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ABSTRACT

Motivation: RNA-seq is replacing microarrays as the primary tool

for gene expression studies. Many RNA-seq studies have used insuf-

ficient biological replicates, resulting in low statistical power and

inefficient use of sequencing resources.

Results: We show the explicit trade-off between more biological rep-

licates and deeper sequencing in increasing power to detect differen-

tially expressed (DE) genes. In the human cell line MCF7, adding more

sequencing depth after 10 M reads gives diminishing returns on power

to detect DE genes, whereas adding biological replicates improves

power significantly regardless of sequencing depth. We also propose

a cost-effectiveness metric for guiding the design of large-scale RNA-

seq DE studies. Our analysis showed that sequencing less reads and

performing more biological replication is an effective strategy to in-

crease power and accuracy in large-scale differential expression RNA-

seq studies, and provided new insights into efficient experiment

design of RNA-seq studies.
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1 INTRODUCTION

RNA-seq has been widely used for differential expression studies
(Oshlack et al., 2010; Ozsolak andMilos, 2011). Despite the large

number of studies performed for transcriptome comparisons,

little empirical optimization has been made for RNA-seq-based

experimental designs. Critical issues include biological replication

and sequencing depth (Auer and Doerge, 2010), and inefficient
designs of RNA-seq studies can lead to suboptimal power and

waste of resources, especially in large-scale treatment-control

studies.
Although for most RNA-seq studies high technical reproduci-

bility means that technical replicates are not necessary (Marioni

et al., 2008), this fact does not ameliorate the need for biological

replicates in making statistical inferences (Hansen et al., 2011).
Yet frequently large-scale RNA-seq studies with extensive

differential expression analyses have used limited biological rep-

lication, instead favoring a strategy of low level biological repli-

cation with deep sequencing (e.g. Brawand et al., 2011; Graveley

et al., 2011; Hah et al., 2011).

In addition to replication number, the choice for sequencing

depth is often unguided. It is clear that higher sequencing depth

generates more informational reads, which increases the statis-

tical power to detect differentially expressed (DE) genes

(Tarazona et al., 2011). However, high-sequencing depth comes

with cost, and resources will be wasted in scenarios where more

sequencing brings diminishing returns as a saturation level is

approached.
To achieve maximum power to detect DE genes within a

budget, a compromise must be made between sequencing

depth and biological replication. There are a few previous studies

on experimental design issues for RNA-seq studies (Auer and

Doerge, 2010; Fang and Cui, 2011; Tarazona et al., 2011;

Busby et al., 2013), but they do not empirically address the

specific question raised here of the trade-offs in power between

replication, sequencing depth and cost: should we sequence more

samples with low depth, or should we sequence fewer samples

with high depth?

2 METHODS

MCF7 cells (from American Type Cell Culture) were seeded in complete

medium in 2 plates of 6 cm each until reaching 40% confluence, followed

by incubation in medium with 10% charcoal-stripped serum for 3 days.

The cells were then treated with either 10nM 17b-estradiol (E2) or con-
trol for 24h. Qiagen RNeasy columns were used to extract messenger

RNAs. RNA integrity was measured by Bioanalyzer (minimum RNA

integrity score 9.0).

RNA-seq libraries were constructed using the Illumina TruSeq RNA

sample preparation protocol in the Institute for Genomics and Systems

Biology Sequencing Center. Libraries were multiplexed with Illumina

barcodes, and six samples were sequenced per lane by Illumina HiSeq

2000. A total of 50-bp single end reads were generated. Seven biological

replicates of both control and E2-treated MCF7 cells were sequenced.

More than 30M reads were produced for each library.

All sequences were aligned to the hg18 human genome using Tophat

(Trapnell et al., 2012). We randomly downsampled the RNA-seq reads of

each sample to generate datasets of 2.5, 5, 10, 15, 20, 25 and 30M reads

using Picard Version 1.61 (Wysoker et al., 2012). In all subsequent ana-

lysis, the total number of reads refers to total number of aligned reads.

Using these downsampled sequence reads, we generated raw counts of

number of tags on each gene by using coverageBED program in the

BEDTools package Version 2.16.2 (Quinlan and Hall, 2010).*To whom correspondence should be addressed.
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The edgeR (Robinson et al., 2010) package (Version 2.6.9) was used to

detect significantly DE genes between control and E2-treated samples.

