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Abstract

Motivation: The evolution of proteins cannot be fully understood without taking into account the

coevolutionary linkages entangling them. From a practical point of view, coevolution between

protein families has been used as a way of detecting protein interactions and functional relation-

ships from genomic information. The most common approach to inferring protein coevolution

involves the quantification of phylogenetic tree similarity using a family of methodologies termed

mirrortree. In spite of their success, a fundamental problem of these approaches is the lack of an

adequate statistical framework to assess the significance of a given coevolutionary score (tree

similarity). As a consequence, a number of ad hoc filters and arbitrary thresholds are required in an

attempt to obtain a final set of confident coevolutionary signals.

Results: In this work, we developed a method for associating confidence estimators (P values) to

the tree-similarity scores, using a null model specifically designed for the tree comparison prob-

lem. We show how this approach largely improves the quality and coverage (number of pairs that

can be evaluated) of the detected coevolution in all the stages of the mirrortree workflow,

independently of the starting genomic information. This not only leads to a better understanding of

protein coevolution and its biological implications, but also to obtain a highly reliable and compre-

hensive network of predicted interactions, as well as information on the substructure of macromol-

ecular complexes using only genomic information.

Availability and implementation: The software and datasets used in this work are freely available

at: http://csbg.cnb.csic.es/pMT/.

Contact: pazos@cnb.csic.es

Supplementary Information: Supplementary data are available at Bioinformatics online.

1 Introduction

Coevolution is a widespread phenomenon with important implica-

tions at all biological levels. At the molecular level, coevolution

plays a fundamental role in key cellular systems, allowing their com-

ponents to change and evolve while maintaining their interactions

(Juan et al., 2013). Quantifying the ongoing coevolution between

different molecular features has been proposed as a proxy to predict

different types of interactions. Among the most successful

approaches are those applied for detecting protein–protein inter-

actions and functional relationships and, more recently, for the

accurate prediction of residue contacts in individual proteins

(Morcos et al., 2011; Jones et al., 2012).

The evolutionary histories of interacting protein partners are not

independent but entangled in many different ways. Coevolution-

based approaches benefit from this observation in order to detect

protein interactions. As the predictions are only based on the vast

amount of genomic and sequence information available nowadays,

these methods are suitable for the systematic detection of interactions

in a wide range of organisms, such as bacteria (Juan et al., 2008),

fungi (Clark et al., 2011) or human (Havugimana et al., 2012).
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Protein coevolution is reflected in different genomic and

sequence features (Juan et al., 2013). A popular approach for infer-

ring coevolution is to evaluate the similarity of phylogenetic trees.

Phylogenetic trees represent the putative evolutionary histories of

the corresponding protein families and, consequently, similar

protein trees imply similar evolutionary histories. This is the basis of

the mirrortree and related methods for detecting protein interactions

using genomic information [see (Juan et al., 2013) for a recent

review].

In its simplest form, mirrortree-related approaches represent a

phylogenetic tree of a family of orthologs as a distance matrix, and

quantify the similarity between two trees as the Pearson’s linear

correlation between the sets of values of their corresponding matri-

ces (Pazos and Valencia, 2001). In spite of their success in detecting

interactions, this approach has a number of ‘methodological’ and

‘biological’ problems, which were partially overcome with different

variations of the original method. On the methodological side, it is

well known that the internal codependencies between the values of

distances matrices burden the significance assessment of a given

correlation coefficient. The tabulated P values, regularly used to as-

sign correlation significances, assume the independence of the vec-

tors’ components. Since the distances in the phylogenetic trees

cannot freely change to adopt any possible value, strictly speaking,

these P values are not adequate, in spite of having shown an

improvement on the interaction prediction (Juan et al., 2008).

