction set by the

measurement device. This means that the observed similarity between

same-compound peaks is expected to be higher than between

different-compound peaks. Thus, the similarity value qi;j;j0 between

the peaks j and j0 in a sample i is assumed to have been generated

by one of the two components, ‘in’ or ‘out’, both of which are a spike-

and-slab mixture (Mitchell and Beauchamp, 1988) with a beta

distribution as the ‘slab’. These two components are parametrized as

p qi;j;j0 j"j;j0=1
� �

= 1� pin0
� �

Beta qi;j;j0 jain; bin
� �

+pin0 � qi;j;j0
� � ð1Þ

for a pair of peaks in the same cluster and

p qi;j;j0 j"j;j0=0
� �

= 1� pout0

� �
Beta qi;j;j0 jaout; bout

� �
+pout0 � qi;j;j0

� � ð2Þ

for a pair of peaks in different clusters. Both of the beta

distributions have parameters a and b, which are set in the way that

the same-cluster and different-cluster components favor large and small

values of similarity qi;j;j0 , respectively.

In Equations (1) and (2), missing values are modeled through the

‘spike’ �, which is a Dirac delta function that introduces a point mass

at value zero of its argument. Many missing values are expected, as

peaks from two different compounds rarely appear at the same time.

The prior probability of a missing value is determined by p0, which

receives a higher value in the different-compound component than in

the same-compound component. Different retention time, thus, is

strong evidence for assigning the peaks into different clusters.

The likelihood,

L QjVð Þ=
YN
i=1

YP�1
j=1

YP
j0=j+1

p qi;j;j0 j"j;j0=1
� �"j;j0
� p qi;j;j0 j"i;j;j0=0

� �1�"j;j0
ð3Þ

for the data, Q, is then computed through a product over all the samples,

all the pairs of peaks, and the same-compound and different-compound

terms.

2.1.2 Unknown compounds To accommodate the unknown set

of compounds in the data, we set a Dirichlet process prior (Escobar,

1994) for the peak clusters. In this way, we not only can infer the assign-

ments of the peaks into clusters representing the compounds but we

can also infer the number of compounds, M, in the data, leading to a

P�by�M clustering matrix V.

In the Dirichlet process for the cluster assignments of the

peaks, the probability of the assignment of a peak j into an existing

cluster m,

p vj;m=1jQ;V�j;�
� �

/ smL QjV�j; �; vj;m=1
� �

ð4Þ

is weighted by the number of other peaks in the cluster, sm � vT�j;mv�j;m.

The probability is not dependent on the previous assignment of the peak

j, which is left out both from the likelihood term and from the

count. This is expressed in the equation by the subset operator ‘–j’

that excludes the row j from the clustering matrix V. As an alternative

to the existing M clusters, a new cluster is created with the probability

p vj;M+1=1jQ;V
� �

/ �DPL QjV�j; �; vj;M+1=1
� �

ð5Þ

which is affected by the Dirichlet process concentration parameter �DP.

We infer the posterior distribution of the model via Gibbs

sampling. Following the sampling, we acquire a point estimate of

the distribution of the clustering as the least-squares clustering (Dahl,

2006) relative to the posterior mean clustering. The inferred

clustering, V, is then used as a preprocessor for the inference of

covariate effects, which is discussed next.
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2.2 Compound clustering for modeling compound

correlations

Following the preprocessing, described in Section 2.1, the matrix of

observed peak intensities, X 2 R
P�N, for the P peaks and the N samples

has been decomposed into M clusters through the P-by-M clustering

matrix V. Then, each sample i,

x�;i �N Vxlat�;i ;L
� �

ð6Þ

is represented by a column of the latent variable matrix Xlat 2 R
M�N.

Again, the subset operator ‘�’ indicates that the entire dimension of the

array is included, for instance, not only the single peak j of the observa-

tions matrix X or the single clusterm of the latent variable Xlat. Following

from Equation (6), the peak intensity data are assumed to have arisen

from the clusters representing the M unknown compounds through a

generative process with additive noise L. Further, we assume that the

noise is independent by constraining the P�by�P noise matrix L into a

diagonal form with entries

�2j �Scale� Inv��2 n0; �
2
0

� �
ð7Þ

that follow the scaled inverse-�2 distribution with the scale �20 and n0
prior observations.

