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ABSTRACT

Motivation: Accurately identifying and eliminating allergens from bio-

technology-derived products are important for human health. From a

biomedical research perspective, it is also important to identify aller-

gens in sequenced genomes. Many allergen prediction tools have

been developed during the past years. Although these tools have

achieved certain levels of specificity, when applied to large-scale al-

lergen discovery (e.g. at a whole-genome scale), they still yield many

false positives and thus low precision (even at low recall) due to the

extreme skewness of the data (allergens are rare). Moreover, the most

accurate tools are relatively slow because they use protein sequence

alignment to build feature vectors for allergen classifiers. Additionally,

only web server implementations of the current allergen prediction

tools are publicly available and are without the capability of large

batch submission. These weaknesses make large-scale allergen dis-

covery ineffective and inefficient in the public domain.

Results: We developed Allerdictor, a fast and accurate sequence-

based allergen prediction tool that models protein sequences as text

documents and uses support vector machine in text classification for

allergen prediction. Test results on multiple highly skewed datasets

demonstrated that Allerdictor predicted allergens with high precision

over high recall at fast speed. For example, Allerdictor only took

�6 min on a single core PC to scan a whole Swiss-Prot database of

�540 000 sequences and identified51% of them as allergens.

Availability and implementation: Allerdictor is implemented in

Python and available as standalone and web server versions at

http://allerdictor.vbi.vt.edu.

Contact: lawrence@vbi.vt.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

Allergy is one of the most important chronic diseases worldwide.

It is also one of the main causes of asthma and asthma exacer-

bations, which has been an increasing health issue in developed

countries (Devereux, 2006). Allergic hypersensitivity (IgE-type

response) in sensitized individuals is elicited by allergens. The

allergen–IgE interaction often results in mast cells and/or baso-

phils releasing multiple inflammatory mediators such as

histamine, leukotrienes, cytokines and chemokines. These medi-

ators can cause a variety of symptoms from mild to severe

including sneezing, itching, rashes, hives, difficulty in breathing

and asthma attacks that can lead to death (Masoli et al., 2004;

Stagg et al., 2013).

It is important to identify and eliminate potential allergens

from biotechnology-derived products, such as genetically modi-

fied crops, vaccines and therapeutics, as well as identifying

allergens from sequenced genomes. However, IgE-mediated

allergenicity is costly and difficult to assess without human

data because no single factor has been recognized as a primary

identifier for allergenicity (Ladics et al., 2011; Stagg et al., 2013).

Therefore, bioinformatics approaches have been widely used to

prescreen novel sequences (Mari et al., 2009). The FAO/WHO

guideline to assess allergenicity of genetically modified crops uses

relaxed sequence similarity criteria. A protein is identified as a

potential allergen if it harbors 435% identity with a known

allergen over a window of 80 amino acids or has six contiguous

amino acids that are also found in a known allergen (FAO/

WHO, 2001; Metcalfe, 2005). These criteria are implemented in

most of the allergen databases and tools (Mari et al., 2009).

However, the FAO/WHO guideline focuses on sensitivity to pre-

vent potential new allergens entering the food market rather than

accurate prediction. Therefore, these criteria yield high false-

positive (FP) rates such that their application is limited (Ladics

et al., 2011; Stadler and Stadler, 2003). The current Codex guide-

line (Codex Alimentarius Commission, 2009) does not recom-

mend the use of the six contiguous amino acid match criterion.
Many methods for allergen prediction have been developed

and are more accurate than the FAO/WHO pure sequence simi-

larity-based approach. The majority of these methods is based on

supervised machine learning and differs in ways to extract useful

features from amino acid sequences. Most of them rely on

sequence similarity to allergen-specific peptides or motifs, includ-

ing Stadler and Stadler (2003), Li et al. (2004), WebAllergen

(Riaz et al., 2005), EVALLER (Barrio et al., 2007; Soeria-

Atmadja et al., 2006) and SORTALLER (Zhang et al., 2012),

or to known IgE epitopes, such as AlgPred (Saha and Raghava,

2006), or with known allergens and putative non-allergens, such

as AllerHunter (Muh et al., 2009). Other methods use physico-

chemical representation of protein structure, such as APPEL

(Cui et al., 2007) and the structural database of allergen proteins

(SDAP) (Ivanciuc et al., 2009), or amino acid/dipeptide compos-

ition, such as AlgPred (Saha and Raghava, 2006).

Although current methods are significantly more accurate than

the FAO/WHO approach, large-scale allergen prediction using

these methods is still ineffective and inefficient. On large-scale*To whom correspondence should be addressed.
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data where non-allergens are naturally more abundant, the
number of FP often exceeds the number of true positives (TP)

that lowers the precision and thus the usefulness of the prediction.
Moreover, the most accurate methods are relatively slow, as they

rely on homology and use sequence alignment to construct fea-

ture vectors. Additionally, current allergen prediction methods
come pretrained in the form of web servers without the capability

of large batch submission making large-scale allergen prediction
even more difficult.