Another consequence of the incompleteness of this null model is that

these methods required a minimum number of organisms in com-

mon between the two trees (generally around 15) in order to take

into consideration a given correlation. This additional requisite

drastically decreases the coverage of the methods: the number of

protein pairs that can be evaluated. Moving into the biological prob-

lems, the distances within the matrices are also constrained by the

evolutionary characteristics of the trees they come from. For ex-

ample, the limits in the divergence between homologous sequences

constrain the observed distances to certain values. Moreover, tree

leaves corresponding to evolutionary close species will present a

strong tendency to be close in all phylogenetic trees regardless of the

proteins they represent, and vice versa for distant species. As a con-

sequence, all trees of orthologs have a certain level of similarity, be-

tween them and with the canonical species tree. This ‘background’

similarity, reflected in correlation values relatively higher even for

non-interacting pairs, has been corrected using external representa-

tions of the tree of life (Pazos et al., 2005; Sato et al., 2005) or

removing the common signal in a large collection of trees (Juan

et al., 2008). Another problem is related to the presence of redun-

dant taxa on the sets of organisms used for constructing the trees. As

the sequencing efforts are biased to certain organisms, phylogenetic

trees become populated in an unbalanced way. Indeed, previous

analyses have shown that using trees based on nonredundant sets of

organisms increased the performance of the basic mirrortree ap-

proach (Herman et al., 2011; Muley and Ranjan, 2012). Some of

these problems are alleviated in the recent context-based mirrortree

variations. These approaches use all pairwise tree similarities of a

given proteome to reassess a given coevolutionary signal, largely im-

proving the predictions (Juan et al., 2008). These context-based

approaches also help to disentangle direct coevolutionary signals

from those due to third proteins (indirect), which is important since

the latter are not always related to protein interactions. Indeed, in

the case of residue–residue coevolution, recent methods character-

ized by this capacity to filter indirect coevolutions are able to predict

contacts in protein structures with very high reliability when fed

with enough sequences (Morcos et al., 2011; Jones et al., 2012).

Here we propose a new approach, P-mirrortree (pMT), which

aims at correcting, in a single shot, all these problems associated

with the quantification of tree similarity and the assessment of its

significance. pMT generates null distributions of tree similarities

(correlation coefficients) obtained from large sets of shuffled phylo-

genetic trees from which empirical P values can be derived.

We show that this approach overcomes previous mirrortree ver-

sions and produces predictions of high quality and coverage, the lat-

est due to not requiring a threshold of minimum number of

organisms in common to evaluate tree similarity. The improvement

is particularly high when this approach is coupled to the modern

context-based methods. Moreover, pMT is largely insensitive to the

characteristics of the set of organisms used to build the trees (num-

ber and taxonomic redundancy).

In order to assess these improvements under different scenarios

of available genomic information, we perform a retrospective ana-

lysis of the predictive power of several mirrortree-based approaches

when fed with the genomic information available at different time

points in the past. Consequently, this work also evaluates, for the

first time, how the non-homogeneous exploration of the bacterial

taxonomy in terms of sequenced genomes affects the detection of

coevolution, and which trends are expected for the future.

2 Methods

We want to highlight some of the aforementioned problems, in

particular those associated to the sets of organisms used to generate

the trees and to the type of interactions aimed to predict, as well as

foresee the impact of these issues as more genomes are sequenced.

However, our main aim is to evaluate how the new pMT method

can alleviate these problems. For all that, we compared the perform-

ances of pMT and previous versions of mirrortree (MT) predicting

three types of interactions between Escherichia coli proteins by

using phylogenetic trees constructed with the genomes available at

different time points in the past. The different parts of the method

are detailed below.

2.1 Mirrortree
The basic mirrortree method (Pazos and Valencia, 2001) quantifies

the similarity between two phylogenetic trees of orthologs as the

Pearson’s correlation coefficient between the two corresponding

distance matrices. So, for two protein phylogenetic trees A and B

with n organisms in common, the mirrortree score would be

rAB ¼

Xn�1

i¼1

Xn

j¼iþ1

ðdAij � dAÞ � ðdBij � dBÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn�1

i¼1

Xn

j¼iþ1

ðdAij � dAÞ
2

vuut �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn�1

i¼1

Xn

j¼iþ1

ðdBij � dBÞ
2

vuut
(1)

where dAij is the distance between organisms i and j in the tree of

family A. dBij is the corresponding distance in tree B, and dA and

dB are the corresponding average values. Distances are obtained by

summing the lengths of the branches separating the two leaves

(organisms).

2.2 p-mirrortree
The goal of pMT is to associate a P value to a given rAB score by

comparing it to a null distribution of scores obtained for a large set

of shuffled pairs of trees with a similar number of organisms in com-

mon to that of A and B (n). The null distribution of tree similarities

of (mostly) noninteracting proteins constructed in this way is
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expected to reflect all the problems influencing the observed scores

commented in Section 1. Consequently tree similarities deviating

from this null distribution are expected to be meaningful.