In this work, we add another level of hierarchy to the model by assum-

ing that the compounds form groups that respond to the experimental

covariates in a coherent manner (Fig. 1). We deviate from the formula-

tion of the earlier work and do not let the covariate effects, �, operate

directly on the latent variable, Xlat, which represents the coherent vari-

ation within a cluster of peaks. Instead, we introduce a higher-level latent

variable, Z 2 R
K�N, to represent the coherent variation within a group of

compounds. The compound-specific latent variable,

xlat�;i �N Wz�;i;  
2I

� �
ð8Þ

is then generated from theK higher-level clusters, represented by the higher-

level latent variable, Z, through the M�by�K clustering matrix W.

The residual variation in the levels of a compound, which is not explained

by its group, is controlled by the higher-level variance parameter,  2 2 R+,

which scales the M�by�M identity matrix I. In this way, the model can

refine the information in the noisy observations first at the compound level

and then at the compound group level. To infer the compound clustering, we

set a uniform multinomial prior for the K higher-level clusters.

With the second level of hierarchy introduced to the model, the cov-

ariate effects, �, no longer operate directly on the compound-specific

latent variable, Xlat. Instead, we specify the effects to contribute to the

higher-level latent variable, Z. In a one-way experimental design, this

means that the higher-level latent variable for the sample i,

z�;i�N ��;ai ; I
� �

ð9Þ

is generated from the K covariate effects, ��;ai , that correspond to the

covariate level of the sample i, selected by the categorical indicator, ai.

This formulation encourages coherently responding compounds to be

clustered together in the model.

All the covariate effects, � 2 R
K�A, for the K higher-level clusters and

A levels of the covariate, a 2 f1; . . . ;AgN, are independent and identically

distributed,

� �;l �
� � �;l
� �

; l=1

N 0; Ið Þ; l=2; . . . ;La

(
ð10Þ

except for the baseline level, l=1, which represents the control group and

for which the effect is by definition fixed to zero.

In a two-way experimental design, there is a second covariate,

b 2 f1; . . . ;BgN, with B distinct levels and the corresponding effects,

� 2 R
K�B, analogous to a, A and �, respectively. Additionally, in a

two-way design, there is an interaction effect, ��ð Þ 2 R
K�A�B, between

the two covariates. Together, these three covariate effects influence the

higher-level latent variable,

z�;i�N ��;ai+��;bi+ ��ð Þ�;ai;bi ; I
� �

ð11Þ

additively. Again, the covariate effects are independent and identically

distributed,

��;c; ��;d; ��ð Þ�;c;d �N 0; Ið Þ ð12Þ

at all the levels, c 2 f2; . . . ;Ag and d 2 f2; . . . ;Bg, of the covariates a and

b, respectively, except for the baseline levels, c=1 or d=1, where the

covariate effects are by definition fixed to zero.

2.3 Model selection

The lower-level clustering of peaks into compounds follows the Dirichlet

process (Escobar, 1994), leading to a non-parametric determination of the

complexity for the lower-level latent variable.

At the higher clustering level, the model is subject to complexity selec-

tion with respect to the number of higher-level clusters, K, and the higher-

level variance parameter,  2. For these parameters, we make the selection

jointly based on cross-validation.

The variance parameters,  2 and �2, control the flow of information

from the observed data, X, up the hierarchy of the model toward the

inferred covariate effects, �. Small values of the variance parameters

allow the information to more readily propagate toward the covariate

effects, enabling the detection of weaker covariate effects, while large

values protect from excessive false-positive effects.

For data with a simple experimental design, the number of higher-level

clusters, K, can remain low while still capturing the responses to the

covariates. In a more complex experimental design with multiple covari-

ates and their levels, the number of higher-level clusters may need to be

larger to capture the richness of the association between the observed

data and the experimental covariates. However, the number of higher-

level clusters, K, is most crucially restricted by the availability of

a) One-level model b) Two-level model

N
x

σV

a

xlat

α

N
x

σV

z

a

xlat

ψ
W

α

Fig. 1. Plate diagrams of the one-level peak-clustering model (a)

(Suvitaival et al., 2014) and the two-level compound-clustering model

(b) (proposed in this work). The two-level model has a second level of

hierarchy for modeling coherently responding groups of compounds. The

shaded variables are observed: the intensity data X, the covariate vector a

and the peak-clustering matrix V, which is acquired from the peak-clus-

tering stage. White variables are inferred: the compound-specific latent

variable Xlat, the peak-specific variance �2, the compound-clustering W,

the compound group-specific latent variable z and the covariate effects �.