In this article, we propose a new sequence-based allergen pre-
diction method (Allerdictor) that can run in linear time of

sequence length and is capable of producing high precision over

high recall, even on highly skewed data. Allerdictor models
sequences as text documents in which words are represented as

overlapping k-mers generated from the sequences. We found that
the k-mer approach is particularly effective in allergen prediction.

Feature construction is much faster than sequence alignment-

based methods and can be performed in linear time of sequence
length. Allerdictor was implemented with both naive Bayes (NB)

and support vector machine (SVM) classifiers. SVM outper-
formed NB on more difficult datasets where the level of sequence

similarity between allergens and non-allergens is higher. Thus, we

will mostly discuss results for the SVM-based version.
The advantages of Allerdictor make it practical for large-scale

allergen prediction in applications such as whole-genome anno-

tation, biotechnology-derived gene product screening and aller-

gen discovery from large public sequence databases.

2 METHODS

Allerdictor represents sequences as text documents and uses NB or SVM

for allergen classification.

2.1 Datasets

An initial set of allergens was built by combining sequences collected

from the International Union of Immunological Societies allergen no-

menclature (http://allergen.org), Allergome (Mari et al., 2009), SDAP

(Ivanciuc et al., 2003), AllergenOnline (http://allergenonline.org) and

AllerMatch (Fiers et al., 2004) databases. Duplicated sequences and se-

quences without experimental evidence, containing non-standard amino

acids, or shorter than 100 amino acids were removed, and this resulted in

a set of 3 907 high-quality allergen sequences. A portion of this set con-

tains isoforms of the same allergens or allergens with similar sequences. A

putative non-allergen set was created from the Swiss-Prot database

(Magrane and Consortium, 2011) by removing sequences tagged with

‘predicted’ or ‘uncertain’ and sequences annotated with allergen-related

keywords (‘allerg*’, ‘antigen’ or ‘atopy’) similar to other approaches

(Barrio et al., 2007; Muh et al., 2009; Soeria-Atmadja et al., 2006;

Zhang et al., 2012). Because many allergens have yet to be identified,

this putative non-allergen set may contain some true allergens (noise).

Noise was reduced by further removing sequences that were highly simi-

lar to any of the sequences collected from the allergen databases [�90%

identity and �90% coverage on both query and subject sequences when

aligned using BLAST (Altschul et al., 1997)]. Similar to the allergen set,

sequences shorter than 100 amino acids or having non-standard amino

acids were also removed. This resulted in a set of 464 101 putative non-

allergens. From the sets of 3907 allergens and 464101 putative non-aller-

gens, three datasets were derived and used in this study by the following

procedures: All three datasets described later in the text were designed to

contain 10 times as many non-allergens as allergens, which represents the

natural imbalanced distribution of allergens and non-allergens to some

degree. Sequence-based allergen prediction methods often yield low per-

formance on datasets that include many non-allergens that share se-

quence similarity with allergens. Our datasets exhibited low to high

levels of sequence similarity between allergens and non-allergens (Fig.

1) and thus allowed a more comprehensive evaluation of Allerdictor.

� Dataset A (Allerdictor-A, 3907 allergens, 39 070 non-allergens): All

allergen sequences (including isoforms) were selected and 10 times

that of putative non-allergen sequences were randomly selected from

the putative non-allergen set. This dataset exhibited a low level of

overall sequence similarity between allergens and non-allergens.

When clustered using BLASTClust (Altschul et al., 1997), only

1108 (�3%) non-allergens together with 1293 (�30%) allergens

were grouped in 131 clusters that contained both allergens and

non-allergens (allergen/non-allergen clusters) (Fig. 1). The non-aller-

gen sequences that were clustered with allergen sequences were desig-

nated as ‘allergen-like non-allergens’.

� Dataset B (Allerdictor-B, 1990 allergens, 19 900 non-allergens): All

allergens were clustered using BLASTClust with �95% identity and

�95% coverage on both query and subject sequences into 1990 clus-

ters. To remove sequence redundancy, only one sequence was

selected randomly from each cluster to form a set of 1990 allergens.

Ten times as many non-allergen sequences were randomly selected

from the putative non-allergen set. This dataset also exhibited a low

level of sequence similarity between allergens and non-allergens, with

only 534 (�3%) non-allergens clustered with 473 (�24%) allergens

in 91 allergen/non-allergen clusters (Fig. 1).