The process is illustrated in Figure 1. It starts with a large collec-

tion of ‘background’ phylogenetic trees, those for all proteins in

E.coli in this case. All the pair-wise combinations between these

trees are generated and these tree pairs are split in different groups

depending on the number of organisms in common (Fig. 1). The size

of the groups is defined in a logarithmic scale to add more sensitivity

to the correlation changes in trees sharing a low number of leaves.

Depending on the total number of organisms used to model the trees

and the computational resources available, a smaller or larger num-

ber of groups can be used. For each of these groups, an iterative pro-

cess is carried out to obtain its corresponding null distribution of

tree similarities (Fig. 1). In each iteration, a pair of trees is randomly

sampled with replacement and the corresponding distance matrices

are retrieved from a pre-calculated pool. The sub-matrices contain-

ing only the distances between organisms shared by both trees are

extracted (Fig. 1). The values of the sub-matrices are converted to

z-scores so as to put them in the same scale. Once both matrices are

in the same scale, the distance values corresponding to a given or-

ganism are swapped between both families with a given probability.

Finally, the distance matrices are put back to their original scales

using the original mean and standard deviations, and completed

with the distances involving organisms not shared by the trees. This

part of the process can be seen as interchanging the branches corres-

ponding to a given organism between both trees (Fig. 1), although

everything is done with the distance matrices. The two resulting

modified matrices are returned to the pool in replacement of the ori-

ginal ones and are available for further iterations. Therefore, a given

matrix can swap organisms (rows/columns) multiple times with dif-

ferent matrices. After a number of iterations, the pool contains ran-

domly modified distance matrices but always limited to the distance

information available in other trees (Fig. 1). Finally, for each group,

all possible pairwise correlation coefficients are calculated (eq. 1

above) using these shuffled matrices, generating a null distribution

of tree similarities for that size group. Once these background distri-

butions are calculated, the significance of a given mirrortree correl-

ation coefficient obtained for a pair of (real) trees with a given

number of organisms in common can be evaluated by calculating

the probability (P value) of finding a higher coefficient in the corres-

ponding background distribution (Fig. 1). A low P value indicates a

tree similarity significantly higher than those observed between

shuffled trees with similar characteristics and, consequently, can be

interpreted as indicative of a meaningful coevolution.

For this particular work, we used 40 groups (intervals) of num-

ber of organisms in common and ran 1000 permutation steps with a

branch swapping probability of 0.05.

2.3 pMT as input for context-based methods
The P-value associated by pMT to each pair of proteins can be used

as input for the mirrortree context-based methods (Juan et al.,

2008). As originally formulated, these methods take as input the

whole network or pairwise tree similarities (Pearson’s correlations)

for a whole proteome. For a given protein, the vector containing all

the correlations with the rest of the proteome is called ‘co-evolution-

ary profile’. The ‘profile correlation’ method (PC) requantifies the

coevolution between two proteins as the Pearson’s correlation be-

tween their corresponding coevolutionary profiles. The ‘context-

mirror’ method (CM) calculates the partial correlation between two

profiles in relation to that of a third protein, aiming at discarding

non-specific coevolutionary signals shared between many proteins.

For this work, the PC and CM methods were applied using the ma-

trix of pairwise P values, instead of the original correlation

coefficients.

2.4 Generation of phylogenetic trees
Using the completely sequenced Eubacteria and Archaea genomes

available in KEGG (release 59.0, August 2011) (Kanehisa et al.,

2004), we created phylogenetic trees for all E.coli proteins.

Prokaryotic protein families, including both paralogs and orthologs,

were retrieved for each protein directly from the orthology groups in

KEGG (KO groups). In order to select a single ortholog for each or-

ganism, we took the sequence best ranked against the original E.coli

protein on the precalculated lists of ‘BLAST best bi-directional hits’

stored in KEGG. These sets of orthologs were aligned with

MUSCLE (Edgar, 2004) using default parameters. For each of the

resulting multiple sequence alignments (MSAs), a phylogenetic tree

was created using the neighbor-joining algorithm implemented in

TreeBeST (Edgar, 2004), again running this program with default

parameters. This produced a final set of 2844 phylogenetic trees.

