
Vol. 31 no. 2 2015, pages 166–169
BIOINFORMATICS ORIGINAL PAPER doi:10.1093/bioinformatics/btu638

Genome analysis Advance Access publication September 25, 2014

HTSeq—a Python framework to work with high-throughput

sequencing data
Simon Anders*, Paul Theodor Pyl and Wolfgang Huber
Genome Biology Unit, European Molecular Biology Laboratory, 69111 Heidelberg, Germany

Associate Editor: Michael Brudno

ABSTRACT

Motivation: A large choice of tools exists for many standard tasks

in the analysis of high-throughput sequencing (HTS) data. However,

once a project deviates from standard workflows, custom scripts are

needed.

Results: We present HTSeq, a Python library to facilitate the rapid

development of such scripts. HTSeq offers parsers for many

common data formats in HTS projects, as well as classes to represent

data, such as genomic coordinates, sequences, sequencing reads,

alignments, gene model information and variant calls, and provides

data structures that allow for querying via genomic coordinates.

We also present htseq-count, a tool developed with HTSeq that

preprocesses RNA-Seq data for differential expression analysis by

counting the overlap of reads with genes.

Availability and implementation: HTSeq is released as an open-

source software under the GNU General Public Licence and available

from http://www-huber.embl.de/HTSeq or from the Python Package

Index at https://pypi.python.org/pypi/HTSeq.

Contact: sanders@fs.tum.de

Received on February 27, 2014; revised on August 18, 2014; accepted

on September 21, 2014

1 INTRODUCTION

The rapid technological advance in high-throughput sequencing

(HTS) has led to the development of many new kinds of assays,

each of which requires the development of a suitable bioinfor-

matical analysis pipeline. For the recurring ‘big tasks’ in a typical

pipeline, such as alignment and assembly, the bioinformatics

practitioner can choose from a range of standard tools. For

more specialized tasks, and to interface between existing tools,

customized scripts often need to be written.
Here we present HTSeq, a Python library to facilitate the rapid

development of scripts for processing and analysing HTS data.

HTSeq includes parsers for common file formats for a variety of

types of input data and is suitable as a general platform for a

diverse range of tasks. A core component of HTSeq is a con-

tainer class that simplifies working with data associated with

genomic coordinates, i.e. values attributed to genomic positions

(e.g. read coverage) or to genomic intervals (e.g. genomic fea-

tures such as exons or genes). Two stand-alone applications de-

veloped with HTSeq are distributed with the package, namely

htseq-qa for read quality assessment and htseq-count for prepro-

cessing RNA-Seq alignments for differential expression calling.

Most of the features described in the following sections have

been available since the initial release of the HTSeq package in

2010. Since then, the package and especially the htseq-count

script have found considerable use in the research community.

The present article provides a description of the package and also

reports on recent improvements.
HTSeq comes with extensive documentation, including a

tutorial that demonstrates the use of the core classes of HTSeq

and discusses several important use cases in detail. The documen-

tation, as well as HTSeq’s design, is geared towards allowing

users with only moderate Python knowledge to create their

own scripts, while shielding more advanced internals from the

user.

2 COMPONENTS AND DESIGN OF HTSeq

2.1 Parser and record objects

HTSeq provides parsers for reference sequences (FASTA), short

reads (FASTQ) and short-read alignments (the SAM/BAM

format and some legacy formats), and for genomic feature, an-

notation and score data (GFF/GTF, VCF, BED and Wiggle).
Each parser is provided as a class whose objects are tied to a

file name or open file or stream and work as iterator generators,

i.e. they may be used in the head of a for loop and will yield a

sequence of record objects that are taken up by the loop variable.

These record objects are instances of suitable classes to represent

the data records. Wherever appropriate, different parsers will

yield the same type of record objects. For example, the record

class SequenceWithQualities is used whenever sequencing read

with base-call qualities needs to be presented, and hence

yielded by the FastqParser class and also present as a field

in the SAM_Alignment objects yielded by SAM_Reader or

BAM_Reader parser objects (Fig. 1). Specific classes

(GenomicPosition and GenomicInterval) are used to represent

genomic coordinates or intervals, and these are guaranteed to

always follow a fixed convention (namely, following Python con-

ventions, zero-based, with intervals being half-open), and parser

classes take care to apply appropriate conversion when the

input format uses different convention. The same is true for

functions to write files.
To offer good performance, large parts of HTSeq are written

in Cython (Behnel et al., 2011), a tool to translate Python code

augmented with type information to C. While the code for read-

ing and writing all text-based formats, including text SAM files,

is written in Python/Cython and hence has no external depen-

dencies, the classes BAM_Reader and BAM_Writer wrap around*To whom correspondence should be addressed.