� Dataset C (Allerdictor-C, 1662 allergens, 16 620 non-allergens): All

allergen and putative non-allergen sequences were together clustered

using BLASTClust with�50% identity and �50% coverage on both

A

B

Fig. 1. Sequence similarity between allergens and non-allergens in

Allerdictor datasets and other datasets (BLASTClust cutoff �50% se-

quence identity for �50% query or subject coverage). The shared regions

in Venn diagrams (A) are clusters that contain both allergen and non-

allergen sequences. The total number of non-allergens that are allergen-

like and not allergen-like are detailed in the column plot (B)

1121

Allerdictor

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/30/8/1120/258875 by guest on 20 M
arch 2024

false positives
 which
 because
-
ov
er 
during
N
S
V
M
between 
to
very 
,
http://allergen.org
http://allergenonline.org
,
,
very 
--
-
,
,
,
indeed 
,
,
,
below
with 
between
to
,
,
,
between 
,
,
,
,
''
''
,
,
,
,
between
to
,
,


query and subject and resulted in 291 allergen-only clusters, 233

allergen/non-allergen clusters and 9529 non–allergen-only clusters.

From each allergen-only and allergen/non-allergen clusters, at most

three allergen sequences were randomly selected. Ten times the

number of non-allergen sequences were selected in similar fashion

from the non–allergen-only and allergen/non-allergen clusters. The

final dataset contained 1662 allergens and 16 620 non-allergens, in

which a significant number of non-allergens share sequence similarity

to allergens. When being re-clustered using BLASTClust, 6855

(�41%) non-allergens were grouped together with 725 (�44%)

allergens in 232 allergen/non-allergen clusters (Fig. 1).

2.2 Text representation of sequences

To represent an amino acid sequence of length n as a text document,

Allerdictor uses a small sliding window of size k to break the sequence

into n� kþ 1 overlapping k-length peptides (k-mers). This collection of

k-mers is used as a new sequence representation. If we consider a k-mer as

a word, this representation is similar to the bag-of-words in document

modeling (Manning et al., 2008). The set of all unique k-mers generated

from training data is similar to the dictionary used in text modeling and

herein called a k-mer dictionary. The feature vector for a sequence can be

constructed by recording the appearance/absence of the k-mers (binary

representation) or counting the frequencies of the k-mers (k-mer fre-

quency representation). Given that N is the size of the k-mer dictionary

built from training data, the k-mer frequency vector for a sequence is as

follows:

X ¼5x1,x2, :::,xN4 ð1Þ

where xi is the frequency of emitting the ith k-mer of the dictionary from

the sequence using the sliding window. Because only a small fraction of

the k-mer dictionary can be generated from a limited length protein se-

quence, the k-mer feature vector is extremely sparse with the maximum of

n� kþ 1 non-zero elements.

The k-mer representation of sequences also shares similar properties

with the bag-of-words approach in text modeling (Joachims, 2002) such

as (i) the feature space is high dimensional (the number of possible unique

k-mers is 20k with 20 amino acid alphabet size), (ii) feature vectors are

sparse and (iii) the distribution of k-mer frequencies follows Zipf’s law

(Zipf, 1949) in which the number of rare k-mers is much higher than the

number of frequent k-mers (data not shown).

Many text classification methods can then be applied on k-mer se-

quence representation. NB and SVM were chosen for Allerdictor because

they were among the best methods for text classification and fast on high

dimensional sparse vectors.

2.3 Naive Bayes

NB is a simple yet effective method for text classification, especially for

spam filtering (Manning et al., 2008). Using a multinomial NB model,

Allerdictor-NB models the distributions of k-mer frequencies over aller-

gen/non-allergen classes with a relaxed assumption that k-mer frequencies

are independent of each other given the class. The probability of being an

allergen for a sequence represented by a k-mer frequency vectorX in (1) is

given as follows:

pðalgjXÞ ¼
pðalgÞ:pðXjalgÞ

pðXÞ

¼

pðalgÞ:
QN

i¼1

pðkijalgÞ
xi

P
c2falg, nlgg

pðcÞ:
QN

i¼1

pðkijcÞ
xi

ð2Þ

where alg and nlg are allergen and non-allergen classes, respectively, and

ki is the ith k-mer in the dictionary. The probability of seeing the ith

k-mer in the allergen/non-allergen class pðkijcÞ and the prior probability

of the classes p(c) can be estimated from training data of known allergen

and non-allergen sequences. The probability that the sequence is a non-

allergen pðnlgjXÞ can be calculated by a similar formula.

2.4 Support vector machine

SVM has been successfully used in numerous applications across many

fields including text classification (Boser et al., 1992; Burges, 1998; Cortes

and Vapnik, 1995; Joachims, 2002). Allerdictor-SVM uses a linear SVM

model, and k-mer frequencies are further normalized by the total number

of k-mers generated from the sequence by the sliding window. The nor-

malized vector X0 of a k-mer frequency vector X given in (1) of a sequence

of length n is as follows:

X0 ¼5x01, x
0
2, :::, x

0
N4 with x0i ¼ xi=ðn� kþ 1Þ ð3Þ

Each sequence represented by X0 is now a point in an N-dimensional

space. Given a training dataset of M sequences fX01,X
0
2, ::,X

0
Mg labeled

with fy1, y2, :::, yMg (yi¼ 1 if Xi is allergen, yi¼ -1 otherwise), a soft

margin linear binary SVM classifier finds the optimal hyperplane h that

separates allergens from non-allergens with the maximum margin of clas-

sification, which is equivalent to solving the following:

min
w, �, b

1

2
wTwþ C

XM

i¼1

�i

subject to yiðw
TX0i þ bÞ � 1� �i with i ¼ 1::M

w 2 RN, �i � 0

ð4Þ

where N-dimensional vector w is the normal vector of h, b=jjwjj is the

distance from the origin to h, slack variables �i designate how far the

points can pass the margin boundaries (misclassification) in cases of non-

linear separable data and C is the regularization constant to control how

much of the training data can be misclassified.

A new sequence X0 is then classified by what ‘side’ of h it lays via an

SVM score (with positive score being an allergen):

SVMscore ¼ wTX0 þ b ð5Þ

This score is then converted to a posterior probability of being an allergen

by fitting a sigmoid function (Lin et al., 2007; Platt, 1999). Training and

testing were conducted using SVMLight software (Joachims, 1999) with

an allergen misclassification penalty weight parameter j ¼ 10 to address

data imbalance. The regularization constant C was chosen by optimizing

the performance via cross-validation described later in the text.

2.5 Cross-validation and dimension reduction

Nested 10-fold cross-validation was used to evaluate Allerdictor perform-

ance on three datasets A, B and C. Each dataset was randomly parti-

tioned into 10 subsets containing roughly equal number of both allergen

and non-allergen sequences. In each evaluation fold, one subset was held

out (test set) and the rest nine subsets were combined and randomly

partitioned into 10 other subsets for an inner 10-fold cross-validation

to choose the best parameters. Mutual information (Manning et al.,

2008) was used to generate feature selection scores. All k-mers were

ranked by mutual information between the class variable (allergen/

non-allergen) and k-mer frequency variables, and the top ranked

k-mers were selected to build the prediction model. A feature abstraction

technique was also used to group k-mers with the same frequency distri-

bution in an allergen training set and in a non-allergen training set. This is

a special case of distributional clustering that has been used successfully

in text classification (Baker and McCallum, 1998; Pereira et al., 1993).

The k-mers that were grouped together have the same frequency distri-

bution over the allergen/non-allergen classes (observed from training
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data), and therefore, they received the same weights in the classification

model.

3 RESULTS AND DISCUSSION

Evaluation results of Allerdictor on the three datasets built in

this study (A, B and C) as well as the AllerHunter dataset
demonstrated that Allerdictor is capable of obtaining high pre-
cision over high recall rates. We evaluated Allerdictor using pre-

cision/recall (PR) measures that are widely used in information
retrieval (Manning et al., 2008) instead of sensitivity/specificity

measures in Receiver-Operating Characteristic curve (ROC) ana-
lysis. A PR curve plots precision against recall obtained by vary-

ing the prediction score cutoff. Given the numbers of TP, FP,
true negatives (TN) and false negatives (FN), precision and recall

are defined as follows.

Precision ¼
TP

ðTPþ FPÞ

Recall ¼
TP

ðTPþ FNÞ

ð6Þ

A ROC plots TP rate (also called sensitivity or recall) against FP
rate (1� specificity). Because non-allergens are much more abun-

dant than allergens in nature, a method that predicts many more
FP than TP (low precision) can still produce a good ROC as long

as its sensitivity is high and thus is often misleading (Davis and
Goadrich, 2006). The PR curves can reveal high FP rates and

thus provide a more meaningful evaluation on naturally skewed
allergen/non-allergen distributions, which are also represented in

datasets A, B and C.

3.1 Length of k-mer peptides

The length of k-mer peptides is the most important parameter for

Allerdictor prediction models. Allerdictor performed differently
with different k values. Performance peaked at k¼ 5 or 6 and
decreased as k moved away from the peaks (Supplementary

Fig. S1). This interesting result agrees with the debatable criter-
ion of six contiguous amino acid matches with a known allergen

used by FAO/WHO guideline. The classification power of
Allerdictor comes with its ability to distinguish and assign

higher weight to k-mers that are more likely associated with
allergens (Section 3.4). With k¼ 5, Allerdictor produced near

perfect FP rates, whereas k¼ 6 allowed for better sensitivity
and still maintained low FP rates. We chose k¼ 6 for the ana-

lyses and results reported in the following sections.

3.2 Allerdictor produces high precision over high recall

We performed nested 10-fold cross-validation to evaluate
Allerdictor performance in comparison with the baseline classi-

fiers we derived from FAO/WHO guidelines on our three data-
sets. The two derivatives were BLAST andMEM (maximal exact

match). In the BLAST method, a protein was classified based on
the best BLAST similarity score (E-value) against a database of

known allergens from the training set. In MEM, the longest
subsequence of contiguous amino acid matches against the aller-

gens in the training set was chosen as the classification score.
MEM was implemented using SparseMEM software (Khan

et al., 2009).