The compound-level variance parameter  2 is selected via cross-

validation
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replicates: the required number of samples increases exponentially with

the increasing complexity of the experimental design.

3 RESULTS

Next, we show that we can benefit from the inherent structure of

the mass spectral data in two ways: first, we can make the infer-

ence of compound-specific covariate effects more accurate by

using multiple peaks from the compound. Second, in the regime

of low signal-to-noise ratio, we can further improve the accuracy

by imposing stronger structure on the model, and infer the cov-

ariate effects on groups of coherently responding compounds.
We present experimental results on simulated data and meta-

bolomic benchmark data (Franceschi et al., 2012) with known

changes in the concentrations of chemical compounds.
In the experiments, we compare three approaches for the in-

ference of covariate effects:

0. Single peak. The standard ANOVA model, where the

covariate effects are computed as the average difference of

the intensity of a single peak between the sample groups.

1. 1-level. A Bayesian approach for inferring the covariate

effects using data from multiple spectral peaks (Suvitaival
et al., 2014).

2. 2-level. The Bayesian approach proposed in this work for
inferring the covariate effects through the two-level cluster-

ing of peaks and coherently responding compounds.

We evaluate each approach by its accuracy at inferring the
covariate effects. The accuracy is measured in terms of the

mean squared error (MSE).

3.1 Simulated data

We demonstrate the new approach through simulated experi-

ments in regimes, which imitate real metabolomic experiments

by their sample size, number of peaks associated with a compound

and the general level of noise.We present three experiments where
we studied three different aspects of the inference task: (i) the

presence of multiple unchanged compounds, (ii) the strength of

the change, and (iii) the number of coherently changing com-

pounds. These three experiments are detailed in their respective

subsections that follow next. The experiments are summarized in

Table 1.

3.1.1 Presence of multiple unchanged compounds In the first
simulated experiment, we studied the simultaneous inference of

multiple zero and non-zero covariate effects. We generated data

with seven similarly responding clusters of compounds, each

compound producing seven peaks.
When comparing the inferred covariate effects with the true

effects, the two peak-clustering models always had a lower error

compared with the single-peak approach (Table 2). Most import-

antly, the added structure of the two-level model prevented the

model from overfitting to the noisy data and improved the ac-

curacy at small and diminishing covariate effects, leading to a

decrease in false discoveries.

The number of the higher-level clusters, K, and the variance

parameter,  2, were selected jointly via stratified nested 5-fold

cross-validation. The procedure was repeated with five independ-

ent datasets.

3.1.2 Strength of the change In the second simulated experi-
ment, we studied how the signal-to-noise ratio of the true cov-

ariate effect influences the accuracy of inference. We generated

Table 1. Design in the simulated experiments 1, 2 and 3 (columns in the table; Sections 3.1.1, 3.1.2 and 3.1.3, respectively)

Experiment 1 2 3

Number of samples (‘case’+ ‘control’), N 10+10 10+10 10+10

Number of observed variables per a lower-level cluster (peaks), P 7 2 2

Number of lower-level clusters per a higher-level cluster (compounds), M 7 7 1, 3, . . . , 19

Number of higher-level clusters (groups of similarly responding compounds), K 7 1 1

Covariate effects of the higher-level clusters, � �;2 ½+2;�1;+0:5; 0; 0; 0; 0� 0; 0:2; . . . ; 2:0 0.2

Validation range of the number higher-level clusters, K 1; . . . ; 7 - -

Validation range of the higher-level variance parameter,  2 0:05; 0:1; . . . ; 0:5 0:1; 0:2; . . . ; 0:5 0:1; 0:2; . . . ; 0:5

Table 2. The two-level model was more accurate at small effect sizes of

the covariate on simulated data

True

covariate

effect

RMSE Corrected P-value of difference

of 2-level

Single 1-level 2-level to Single to 1-level

0 1.16 0.53 0.51 1:1 � 10�190
��

2:9 � 10�2
�

+0.5 1.42 0.68 0.63 3:9 � 10�44
��

4:0 � 10�3
��

–1.0 1.03 0.56 0.58 1:7 � 10�27
��

4:4 � 10�1

+2.0 1.22 0.90 1.13 5:0 � 10�3
��

2:6 � 10�24
��

Note: The two-level and one-level models, and the single-peak approach (‘2-level’,

‘1-level’ and ‘Single’, respectively), were compared by their MSE between the

inferred and the true covariate effect. The smallest MSE for each true effect is

highlighted in bold. The significance of the difference between the two-level

model and the two comparison approaches was tested with the two-sided paired

t-test with the Benjamini–Hochberg control (Benjamini and Hochberg, 1995) for the

false discovery rate. The result is from the first simulated experiment (Section 3.1.1).