� The Author 2014. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which

permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/31/2/166/2366196 by guest on 20 M
arch 2024

http://www-huber.embl.de/HTSeq
https://pypi.python.org/pypi/HTSeq
mailto:sanders@fs.tum.de
``
''
s
 in order
s
sis of
high-throughput sequencing (
)
,
,
,
,
,
 which
,
XPath error Undefined namespace prefix


functionality from PySam (http://code.google.com/p/pysam/)

and are available only if that package has been installed.
The SAM_Alignment class offers functionality to facilitate

dealing with complex, e.g. gapped, alignments (Fig. 1b), with
multiple alignments and with paired-end data. The latter is chal-

lenging because, in the SAM format, an alignment of a read pair
is described by a pair of alignment records, which cannot be

expected to be adjacent to each other. HTSeq provides a func-

tion, pair_SAM_alignments_with_buffer, to pair up these records
by keeping a buffer of reads whose mate has not yet been found,

and so facilitates processing data on the level of sequenced frag-

ments rather than reads.

2.2 The GenomicArray class

Data in genomics analyses are often associated with positions on
a genome, i.e. coordinates in a reference assembly. One example

for such data is read coverage: for each base pair or nucleotide of

the reference genome, the number of read alignments overlap-
ping that position is stored. Similarly, gene models and other

genomic annotation data can be represented as objects describing

features such as exons that are associated with genomic intervals,
i.e. coordinate ranges in the reference.

A core component of HTSeq is the class GenomicArray, which
is a container to store any kind of genomic-position–dependent

data. Conceptually, each base pair position on the genome can
be associated with a value that can be efficiently stored and

retrieved given the position, where the value can be both a

scalar type, such as a number, or a more complex Python
object. In practice, however, such data are often piecewise con-

stant, and hence, the class internally uses a tree structure to store

‘steps’, i.e. genomic intervals with a given value. This has been im-
plemented in C++, building on the map template of the C++

standard library, which is typically realized as a red–black tree

(Josuttis, 1999). To link C++ and Python code, we used SWIG

(Beazley et al., 1996). Alternatively, the class also offers a storage

mode based on NumPy arrays (van der Walt et al., 2011) to

accommodate dense data without steps. If such data become

too large to fit into memory, NumPy’s memmap feature may

be used, which swaps currently unused parts of the data out to

disk. The choice of storage back-end is transparent, i.e. if the user

changes it, no changes need to be made in the code that uses

the GenomicArray objects.

A subclass of GenomicArray, the GenomicArrayOfSets is suit-

able to store objects associated with intervals that may overlap,

such as genes or exons from a gene model reference. This is

implemented using Python sets (Fig. 2): Each step’s value is a

set of references to the actual objects. When data are inserted

into the array, steps get split and sets get duplicated as needed.

When querying an interval, the sets overlapped by the query

interval are returned, and their union will contain all objects

overlapped by the query interval.

3 DOCUMENTATION AND CODING STRATEGIES

HTSeq comes with extensive documentation to guide developers.

Care has been taken to expect only moderate experience with

Python from the reader. A ‘Tour’ offers an overview over the

classes and principles of HTSeq by demonstrating their use in

simple examples. Then, two common use cases are discussed in

detail to show how HTSeq can be applied to complex tasks.
The first use case is that of aggregate coverage profiles: given

ChiP-Seq data, e.g. from histone marks, we want to calculate

the profile of these marks with respect to specific positions

in the genome, such as transcription start sites (TSSs), by align-

ing coverage data in windows centred on the TSSs and

averaging over the TSSs of all genes or a subset thereof.

In this use case, one needs to integrate information from two

position-specific data sources, namely a list of TSSs obtained

from annotation data and the aligned reads. Hence, one may

either iterate through the reads first, store this information in a

GenomicArray and then use position-specific access to it when

iterating through the list of TSSs, or, first store the TSSs in a

GenomicArray and use this afterwards when iterating through

the reads. In either case, one dataset is kept in memory in

a form allowing for fast random access, whereas the other is

iterated through with only summary information being kept.

0625050 02

1000 1020 1320 1350 1358

(a) (b) 20M300N30M2I8M

type
M
N
M

I
M

size
20

300
30
2
8

query
0–20

20–20
20–50
50–52
52–60

reference
chrl: 1000–1020
chrl: 1020–1320
chrl: 1320–1350
chrl: 1350–1350
chrl: 1350–1358

Fig. 1. (a) The SAM_Alignment class as an example of an HTSeq data

record: subsets of the content are bundled in object-valued fields, using

classes (here SequenceWithQualities and GenomicInterval) that are also

used in other data records to provide a common view on diverse data

types. (b) The cigar field in a SAM_alignment object presents the detailed

structure of a read alignment as a list of CigarOperation. This allows for

convenient downstream processing of complicated alignment structures,

such as the one given by the cigar string on top and illustrated in the

middle. Five CigarOperation objects, with slots for the columns of

the table (bottom) provide the data from the cigar string, along with

the inferred coordinates of the affected regions in read (‘query’) and

reference

{A,B} {B} {}{A}{ }{A}{ }

A A

B

Fig. 2. Using the class GenomicArrayOfSets to represent overlapping an-

notation metadata. The indicated features are assigned to the array,

which then represents them internally as steps, each step having as

value a set whose elements are references to the features overlapping

the step

167

HTSeq

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/31/2/166/2366196 by guest on 20 M
arch 2024

http://code.google.com/p/pysam/
is
,
are
,
-
-
is
``
''
,
-
s
,
-
is
s
``
''
ile


These approaches are prototypical for scripts built on HTSeq
and hence explained and demonstrated in detail in the documen-
tation (Section ‘A detailed use case: TSS plots’).