For all three datasets, both Allerdictor-NB and Allerdictor-

SVM performed better than BLAST and MEM with higher pre-

cision over the same recall rate as well as larger area under the

PR curve (AUPRC) (Fig. 2). NB and SVM performed equally on

datasets A and B, whereas with dataset C, SVM exhibited better

performance. The AUPRCs for Allerdictor-SVM averaged at

0.97, 0.91 and 0.85 for datasets A, B and C, respectively.

BLAST’s and MEM’s performance was acceptable on datasets

exhibiting low levels of sequence similarity between allergens and

non-allergens (AUPRC� 0.7–0.8 for datasets A and B).

However, their performance dropped dramatically when the

level of sequence similarity between allergens and non-allergens

increased (dataset C). BLAST appeared to be more vulnerable to

a drop in performance with AUPRC� 0.25 and precision rarely

reaching 0.5 on dataset C. MEM was less vulnerable

(AUPRC� 0.63) compared with BLAST, yet failed to produce

40.6 precision over40.6 recall. On the other hand, Allerdictor

still yielded high performance on dataset C. The AUPRC was

�0.81 for Allerdictor-NB and �0.85 for Allerdictor-SVM, and

both still produced �0.8 precision over 0.8 recall. As SVM per-

formed more robustly than NB, studies were concentrated on

SVM.
The capability of Allerdictor to produce high precision over

high recall rates is due to its extremely high specificity (low FP

rate). To assess Allerdictor specificity, we trained Allerdictor-

SVM with each of the three datasets and predicted allergens

for the whole Swiss-Prot database. The results confirmed

Allerdictor had a high level of specificity with51% of proteins

in the Swiss-Prot database predicted as allergens (Table 1).

Regardless of the level of similarity between allergens and non-

allergens in the training datasets, Allerdictor still predicted51%

of Swiss-Prot as allergens. Homology-based methods often pro-

duce many FP when trained with datasets exhibiting low levels

of sequence similarity between allergens and non-allergens.

Allerdictor specificity, on the other hand, is consistent.

3.3 Allerdictor prediction time is linear

Sequence alignment-based approaches, which are also the most

accurate current allergen prediction methods, construct features

from sequence alignment. Most of the prediction time for a se-

quence is spent on aligning the sequence against a database

of full-length allergen/non-allergen sequences and/or allergen-

specific peptides. This depends on the length of both the se-

quence and the database. Moreover, aligning sequences requires

non-linear time of the sequences’ length, which makes large-scale

allergen prediction a relatively time-consuming task.
Allerdictor feature construction and prediction times are both

linear of the length of the sequence. Counting frequency of

k-mers from a sequence can be achieved in linear time of the

length of the sequence and does not depend on training data.

Prediction time for both NB and SVM has two components. The

first one is the time required to look up model parameters (e.g.

SVM weights) for the k-mers generated from the sequence. With

proper hashing techniques, the total look up time is also linear of

the number of k-mers on average. The second component is the

time to compute the score of the model (NB or linear SVM) that

is also linear of the number of k-mers, as it involves only non-
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zero elements of the sparse k-mer frequency vector. Overall,

Allerdictor prediction time is linear of the length of the sequence.
The running time of Allerdictor (both web server and standa-

lone versions) was estimated in comparison with the other meth-

ods (including EVALLER, AlgPred, AllerHunter, APPEL and

SORTALLER) on a random test set of 100 protein sequences

(average length of 326 amino acids) and the whole Swiss-Prot

database. As only web server versions of the other methods were

available, we wrote scripts to submit sequences one by one to the

web servers and measured the time needed to run 100 sequences,

including time for data transmission over the web. For these

methods, the estimated time required to run the whole Swiss-

Prot database was derived from the time used for 100 sequences.

For Allerdictor web server, true running time to scan the whole

Swiss-Prot database was measured using a similar submission

script. The lower bound for AllerHunter feature construction

was also estimated by time required to align sequences against

the database of training sequences using BLAST. Allerdictor

was extremely fast compared with other methods (Table 2).

Allerdictor standalone version only took �6min (on a single

core PC), and Allerdictor web server submission took �34.5 h

to scan the whole Swiss-Prot of 539 616 protein sequences. Web

server performance depends on many factors such as web server

configuration and internet connection speed, and therefore the

rough estimates obtained in Table 2 were not necessarily the true

performance. However, these estimates should correlate with

true running time and were appropriate for comparison. The

linear running time in addition to high precision over high

recall makes Allerdictor more practical for large-scale allergen

discovery compared with existing methods.

3.4 Allerdictor distinguishes allergen-related peptides

An IgE epitope is a region of an allergen that can be recognized

by and interact with allergen-specific IgE antibodies. It is per-

haps the most important allergenicity identification feature.