Upper-quantile normalization was performed to normalize tag counts

among different samples. Tag-wise dispersion of a negative binomial dis-

tribution for each gene was estimated and used in the exactTest function

in edger package to identify DE genes. Genes with55 reads are removed

from calculation. In the simulation, under each sequencing depth, treat-

ment samples are randomly picked (without replacement) to compare

with the same number of control samples, and the numbers of DE

genes were calculated using edgeR, with a false discovery rate (FDR)

cutoff of 0.05 (Benjamini & Hochberg adjusted). Each sequencing

depth and biological replication was simulated 100 times.

For the power calculation and generation of Receiver-Operating

Characteristic (ROC) curves, a list of 3292 genes was used as ‘true posi-

tives’ for E2-regulated genes. The list consisted of DE genes detected by

edgeR, using seven biological replicates, with a sequencing depth of 30 M

reads per replicate, and an FDR cutoff of 0.001. Using this gene list, we

computed true positive rates and true negative rates for each replication

level and each sequencing depth on varying FDR rates, then computed

power and constructed ROC curves based on these rates.

The coefficient of variation (CV) for the logFC was computed using

the top 100 DE genes (defined as those with the lowest FDR in edgeR

using seven replicates, 30M reads/replicate). Estimated logFC computed

at each level of replication and sequencing depth was simulated 100 times

as mentioned earlier in the text, and CVs were computed. The logCPM

(logarithm of counts per million reads) was used here as a proxy for the

estimation accuracy of expression level instead of FPKM because genes

with similar tag counts will have similar level of randomness in expression

estimation. The CV of logCPM was calculated similar to CV of logFC.

The high expression level genes were defined as genes with logCPM rank

1–100; medium expression level genes were defined as genes with logCPM

rank 2001–2100; and low expression level genes were defined as genes

with logCPM rank 12001–12100.

When calculating cost per DE gene, we made the following assump-

tions: Illumina sequencing cost per lane is $1200 (including reagents,

personnel, equipment depreciation and contracts), for each lane 150M

reads can be produced and maximum multiplexing for each lane is 24�.

The fixed cost for each sample is the library preparation cost, which is

assumed to be $250 (reagents and personnel).

3 RESULTS

3.1 Trade-off between sequencing depth and

biological replication

We calculated the number of significantly DE genes between

E2-treated MCF7 cells and control-treated MCF7 cells under

various levels of biological replication and sequencing depth

(Fig. 1a; see Section 2). The number of DE genes increases

with both increased number of biological replicates and increased

number of reads in each sample. However, the increase in

number of DE genes with sequencing depth has diminishing re-

turns after 10M reads. For example, at a sequencing depth of

10M reads, using two biological replicates for a total of 20M

combined reads, the average number of DE genes identified was

2011. When we used 15M reads and two biological replicates for

a total of 30M combined reads, the number is 2139, a 6% in-

crease for a 50% increase in reads. If instead we applied an

additional 10M reads to another biological replicate (three bio-

logical replicates for a total of 30M combined reads), we ob-

tained an average of 2709 DE genes, a 35% increase. Even when

we tripled the reads for the two biological replicates to 30M each

(60M combined total), we found an average of 2522 DE genes,

an increase of only 27%. Similar results were observed when we

used different significance cutoffs or using different software

package DESeq (Anders and Huber, 2010) (Supplementary

Fig. S1).

Moreover, as one might expect based on most other biological

measurements (Sokal and Rohlf, 1995), substantial increase in

power through replication occurs regardless of sequencing depth.

At 30M depth, two replicates give 2553 DE genes, and three

replicates give 3447 DE genes, a 35% increase. If samples are

available, adding more biological replicates almost always

increases power significantly. Adding biological replicates has

diminishing returns only when the number of replications is

high. Increase from two biological replicates to three biological

replicates at 10M depth yielded a 34.7% increase in number of

DE genes, but increase from six replicates to seven replicates still

added 26.3% more DE genes at this sequencing depth (Fig. 1a).

When we split genes into high, medium and low expressed gene

sets and plotted the relationship between DE genes, sequencing

depth and replication level separately, we observed that biolo-

gical replicates increase DE genes for genes of all expression

levels as expected, but that replication was also more effective

than adding sequencing depth for all expression levels

(Supplementary Fig. S3).