Fig. 1. Overview of the pMT methodology. In the first step, all the possible

pairs of phylogenetic trees are split into groups (cylinders) based on the num-

ber of organisms in common. For each group, a number of iterations of a dis-

tance swapping procedure are run in order to randomize the trees present in

the set. In each iteration, a random pair of trees is selected and standardized

(bring to the same scale) based on the distances between sequences belong-

ing to the organisms in common. Rows/columns with the distances involving

a given organism (‘4’ in the example) are swapped between the two matrices

with a given probability. The resulting matrices are de-standardized to restore

their original scales. Both phylogenetic trees are introduced again in the pool

of trees for further iterations. The final set of shuffled trees is used to calculate

the background distribution of tree similarities. These distributions are used

to quantify the statistical significance of an observed tree similarity score
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The corresponding matrices of cophenetic distances were generated

by summing the length of the branches separating each pair of

organisms in these trees, as explained above.

2.5 Historical sets of reference organisms and trees
For each year, from 1995 to 2010, we created two sets of reference

organisms, ‘redundant’ and ‘nonredundant’. The ‘redundant’ set

contains all the fully sequenced prokaryotic organisms deposited in

KEGG in a particular year. The ‘nonredundant’ set was obtained

from it by removing the evolutionary close organisms. In order to do

that, for a given pair of organisms the pair-wise identities between

their orthologous sequences were calculated from the aforemen-

tioned MSAs. If the two proteomes have more than 70% of the

orthologs with 95% or more sequence identity, one of them is

excluded. We ran this iterative process starting from the organism

with the highest sequence identity with E.coli to that with the low-

est. The number of organisms for each year within both datasets is

shown in Supplementary Figure S1. We discarded the period

1995–1999 for the forthcoming analysis due to the low number of

organisms available at these years.

For each distance matrix obtained with the genomes available in

2011, ‘historical’ versions were derived by keeping only the organ-

isms (rows and columns) available in a particular year. This is done

for both the ‘redundant’ and ‘nonredundant’ year-based sets.

Neither the original MSAs nor the trees are recalculated, they are

only ‘trimmed’ leaving only the sequences available at a given year.

So, for each E.coli protein, we ended up with 22 distance matrices

that try to reflect what a user would had obtained for each of the

11 years using redundant and non-redundant versions of the set of

genomes available each year. These year-based sets of matrices can

be used as input for the mirrortree, tol-mirrortree and pMT methods

so as to ‘simulate’ a genome-wide prediction of interactions using

the genomic information available at a particular year.

2.6 Tol-mirrrotree
In order to compare pMT with a mirrortree variant which explicitly

corrects the background similarity due to speciation, we applied the

tol-mirrortree (tol-MT) method to the same datasets. tol-MT (Pazos

et al., 2005) corrects the distance matrices of both proteins (dA and

dB in Equation (1)) with the overall phylogenetic distances between

species in an attempt to correct the background tree similarity due

to speciation.

In order to generate the species tree, the 16S rRNA genes for the

species within our dataset were retrieved from KEGG (K01977 ortho-

logs group) and aligned with MAFFT (Katoh and Standley, 2013)

(default options). When more than one 16S rRNA gene is present in a

given species, that with the highest identity (calculated from the align-

ment above) with E.coli b0201 is chosen as the putative ortholog.

The set of genes is not realigned after this filtering. A phylogenetic

tree is generated from this alignment with FasttTree (Price et al.,

2010) (options ‘-nt’ and ‘-gtr’). Distances between species are

extracted from this tree as described previously for the protein trees.

The protein family whose tree is most similar to the species tree

(highest correlation) and contains 90% or more of the species is

taken as the ‘molecular clock’ to calculate the ratio between nucleic

acid and protein distances. This ratio is used for rescaling the 16S

rRNA distances before subtracting them from each protein’s

distances (Pazos et al., 2005), and is calculated as the average of the

rRNA distances over that of the protein distances for that molecular

clock family. This is done for each historical dataset independently

to get closer to the real scenarios where not all proteins/species are

available at a given time point.