However, IgE epitopes exist in both linear form (continuous

amino acids) and conformational form (discontinuous amino

acids brought together via protein folding) and thus are difficult

to model. Sequence similarity approaches in allergen prediction

such as those corresponding to the FAO/WHO guideline are

centered on knowledge of IgE epitope length, which ranges

from 3–71 amino acids according to the known IgE epitopes

from SDAP (Ivanciuc et al., 2003). These approaches, however,

cannot distinguish between sequence similarity matches in re-

gions that are related to allergenicity such as the IgE epitopes,

and those in regions that are commonly found in both allergens

and non-allergens, and thus yield low performance.
Allerdictor is effective in allergen prediction because it is

capable of distinguishing allergen-related short peptides (possibly

but not necessarily IgE epitopes per se). For example,

Allerdictor, although does not directly model IgE epitope struc-

tures, can learn and assign higher weight to k-mers that are

subsequences of known IgE epitopes using a machine learning

approach. We investigated this using a set of 183 known IgE

Fig. 2. PR curves for Allerdictor-SVM (A-SVM) and Allerdictor-NB (A-NB), MEM and BLAST on three datasets of increasing level of sequence

similarity between allergens and non-allergens (A–C). The curves were averaged on nested 10-fold cross-validation with standard deviations as error bars

Table 1. Whole Swiss-Prot (539 616 sequences) scan results for

Allerdictor trained with different datasets

Training data Predicted

allergens

Percent

Swiss–Prot

Allergen-relateda

Dataset A 3025 0.56% 1069

Dataset B 4160 0.77% 1109

Dataset C 2150 0.40% 976

aPredicted allergens that are true allergens or annotated with allergen-related

keywords in Swiss-Prot.
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epitopes (from 29 allergens) collected from SDAP (one of the

most updated lists of known IgE epitopes). As given in (5), k-

mers with higher weight in the linear SVMmodel represent more

allergen predictive features (more commonly found in allergens).

We ranked k-mers by their weight and investigated the distribu-

tion of the ranks of the k-mers that were subsequences of at least

one known IgE epitope (IgE epitope-matched k-mers). We found

41000 IgE epitope-matched k-mers learned from each of the

datasets A, B and C (Supplementary Table S1). The majority

of the IgE epitope-matched k-mers (493%) were ranked in the

top 10% among �4.5–9.1 million k-mers obtained from the

training data (or 90% of them were ranked in the top 3.4, 5.5

and 5.9% for datasets A, B and C, respectively) (Fig. 3). This

result suggests that Allerdictor is capable of assigning higher

weight to k-mers that are more important for allergenicity such

as those found in IgE epitopes than those that are often found in

both allergens and non-allergens. For datasets A and B, almost

all IgE epitope-matched k-mers were ranked among the top,

whereas a small number of these k-mers for dataset C had low

ranks. This can be explained by the fact that dataset C only

contained a fraction of the known allergens (and IgE epitopes)

via the relaxed sequence clustering criteria described earlier.
In fact, many of the highly ranked k-mers formed continu-

ous peptides overlapping with known IgE epitopes. We ran

Allerdictor on 25 allergen proteins with IgE epitopes previously

mapped (prepared from the set of 29 allergens with known IgE

epitopes collected from the SDAP). The majority of the known

IgE epitopes overlapped with regions formed by highly ranked

k-mers, and many of them were fully covered by these regions

(Supplementary Figs S2–S4). This result suggests that the regions

of a protein sequence that contain highly ranked k-mers have

higher probability of being part of IgE epitopes or other im-

munologically relevant features, and thus they are highlighted

in the prediction output of Allerdictor server for further compu-

tational and/or experimental investigation by the end users.

3.5 Comparison with other methods

Current allergen prediction tools were first evaluated on a set of

randomly drawn �10% of dataset C (167 allergens and 1663

non-allergens, test set X). For methods that produced

monotonous prediction scores (AlgPred, AllerHunter,

SORTALLER), the score cutoff was varied to obtain PR
curves. For other methods (EVALLER, APPEL), fixed default
performance measures were calculated from the number of cor-

rect and incorrect predictions. The results showed that all meth-
ods evaluated yielded low precision on the chosen test set
(Supplementary Table S2 and Supplementary Fig. S5). None

of the methods yielded precision40.4 over recall40.6 for PR
curves. For default performance, only EVALLER and
AllerHunter yielded Matthews correlation coefficient40.5 with

both precision and recall40.5. Sequence similarity-based meth-
ods (AllerHunter and EVALLER) appeared to perform better in
this test. As expected, performance was correlated with the time

the methods were released, where later methods performed better
(with the exception that SORTALLER performed poorly, al-
though it was the latest method in this test). AllerHunter per-

formed better than other methods, partly because it was trained
on a dataset that contained many allergen-like non-allergens, a

characteristic that was also exhibited by the test data.
Because performance of supervised machine learning methods

depends heavily on training and testing data, we avoided com-

parison of Allerdictor with other methods trained with different
datasets. Current allergen prediction methods were pretrained
with specific datasets and only available in the form of web

servers and thus prevented retraining them for comprehensive
comparison with Allerdictor. Therefore, we investigated these
datasets on whether they are appropriate to train and compare