*/** Significant difference at confidence level 95/99%.
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independent datasets with seven compounds and progressively

increased the generated covariate effect.

The covariate effect was inferred the most accurately by the

two-level model throughout the experiment (Fig. 2a). The accur-

acy of the model-based approaches decreased slightly when the

strength of the true effect increased. This followed from the prior

assumption that prevents the model from overfitting to unexpect-

edly strong covariate effects. The prior for the covariate effects

places most of the probability mass around zero and thus effect-

ively sets a bias for the inferred effects toward zero (Fig. 2b). The

data-based single-peak approach does not have this bias, but its

confidence intervals were considerably wider, which lead to a

larger error in the inference task. The effects in any real meta-

bolomic dataset most probably are in the weak regime, where the

bias is overshadowed by the noise in the data.

3.1.3 Number of coherently changing compounds In the third

simulated experiment, we studied how the number of coherently

responding compounds influences the accuracy of the two-level

model. We generated data with a weak covariate effect and grad-

ually increased the number of compounds.
We discovered that the accuracy of the two-level model

increased as the number of coherently responding compounds

increased (Fig. 3). The experiment empirically confirmed the ex-

pected connection between the two Bayesian models: when there

was only one responding compound, the two-level model ef-

fectively reduced to the one-level model in terms of the error.

As expected, the performance of the single-peak approach and

the one-level model remained constant throughout the

experiment.

3.2 Benchmark data with known changes in

concentrations

Next, we applied the method on real ultra performance liquid

chromatography-mass spectrometry data (Franceschi et al.,

2012). The recently published benchmark dataset of apple sam-

ples includes a set of annotated spike-in compounds with a

known increase in the concentration. The samples have been

measured in both the positive and negative ion modes.
We started with the raw spectral data [The raw spike-in

dataset by Franceschi et al. (2012) is available online at http://

cri.fmach.eu/Research/Computational-Biology/Biostatistics-and-

Data-Management/download/data/Spiked-Apple-Data (June 11,

2013, date last accessed)] to acquire the shapes of the peaks in

addition to their heights. The data were preprocessed using

MZmine 2 (Pluskal et al., 2010) with default settings.
We evaluated the approaches by the MSE between the inferred

and the true covariate effects. If a cluster contained multiple

annotated peaks, the error was computed for each of the anno-

tated peaks. Clusters with no annotated peaks were assumed to

have a 0% true effect. The effect of the single-peak approach was

computed as the average change of the strongest peak of the

cluster.

The number of higher-level clusters and the variance param-

eter were selected jointly through a stratified nested 5-fold

cross-validation from the sets K 2 f1; 2; . . . ; 10g and

 2 2 f0:25; 0:5; . . . ; 1:5g, respectively. Model selection and valid-

ation was done independently for the positive and negative ion

mode datasets.
The analyses for the data from both the ion modes lead to an

outcome, where the Bayesian models were more accurate at
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Fig. 2. The peak-clustering and the compound-clustering models (‘1-level’ and ‘2-level’) reduced uncertainty around the covariate effect compared with

the single-peak approach. The hierarchical models have a bias toward zero, which follows from the model assumption incorporated to the prior of the

covariate effect. The prior-induced bias lead to a slight increase in the error of the peak-clustering models as the true effect increased but acted to prevent

the models from overfitting and thus from false findings at normal effect sizes. (a) Pairwise difference in the error between the single-peak approach and

each of the two clustering models shown as a function of the magnitude of the true effect. (b) Inferred effect as a function of the magnitude of the true

effect. Result from the second simulated experiment (Section 3.1.2), where the true covariate effect was varied from 0 to 2
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inferring the covariate effects than the single-peak approach by a

significant margin (Table 3). The two-level model improved the

accuracy compared with the one-level model at weak effect sizes.

It is worth noting that the results were strongly in line with the

simulated experiments (Section 3.1.1).