2.7 Performance evaluation
For a given set of distance matrices, the three methods produce a list

of protein pairs sorted by their corresponding scores which aim to

quantify the coevolution between the two proteins of the pair (raw

Pearson’s correlation for MT and tol-MT, and P value for pMT).

Pairs involving homologous proteins (those within the same KO

group of KEGG) are excluded for this evaluation since they can

eventually point to the same orthologs and consequently have identi-

cal trees in spite of not being interacting, which would produce

artifacts in the evaluation. For comparative purposes, only the pairs

with predictions in the four sets (MT/tol-MT versus pMT and

redundant versus nonredundant) are evaluated. Each pair in these

lists can be labeled as ‘positive’ (interacting) or ‘negative’ (noninter-

acting) according to different interaction criteria. In this work we

used three different independent gold standard datasets containing

different types of physical and funtional interactions for the model

organism E.coli:

• Binary physical: direct binary physical interactions obtained

from MPIDB (Goll et al., 2008). These interactions were manu-

ally curated from the literature or imported from other data-

bases. This version of the database contains 2103 binary

interactions between 1538 different E.coli proteins.
• Complexes: physical interactions inferred by copresence in the

same macromolecular complex. These physical interactions may

be direct or not (i.e. two proteins in the same complex but not

‘touching’ each other). The protein complexes are experimentally

determined and extracted from the EcoCyc databases (Keseler

et al., 2005). The set includes 1354 pairs between 591 proteins.
• Pathways: functional interactions inferred as co-presence in the

same metabolic pathway as defined in EcoCyc. This dataset

comprises 4491 pairs between 719 proteins.

These datasets describe only ‘positive’ cases. For each of them,

the corresponding negative set was constructed by generating all

possible pairs between the proteins reported in the set, excluding

those pairs already reported as interacting. The sorted lists of pairs

generated by each method, once the pairs are labeled as ‘positive’ or

‘negative’ following the aforementioned criteria, can be subject to

different analysis aimed at assessing the capacity of the methods’

scores to separate positives from negatives. In this case, we

performed ROC analysis (Fawcett, 2006), and calculated the

F-measure and the accuracy of the top-N pairs.

3 Results

3.1 Specific versus general NULL model
Previous versions of mirrortree [i.e. (Pazos and Valencia, 2001)]

either disregard the P values associated to the correlation scores or

use those calculated analytically, or derived from random sets of

numbers, that do not fulfill the properties of tree-based distances

(‘tabulated P values’). In order to get insight into the differences be-

tween these and the pMT P values, specifically derived for the

genomic tree comparison problem, and better understand the prob-

lems the former were producing, we compared the null distributions

obtained by both approaches.

In Figure 2A and Supplementary Figure S2 some of these pMT

distributions used to extract P values obtained for the genomes

available at different years are compared with the equivalent
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distributions of correlations between sets of random numbers. The P

values used in previous versions of mirrortree would indeed be

obtained from these latest distributions (bluish in the figures). It is

clear that these two types of distributions (correlations between sets

of random numbers—blue- and between trees—red-) are largely

different. As expected, the average correlation coefficient between

sets of random numbers is always 0. Moreover, as the size of the sets

increases, the probability of obtaining ‘extreme correlations’, either

positive or negative, decreases, leading to slightly narrower distribu-

tions. These general observations are not extended to the correlation

coefficients calculated using distance matrices of permuted trees. As

previously described, phylogenetic trees tend to share a background

similarity and, consequently, the distributions of correlations are

always shifted to high values and not centered in 0. Moreover, the

correlation value at which these distributions are centered depends

on the number of points being correlated (proportional to the num-

ber of organisms in common between both trees) and, in general,

gets lower as trees with more organisms in common are being com-

pared. This means that higher correlation values are expected by

chance for smaller trees. Not only the average value but also the

shape of the distributions varies largely with the number of organ-

isms. Pairs of trees with a small set of organisms in common present

a very wide range of correlation coefficients, whereas pairs of trees

sharing many orthologs tend to present a narrower range of correl-

ations (Fig. 2A and Supplementary Fig. S2).