Allerdictor with the pretrained web servers of these methods.
Among three publicly available datasets, AllerHunter was the
only dataset that possessed a significant level of sequence simi-

larity between allergens and non-allergens and had many more
non-allergens than allergens (Fig. 1). The AlgPred dataset was
small and sequence names were masked, whereas the EVALLER

non-allergen sequences that were used to derive allergen-specific
peptides were not available. The level of sequence similarity be-
tween allergens and non-allergens for AlgPred and EVALLER

was low as determined by BLASTClust (Fig. 1).

Fig. 3. Empirical cumulative distribution of ranks of the k-mers

(k¼ 6) that are subsequences of at least 1 of 183 known IgE

epitopes from SDAP. The percentage in the brackets is the ratio of

k-mers that are ranked in the top 10% of all k-mers obtained from

each training set

Table 2. Running time for 100 random test sequences (T) and whole

Swiss-Prot (SP) of 539 616 sequences

Method T (s) SP (h) Implementation note

Allerdictor 32a 0.1 Standalone, implemented in Python

Allerdictor 24 34.5 Web server, implemented in Python,

submission via Perl script

AlgPred-d 114 174b Web server, submission via Perl script

AllerHunter 863 1318b Web server, submission via Perl script

AllerHunter 15c 24c BLAST, using AllerHunter data

APPEL 3731 5700b Web server, submission via Perl script

EVALLER 4094 6255b Web server, submission via Perl script

SORTALLER 158 241b Web server, submission via Perl script

aIncluding time to read k-mer dictionary from disk. bEstimated time based on run-

ning time of 100 test sequences. cLower bound estimate (time required to run

BLAST against the training sequences).
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The AllerHunter dataset (http://tiger.dbs.nus.edu.sg/

AllerHunter/) was considered the only complete dataset for the

purpose of the comparison. However, this dataset was redundant

and contained noise. The AllerHunter dataset was reviewed and

found to contain 48 obsolete sequences [deleted from Genbank

(Benson et al., 2010) and Swiss-Prot], 233 duplicated sequences

and 328 short sequences (3–50 amino acids). Also, among the

non-allergens, 135 were found to be true allergens, 176 were

antigens and 165 contained allergen-related ambiguous annota-

tion (from Swiss-Prot and Allergome databases). The noise pos-

sibly resulted from new annotation added to the public databases

after AllerHunter data were collected. We accepted the noise for

training data and trained Allerdictor on the same training set of

sequences (1266 allergens and 11 229 non-allergens) that was

used to train AllerHunter server (personal communication with

Martti Tammi) and compared Allerdictor with AllerHunter

server on two test sets: the original AllerHunter test set (139

allergens and 1245 non-allergens) that contained noise and the

revised version of the test set with reduced noise (149 allergens

and 1141 non-allergens). The review process moved the newly

discovered allergens from the non-allergen set to the allergen set

and removed duplicated, obsolete or ambiguous sequences and

non-allergen sequences that had 90% identity over 90% coverage

with a known allergen (similar to the procedure used to reduce

noise from Allerdictor datasets).
Comparison results on AllerHunter dataset showed that

Allerdictor slightly outperformed AllerHunter with slightly

larger AUPRCs (Fig. 4). An interesting trend was that

Allerdictor produced higher high-range precision (40.8) at

lower recall (50.8). At recall 40.85, both Allerdictor and

AllerHunter produced many FP, and thus the precision for

both methods dropped below 0.6. AllerHunter performed

slightly better in lower-range precision (50.75) at a narrow

recall range from �0.85–0.9. High-range precision is particularly

useful in large-scale prediction. For example, one often chooses

the top scoring candidates from computational predictions for

further experimental validation, which is equivalent to lowering

recall to obtain higher precision. Along with higher high-range

precision, Allerdictor also runs much faster than AllerHunter

(Section 3.3), which makes it the better choice for large-scale

allergen prediction.

The amino acid composition and dipeptide approaches in

AlgPred are special cases of k-mer approach in Allerdictor

with k¼ 1 and 2. We found that such small values of k yielded

low performance on multiple datasets, including datasets A, B

and C. Also pointed out by AlgPred authors, when tested with

Swiss-Prot non-allergens, AlgPred falsely predicted �40% of

them to be allergens (Saha and Raghava, 2006).