4 CONCLUSION

Additional spectral peaks produced by the mass spectrometer as

a result of the ionization process have been shown to be useful

for the inference of covariate effects when multiple peaks can be

confidently associated with one compound. However, even with

multiple peaks supporting the inference, small covariate effects

may be hidden under the between-sample variation. We ad-

dressed this problem by introducing stronger structure to the

model of the covariate effects, thereby regularising the covariate

effects and making them less dependent on the variation of in-

dividual compounds.
We achieved an improvement in the accuracy of the inferred

covariate effects by assuming a structure of coherently respond-

ing compounds in the data. We proposed a structured model for

inferring covariate effects for groups of compounds through two

layers of probabilistic clustering. Metabolomic data are known

to have collinear structure for similar compounds. This phenom-

enon is argued to arise from the biological processes that the

compounds are involved in. However, the method proposed in

this work does not restrict the groups of compounds by their

chemical or biological similarity but infers the groups only

based on their responses to the covariates.
In the experiments, we showed that the two-level model pro-

posed in this work decreases the error of inferred covariate ef-

fects in a typical setting, where the true effects are small or

diminishing. Through three simulated experiments, testing the

approaches with multiple zero-effect clusters, varying effect size

and varying number of similarly responding compounds, we

demonstrated that the two-level model is more accurate at infer-

ring weak covariate effects from noisy multipeak data when

compared with the two comparison approaches. The outcome

was repeated on a metabolomic benchmark dataset with known

changes in the compound concentrations. Following the reduc-

tion in the error for the weak covariate effects, the two-level

model is argued to reduce false findings.
To further improve the consistency of the inferred covariate

effects, we suggest the following avenues of research: (i) prior

knowledge about the similarity of the compounds can be incor-

porated into the prior of the higher-level clustering, either in

terms of the biological processes in which the compounds are

involved or in terms of the chemical similarity of the compounds.

(ii) The lower-level clustering can be improved to detect even the

weakest peaks by incorporating prior knowledge about the rela-

tive positions of the peaks associated with one compound. This is

possible thanks to the fact that the expected positions of many

adduct and isotope peaks can be calculated based on the ioniza-

tion process and the chemical formula of the compound, respect-

ively. (iii) The covariate effects in the isotope peaks are argued to

be highly preserved because the isotope peaks do not arise from

variation in the ionization process. Additionally, the expected

relative heights of these peaks can be calculated if the identity
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Fig. 3. The error in the covariate effect inferred by the compound-clus-

tering model (‘2-level’) decreased when more coherently responding com-

pounds were observed. The accuracy of the peak-clustering model and

the data-based single-peak approach (‘1-level’ and ‘Single peak’, respect-

ively) remained constant. Root mean squared error (RMSE) is shown as

a function of the number of compounds (i.e. lower-level clusters) per

higher-level cluster. Result from the third simulated experiment

(Section 3.1.3), where a weak covariate effect of 0.2 was generated and

the number of compounds was gradually increased from 1 to 19

Table 3. The two-level model is most accurate at small levels of covariate

effects and both the Bayesian models are more accurate than the single-

peak approach on the metabolomic benchmark data (Section 3.2)

True

covariate

effect (%)

RMSE Corrected P-value of

difference of 2-level

Single 1-level 2-level to Single to 1-level

(a) Positive ion mode

+0 0.42 0.31 0.09 5"�� 5"��

+20 0.41 0.22 0.19 3:4� 10�34
��

2:1� 10�13
��

+40 0.44 0.28 0.33 3:8� 10�11
��

2:7� 10�4
��

+100 1.06 0.91 0.92 1:3� 10�2
�

1:3� 10�5
��

(b) Negative ion mode

+0 0.42 0.31 0.11 5"�� 5"��

+20 0.54 0.26 0.20 2:5� 10
�47��

4:4� 10�43
��

+40 0.45 0.34 0.35 6:1� 10�30
��

1:1� 10�8
��

+100 0.82 0.74 0.88 2:5� 10�1 4:2� 10�83
��

Note: The two-level and one-level models, and the single-peak approach (‘2-level’,

‘1-level’ and ‘Single’, respectively), are compared by their MSE between the

inferred and the true covariate effect. The smallest MSE for each true effect is

highlighted in bold. The significance of the difference between the two-level

model and the two comparison approaches is tested with the two-sided paired

t-test with the Benjamini–Hochberg correction (Benjamini and Hochberg, 1995)

for the P-values. A near-zero value below the machine accuracy is denoted by ‘"’.

*/** Significant difference at confidence level 95/99%.
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of the compound is known. Incorporating these properties into

the model may be even more useful for the inference of covariate

effects than the two aforementioned points.
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