3.2 pMT versus mirrortree and tol-MT
We compared the performance of pMT with that of the original

mirrortree (MT) and one of its variants, tol-MT, in predicting differ-

ent types of interactions using the set of organisms available in the

period 2000–2010, as well as their nonredundant versions (see

Section 2 for details). The historical datasets allow not only to com-

pare these approaches and assess how the characteristics of the set

of organisms (in terms of redundancy, etc.) affect their perform-

ances, but also to foresee how these methods will work in the future

with the current trend of genome sequencing efforts.

The performances of these methods when predicting two differ-

ent types of physical interactions are shown in Figure 2 (panels

B–D). The ROC analysis confirms the ability of all these methods

based on phylogenetic tree similarity to capture part of the

coevolutionary signal related to protein interactions. The general

trends observed suggest that protein interaction predictions benefit

from the increase in the number of sequenced genomes. Indeed, this

trend has not reach a plateau, so further improvement can be ex-

pected over the following years. Predicted interactions defined as

those belonging to the same macromolecular complex present the

highest performances, followed by binary physical interactions.

Functional interactions based on copresence in same metabolic path-

way present poor and constant AUCs (Supplementary Fig. S3), sug-

gesting that coevolution may not be a generalized process between

the proteins of the same pathways, although the artificial and broad

definition of ‘pathway’ might also be affecting these results.

The performance of pMT when predicting physical interactions

using the organisms available during the explored 10 years is higher

than that of MT (0.10–0.15 increase of AUC) (Fig. 2). The perform-

ance of tol-MT lies in the middle between the original MT and the

new pMT. The performance of pMT is more stable over time and

has a much lower dependence on the number of available genomes.

MT performances improve when using ‘nonredundant’ sets, con-

firming previous observations (Herman et al., 2011). Indeed, the

performance gap between the ‘redundant’ and ‘nonredundant’ sets

becomes larger as taxonomical redundancy increases over time

(Fig. 2 and Supplementary Fig. S1). Interestingly, pMT is much

more robust when dealing with redundancy, reflected in a very small

difference between the redundant and non-redundant sets which,

additionally, remains constant over time.

Supplementary Figure S7 shows the dependence of two com-

monly used performance figures (‘positive predictive value’ –PPV-

and F-measure) of the P value cutoff taken. It can be seen, for

example, that a P value cut of 0.005 renders the best equilibrium of

positive/negative recovery, as quantified by the F-measure.

A common shortcut in previous mirrortree and related

approaches is to ignore the protein pairs with less than a given num-

ber of organisms in common, generally 15. We evaluated the histor-

ical MT and pMT performances with this limitation (Supplementary

Figure S4). pMT performance is only slightly improved by this add-

itional constraint, indicating that this method is able to efficiently

deal with the comparison of trees with a low number of organisms

in common. As expected, the original MT method takes advantage

of this constraint. Nevertheless, the performance starts to drop dras-

tically at a certain number of sequenced organisms for both ‘redun-

dant’ (around 2003) and ‘nonredundant’ (2006) sets, indicating that

the threshold of a minimum number of organisms, which so far has

been usually fixed at 15, would have to be adapted to the set of

Fig. 2. Prediction performances. (A) Density functions for the distribution of

correlation coefficients in sets of random pairs of numbers and sets of dis-

tances extracted from pairs of permuted phylogenetic trees. The genomes

available in 2010 were used as reference to generate shuffled trees for E.coli

proteins and the corresponding distributions of tree similarities (red) were

calculated for the pairs of trees sharing different numbers of organisms in

common (between brackets). Those distributions were compared with

equivalent ones generated from random sets of numbers in the same size

intervals (blue). Equivalent plots for the remaining years are available in the

Supplementary Figure S2. (B) Performance of the MT, tol-MT, and pMT meth-

ods when predicting co-membership to the same macromolecular complexes

using the fully-sequenced genomes available in the period 2000–2010. The

performance was evaluated in terms of AUC. (C, D) Effect of the organism re-

dundancy on the MT and pMT performances predicting comembership to the

same macromolecular complexes and binary physical interactions
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available organisms so as to obtain the optimal performance. As

more organisms are available, this threshold needs to be more

restrictive (higher).

The main problem of imposing a threshold of minimum number

of organisms in common is the tremendous loss in coverage (number

of pairs that can be evaluated) (Supplementary Fig. S4). For ex-

ample, using the 198 organisms available in 2004, from the 215 026

pairs that can be evaluated without imposing any threshold, only

122 518 can be calculated when more than 15 organisms are

required (43% loss in coverage).