3.6 Allerdictor prefers larger number of k-mers

The size of the k-mer dictionary (also the feature vector size) is

exponential of k (20k) and therefore many machine learning

approaches are prevented from using k-mer sequence representa-

tion. In reality, the size of the k-mer dictionary depends on train-

ing datasets and is much smaller than the number of possible

k-mers. Allerdictor when trained with k¼ 6 on datasets A, B and

C had feature space dimension of �4.6, 5.7 and 9.1 million, re-

spectively (much smaller than 206). To test if we can reduce

the number of k-mers without lowering performance, feature

selection using mutual information and feature abstraction

were performed with Allerdictor-SVM using k¼ 6.
The results on datasets A, B and C showed that no perform-

ance gain was achieved with both feature selection and feature

abstraction (Supplementary Fig. S6). Using �20–50% k-mers,

performance was similar to that obtained with all k-mers.

Allerdictor performance slightly dropped when the number

of selected k-mers was �10–20% and dramatically dropped

when �5–10% k-mers were selected. This result suggests that

Allerdictor generally performs better with more k-mers.

Feature abstraction reduced �4.6–9.1 million k-mers down to

51000 abstract features when trained using k¼ 6. Surprisingly,

performance for feature abstraction was close to performance

using all k-mers. This interesting result opens doors for using

other classification methods that can only handle a small

number of features.

3.7 Effects of allergen prevalence

Supervised machine learning-based allergen prediction methods

are often available to end users as tools pretrained on some spe-

cific dataset. The predictive values including positive predictive

value (PPV, also called precision) and negative predictive value

A

B

Fig. 4. PR curves for Allerdictor and AllerHunter, both trained on the

original AllerHunter training set and tested with the original AllerHunter

test set (A) and the reviewed AllerHunter test set (B)
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(NPV) of such tools are subject to the prevalence of allergens in

data. We have shown that Allerdictor produced high precision

over high recall when training and testing using data that

exhibited low ratios of allergen sequences.

To provide a complete picture of allergen prediction perform-

ance, we also investigated the effects of allergen prevalence (in

testing data) on PPV and NPV of Allerdictor and the current

allergen prediction tools. As expected, predictive values of all

methods were affected by the prevalence of allergens in testing

data (Supplementary Figs S7–S9). When the prevalence of aller-

gens was low, AllerHunter, APPEL and EVALLER exhibited

higher predictive values than AlgPred and SORTALLER on a

random set of sequences drawn from dataset C (Supplementary

Fig. S8). Allerdictor exhibited stable PPV on datasets A, B, C

(Supplementary Fig. S7) and on AllerHunter dataset

(Supplementary Fig. S9). When allergen ratio was �0.5,

Allerdictor achieved both PPV and NPV �0.8 in all datasets.

Compared with AllerHunter on AllerHunter dataset,

Allerdictor PPV and NPV were better when allergen prevalence

was low, but AllerHunter exhibited more balanced PPV and

NPV when the ratio of allergens was higher. The NPV of all

methods including Allerdictor decayed rapidly as the ratio of

allergens in the test sets increased. However, this behavior does

not significantly limit the application of machine learning-based

allergen prediction methods because allergen prevalence is low in

nature and in many applications. For example, there exist �20

known allergens among 49000 proteins coded by the genome

of the allergenic fungus Aspergillus fumigatus (Fedorova et al.,

2008). Low allergen ratio is a characteristic of large sequence sets

often seen in large-scale sequence annotation, which is also

Allerdictor’s main application.

4 CONCLUSION

This article presented an accurate sequence-based allergen pro-

tein prediction method (Allerdictor) that is much faster than the

current most accurate methods while still maintaining compar-

able or better predictive performance (when compared with

AllerHunter). The main idea is the use of the k-mer feature rep-

resentation of sequences, and thus linear prediction time is

achieved for both feature construction and prediction using a

linear SVMmodel. Moreover, the k-mer approach is particularly

effective for allergen prediction because supervised machine

learning methods such as SVM can learn the k-mers shared by

many allergens such as the one found in IgE epitopes and assign

higher weights to these k-mers.
The prevalence of asthma has been an increasing human

health issue. Approximately 235–300 million people worldwide

were diagnosed with asthma with annual deaths of �250 000

(GINA, 2012; WHO, 2013). The majority of asthmatic patients

have allergic asthma in which allergic reactions (caused by aller-

gens) exacerbate asthmatic symptoms. To facilitate our under-

standing and prevention of this disease, it is important to identify

potential allergens from massive amounts of protein sequences

produced every day via both genome sequencing and sequence

synthesis. Because experimental allergenicity assessment is still

expensive and difficult (especially at large scale), computational

allergen identification is an alternative first step.

Allerdictor addresses the shortcomings of the current allergen

prediction tools. With high precision over high recall and fast

speed, Allerdictor is not only useful for general sequence aller-

genicity assessment in applications such as screening of novel

proteins introduced to genetically modified crops but also par-

ticularly suitable for allergen discovery on a large scale in appli-

cations such as whole-genome annotation and quick screening of

synthesized sequences.
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