Concordant with the total number of DE genes, statistical

power also increased as more sequence or biological replicates

were added (Fig. 1b). Similar to the trends in total numbers of

DE genes, we observed diminishing returns on power after 10M

reads/sample. For example, with two replicates, 10M reads/
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Fig. 1. (a) Increase in biological replication significantly increases the

number of DE genes identified. Numbers of sequencing reads have a

diminishing return after 10M reads. Line thickness indicates depth of

replication, with 2 replicates the darkest and 7 replicates the lightest.

The lines are smoothed averages for each replication level, with the

shaded regions corresponding to the 95% confidence intervals. (b)

Power of detecting DE genes increases with both sequencing depth

and biological replication. Similar to the trends in (a), increases in the

power showed diminishing returns after 10M reads. (c) ROC curves for

three biological replicates. Sequencing deeper than 10M reads did not

significantly improve statistical power and precision for detecting DE

genes. (d) The CV of logFC for the top 100 DE genes. The CV of the

logFC estimates decreased significantly as we added more biological rep-

licates, whereas adding sequencing depth after 10M reads had much less

effect
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sample (20M reads combined), we calculated a power of 0.46.

When we tripled the number of reads to 30M reads/sample

(60M reads combined), we observed a power of 0.55, only a

19.6% increase. In contrast, if we added another biological rep-

licate at 10M reads (30M reads combined), we reached a power

of 0.65, a 41.3% increase. When we split the genes into high,

medium and low expressers and plotted the relationship between

power, sequencing depth and replication (Supplementary

Fig. S4), similar trends were observed: replication added signifi-

cant power to detect DE genes regardless of expression and was

more effective than adding sequencing depth. If this strategy is

adopted, one possible concern is that with lower sequencing

depth, more genes will be dropped from the DE calculation, as

most software packages remove genes with55 reads. However,

in our dataset as long as number of reads exceeded 10M, redu-

cing sequencing depth had small effects on the number of genes

that were removed. (Supplementary Fig. S5).
To look further into the false-positive rates and false-negative

rates under these conditions, we constructed ROC curves for all

sequencing depths and replication levels (Fig. 1c; see Section 2).

At three biological replicates, 10M reads was nearly as good as

30M reads in terms of statistical power and precision (percentage

of true positives among all positives). Curves for other replica-

tion levels showed similar trends (Supplementary Fig. S2). For

ROC curves at 10M reads, similar to the trends in the power

curves, 4 replicates was very close to 6 replicates, whereas power

and precision gains from 2–3 replicates and 3–4 replicates were

more substantial.
To gain a quantitative estimate of how accurate these esti-

mates are under different conditions, we also examined indivi-

dual gene log fold changes (logFC) and expression level

estimation accuracy under different levels of replication and

sequencing depth. For logFC estimates, we calculated the

logFC CV for the top 100 most DE genes (Fig. 1d). For these

100 genes, adding sequencing reads after 10M reads had little

effect on CV when replication was high, whereas biological rep-

lication continued to improve accuracy of logFC estimation sig-

nificantly; high replication levels gave accuracies that are

probably not practically achievable by adding sequencing

depth at low replication levels.
For expression level estimation, we examined three groups of

genes: high, medium and low expression level (see Section 2). For

these three groups of genes, the CV of logCPM was calculated

and plotted against sequencing depth and replication level

(Fig. 2a–c). For highly expressed genes, accuracy of expression

level estimates was already high (Fig. 2a), and adding more reads

had little effect on accuracy, whereas biological replicates still

improved accuracy. For low expression genes (Fig. 2c), CVs

for expression estimates were much larger, and accuracy was

improved when either more reads or more replicates were

added. For genes with medium expression level (Fig. 2b), the

situation is somewhat in between, as expected: adding more

sequencing reads reduced CVs slightly, whereas biological repli-

cates still reduced CVs significantly. These results indicate that

biological replicates improve the accuracy in estimating expres-

sion level for all genes, regardless of expression level, whereas

adding sequencing depth will improve estimation accuracy

mostly for low expression genes.