3.3 Context pMT
We evaluate the improvement that the use of these pMT P values

produces in mirrotree-based methods by analyzing their effect on

the results of the more advanced implementations, i.e. ‘context

methods’ (PC and CM, (Juan et al., 2008)). When these methods are

applied to the 2011 set of KEGG genomes (see Section 2) both PC

and CM fed with pMT scores (pPC and pCM) perform better

than their standard implementations with raw correlation values

(Fig. 3A). This is evident in both the global discriminative capacity

evaluated by the ROC analysis (Fig. 3A) and in the accuracy of the

top-N pairs (Supplementary Fig. S5).

3.4 Detailed evolutionary analysis of macromolecular

complexes
To illustrate the capacity of these methods not only to detect inter-

acting pairs but also to obtain detailed information on macromol-

ecular complexes, we show the results of the analysis of the

coevolutionary relationships between the members of the E.coli

ATP synthase obtained with these new approaches. The tree in

Figure 3B shows a hierarchical clustering of the pairwise PC scores

(based on P values –pPC-) for the eight members of this membrane

macromolecular complex. This tree highlights the hierarchical

coevolutionary relationships between these proteins. If we examine

the clearest partition of the tree (that rendering three clusters), we

can see a cluster containing the ‘a’ and ‘c’ subunits, a second cluster

formed by the subunit ‘b’ alone, and a third cluster containing the

five different members of the F1 particle (greek letters). These results

are in agreement with the three-dimensional model of the ATP syn-

thase, in which the ‘a’ and ‘c’ subunits are embedded in the mem-

brane forming the proton pore, the F1 particle is the cytosolic

machinery in charge of the ADP phosphorylation, and the subunit

‘b’ connects both sub-complexes (Fig. 3B). Consequently, this

coevolutionary analysis generates clues on the architecture of the

macromolecular complex, using only sequence information.

3.5 E.coli coevolutionary network
The whole coevolutionary network for E.coli obtained with this

new approach is available as Supplementary File 1. This file can be

interactively inspected with Cytoscape v.3 (www.cytoscape.org). An

interactive representation of the same network is available online at

http://csbg.cnb.csic.es/colievolution.

This network contains the coevolutionary relationships between

E.coli proteins obtained with CM fed with pMT P values (pCM,

level 10 of coevolutionary specificity (Juan et al., 2008)) and a par-

tial correlation cutoff of 0.56. The provided network contains add-

itional information to contrast the predictions, such as detailed

information on the proteins and different interaction evidences for

the pairs. The clusters of proteins within this coevolutionary net-

work are colored according with the results of an enrichment ana-

lysis of GeneOntology terms (Harris et al., 2004). Inspecting these

functional features in the network, it becomes evident that this new

coevolution-based approach can produce a reliable genome-wide

network of interactions and functional relationships and, conse-

quently, provide insight into the underlying biological processes, all

using only sequence information.

4 Discussion

Coevolution takes place at all biological levels (species, proteins,

amino-acids, . . . ) (Juan et al., 2013). This evolutionary linkage be-

tween the biological entities is crucial for maintaining relationships

and interactions while allowing the two partners to evolve and

change. In this sense, coevolution is fundamental for evolutionary

innovation.

At the molecular level, protein coevolution has provided a

wealth of information about different systems. Recent advances on

the detection of residue contacts have joined the detection of protein

interactions as some of the most popular applications based on

coevolution. For a recent review see (Juan et al., 2013).

The maturity of coevolution-based approaches, together with

the increase in the genomic information that feeds them, has led in

recent years to the quotidian application of these approaches to

many protein families of interest, in many cases directing or

Fig 3. Results of pMT coupled with context-based methods. (A) ROC plot comparing the performance of the context methods (PC and CM) when fed with the ori-

ginal mirrortree raw score (Pearson’s correlation) and with pMT p values (pPC and pCM). The inset contains a zoomed view of the ROC region corresponding to

the top scores of the methods. The AUC values for these ROC curves are: PC (0.83), CM (0.85), pPC (0.85), and pCM (0.89). (B) Coevolutionary analysis of the eight

subunits of the E.coli ATP synthase. The hierarchical clustering of the pPC profiles of the subunits is calculated using Ward’s minimum variance algorithm. The

three-dimensional representation of the E.coli ATP synthase was composed based on the structures available (PDB ids: 2A7U, 1C17, 1E79, 1L2P)
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combined with experimental approaches. See for example (Edgar

et al., 2012; Havugimana et al., 2012; Sandler et al., 2013; Zamir

et al., 2012), and (Ochoa and Pazos, 2014) for a review.