3.2 A metric for cost-effectiveness

When choosing an experimental design for an RNA-seq differen-

tial expression study, the trade-off between number of biological

replicates and sequencing depth is an important consideration,

especially for large projects where many perturbation experiments

are performed. Our results indicate that biological replicates are

important for increasing the power for DE gene detection regard-

less of the sequencing depth used.
To guide experimental designs of RNA-seq studies for differ-

ential expression, we propose the following simple metric:

Cost per 1% power given a particular design

¼
fixed costs per sample�number of samplesþ sequencing costsð Þ

power

The cost per 1% power metric measures the cost-effectiveness

of a given study design. Fixed costs per sample include library

construction costs, sample costs and labor costs. Sequencing

costs are variable costs for each sample depending on the sequen-

cing depth and multiplexing scheme used. In study designs for

RNA-seq DE studies, we can compare different designs using

cost per 1% power after defining our total budget and desired

power.
Using this formula and some cost assumptions (see Section 2),

we calculated the cost per 1% power for different designs of our

experiment (Table 1). For our samples, the lowest cost per 1%

power was achieved at the 10M sequencing depth for 2–6 repli-

cates. The cost per 1% power did increase slightly when we

added more biological replicates, but having more biological rep-

licates also means higher power (Fig. 2b). If a larger number of

DE genes is desired in the study, the number of samples to be

used in the study can be decided based on such ‘standard curves’.

However, our cost calculation here does not reflect the sample

collection cost, which varies widely from project to project. For
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Fig. 2. (a–c) The CV of logCPM for high expression level genes (a),

medium expression level genes (b) and low expression level genes (c)

(see Section 2 for definition). High/medium expression level genes have

low CV for expression level estimates. Adding sequencing depth did not

have significant effect on accuracy of estimation, whereas adding biolo-

gical replicates improved accuracy significantly. For low expression level

genes, both adding sequencing depth and adding biological replication

level improved expression level estimation accuracy. (d) Number of

DE genes plotted against the total estimated sequencing cost. If

higher numbers of DE genes are needed, increased biological replication

should be used
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the human cell line studies we presented here, sample collection

cost is relatively low, but for other projects, the sample collection
cost can dominate the cost calculation.

4 CONCLUSION

We conclude that in a typical DE study using RNA-seq, sequen-
cing deeper for each sample generates diminishing returns for
power of detecting DE genes once beyond a certain sequencing

depth. Instead, increasing the number of biological replications
consistently increases the power significantly, regardless of
sequencing depth. Additionally, estimation accuracy for logFC

and absolute expression levels greatly improve across the board
when more biological replicates are added, whereas sequencing
depth improves the accuracy of these estimations only in some

situations, so, when possible, using more biological replication
with lower sequencing depth, instead of sequencing few samples
in great depth, is a more efficient strategy for RNA-seq DE
studies. In the specific case of MCF7 breast cancer cell samples,

our cost metric suggests that sequencing 410M reads/sample
gives diminishing returns compared with adding replication.
Obviously, for other species and perhaps other samples such as

heterogeneous tumor samples, the exact sequencing depth will be
different, but the overall guideline of replication rather than
deeper sequencing should still remain. A similar set of standard

curves could be constructed for each type of sample to guide
experimental designs, particularly for large-scale genomic studies
where optimization for cost effectiveness can have a significant

impact. Almost all individual laboratories are mindful of bud-
gets, but the stakes are particularly high in studies such as
Encyclopedia of DNA Elements (ENCODE) or The Cancer
Genome Atlas (TCGA) where millions of dollars are being

spent on sequencing.

We have focused on differential expression studies using RNA-

seq with the aim to improve a single target: power to detect DE

genes between samples. Of course, there are cases where sequen-

cing deeply is advantageous (such as differential expression of

exons and transcript-specific expression). In these applications,

much higher sequencing depths are required because the inform-

ative genomic regions are much shorter. However, if gene differ-

ential expression is the primary goal, it would be a sensible choice

to optimize sequencing depth and number of biological replicates

according to the simple guidelines we propose here.
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Table 1. Cost efficiency for power to detect DE genes (cost per 1% power

given each experimental design where the variables are)

Relative cost 2.5M 5M 10M 15M 20M 25M 30M

2 replicates 24.2 17.2 14.4a 15.8 16.7 17.0 17.8

3 replicates 23.4 17.2 15.3a 16.3 17.1 18.5 19.4

4 replicates 23.1 17.7 16.5a 17.5 18.6 19.8 21.2

5 replicates 23.8 19.0 18.1a 19.4 21.0 22.8 24.9

6 replicates 25.0 20.7 20.6a 22.4 24.6 27.0 29.4

7 replicates 26.8 23.0a 23.5 26.0 28.7 31.5 34.3

Note: Assumptions made during calculations are described in Section 2.
aLowest cost per 1% power in each replication level. Units are in dollars.
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