Nevertheless, the observed protein–protein coevolution, quanti-

fied as the similarity of the corresponding phylogenetic trees, is

influenced by many factors complicating the disentanglement of

those more directly related to the interaction.

The results presented here demonstrate that the prediction of

protein interactions at different levels (pairs, complexes, and whole

networks) is clearly improved when the statistical confidence of the

pairwise tree similarity is evaluated based on a background distribu-

tion of tree similarities. Assessing the significance of a given tree

similarity using this distribution of expected correlations corrects, in

a natural way, many of the confounding factors that affect the per-

formance of the original MT, including the background similarity

due to the underlying speciation process, the redundancy of the set

of organisms used for building the trees and the different range of

organisms in which the two proteins are present. Previous attempts

to correct these factors implied workarounds, pre- and post-filtering,

arbitrary thresholds and other ad-hoc heuristic approaches. pMT in-

trinsically corrects all these factors producing an estimation of the

likelihood of the co-evolution under a solid statistical framework.

This is especially important taking into account that the genomic in-

formation used as input by these methods will change constantly

due to the stream of newly sequencing genomes. Whereas heuristic

approaches would have to change and adapt constantly to these new

data, our results show how pMT is robust to this change in the input

genomic information.

The pMT method does not require an artificial threshold on the

minimum number of organisms to evaluate a given pair of trees.

Leaving apart the difficulty in deciding such a threshold (which de-

pends on the characteristics of the dataset, as we show), not requir-

ing it has two main advantages, both related with the increase in

coverage (number of pairs that can be evaluated). On one hand, the

results are not biased to ‘central’ proteins: these proteins involved in

core cellular processes are present in many organisms and conse-

quently pairs involving them would more probably pass that thresh-

old of minimum number of organisms. On the other hand, that

increase in coverage is crucial to the context-based methods, which

use the whole network of pair-wise tree similarities as input. With

pMT this network is much more populated and that, together with

the intrinsic better performance of pMT at the pair level, makes

these context-based approaches render better results when coupled

with pMT.

This new method is not only better for detecting interacting

pairs, but can be used to get insight into the substructure and func-

tioning of macromolecular complexes (as illustrated for the

ATPase), as well as to obtain a highly reliable network of protein

interactions at a genomic scale (as exemplified by the E.coli network

generated here). In the latter case, the pMT method presented here

is crucial since previous approaches were either highly reliable but

presented a low coverage, or the other way around. pMT has a high

performance, specially when coupled with context based methods,

and can be applied to pairs of trees never explored before (e.g. those

with a small number of species in common).

These improvements and advantages come at no cost in terms of

applicability, since no additional restrictions are required to run

pMT, apart from the contextual information necessary to generate

the null distributions (‘background’ set of trees). As presented in this

work, this can be seen as a drawback since trees for the whole prote-

ome of interest are required to be used as background. On one

hand, this is common to previous context-based approaches. On the

other hand, it remains to be explored whether other more restricted

sets of trees can eventually be used as background (e.g. trees for the

membrane proteins or for those in a given biological process) with

better results, as they could serve as a better background for repre-

senting the characteristics of the system of interest.

As a side result, the historical perspective of our analysis allows

to foresee a continuous increase in the performance of co-evolution

based approaches as more genomes are sequenced, highlighting the

value of the ongoing genome sequencing projects.

There is a plethora of approaches based on the original mirror-

tree method (see (Juan et al., 2013) for a review). The results pre-

sented here indicate that the pMT approach, which touches the base

of the methodology itself, could improve all of them. That was the

case for the two context-based mirrortree variations evaluated here.

Although all the quantification of performances presented are based

on the method’s ability to detect interactions, we are confident that

this approach goes beyond the ‘practical’ applicability in interaction

prediction, and will serve to better understand the complex phenom-

enon of protein coevolution as well.
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