The second use case discussed in detail is that of counting
for each gene in a genome how many RNA-Seq reads map to
it. In this context, the HTSeq class CigarOperation is demon-

strated, which represents complex alignments in a convenient
form (Fig. 1b). This section of the documentation also explains
HTSeq’s facilities to handle multiple alignments and paired-end

data.
The remainder of the documentation provides references for

all classes and functions provided by HTSeq, including those

classes not used in the highlighted use cases of the tutorial
part, such as the facilities to deal with variant call format

(VCF) files.

4 HTSEQ-COUNT

We distribute two stand-alone scripts with HTSeq, which can be

used from the shell command line, without any Python know-
ledge, and also illustrate potential applications of the HTSeq
framework. The script htseq-qa is a simple tool for initial quality

assessment of sequencing runs. It produces plots that summarize
the nucleotide compositions of the positions in the read and the
base-call qualities.

The script htseq-count is a tool for RNA-Seq data analysis:
Given a SAM/BAM file and a GTF or GFF file with gene
models, it counts for each gene how many aligned reads overlap

its exons. These counts can then be used for gene-level differen-
tial expression analyses using methods such as DESeq2 (Love
et al., 2014) or edgeR (Robinson et al., 2010). As the script

is designed specifically for differential expression analysis, only
reads mapping unambiguously to a single gene are counted,

whereas reads aligned to multiple positions or overlapping with
more than one gene are discarded. To see why this is desirable,
consider two genes with some sequence similarity, one of which

is differentially expressed while the other one is not. A read that
maps to both genes equally well should be discarded, because if
it were counted for both genes, the extra reads from the differ-

entially expressed gene may cause the other gene to be wrongly
called differentially expressed, too. Another design choice made

with the downstream application of differential expression test-
ing in mind is to count fragments, not reads, in case of paired-
end data. This is because the two mates originating from the

same fragment provide only evidence for one cDNA fragment
and should hence be counted only once.
As the htseq-count script has found widespread use over the

past 3 years, we note that we recently replaced it with an over-
hauled version, which now allows processing paired-end data
without the need to sort the SAM/BAM file by read name

first. See the documentation for a list of all changes to the
original version.

5 DISCUSSION

HTSeq aims to fill the gap between performant but monolithic
tools optimized for specialized tasks and the need to write data
processing code for HTS application entirely from scratch.

For a number of the smaller tasks covered by HTSeq, good

stand-alone solutions exist, e.g. FastQC (http://www.bioinfor-
matics.babraham.ac.uk/projects/fastqc/) for quality assessment
or Trimmomatic (Bolger et al., 2014) for trimming of reads. If

the specific approaches chosen by the developers of these tools
are suitable for a user’s application, they are easier to use.
However, the need to write customized code will inevitably

arise in many projects, and then, HTSeq aims to offer advantages
over more narrow programming libraries that focus on specific
file formats, e.g. PySam and Picard (http://picard.sourceforge.

net/) for SAM/BAM files, by integrating parsers for many
common file formats and fixing conventions for data interchange
between them. For R developers, similar functionality is now

available within the Bioconductor project (Gentleman et al.,
2004) with packages like Rsamtools and GenomicRanges
(Lawrence et al., 2013). Within Python, HTSeq complements

Biopython (Cock et al., 2009), which provides similar function-
ality for more ‘classic’ bioinformatics tasks such as sequence
analysis and phylogenetic analyses but offers little support for
HTS tasks.

Although most uses of HTSeq will be the development of
custom scripts for one specific analysis task in one experiment,
it can also be useful for writing more general tools. The htseq-

count script, for example, prepares a count table for differential
expression analysis, a seemingly easy task, which, however, be-
comes complicated when ambiguous cases have to be treated

correctly. Despite being written in Python, htseq-count offers
decent performance: Tested on a standard laptop computer,
htseq-count (version 0.6.1) processed about 1.2 million reads

(0.6M read pairs) per minute, using about 250MB of RAM to
hold the human gene annotation in memory. When the file was
sorted by position rather than read name, so that mate pairs were

not in adjacent records, processing time increased to a bit less
then twice as much, and, for a SAM file of 26GB, less than
450MB of additional space in RAM were needed for the

buffer holding reads with outstanding mates.
When HTSeq was first released in 2010, htseq-count was the

first comprehensive solution for this task, and has since then

been widely used. Recently, further tools for this task have
become available, including the summarizeOverlap function in
the GenomicRanges Bioconductor package (Lawrence et al.,

2013) and the stand-alone tool featureCount (Liao et al., 2014),
which achieves fast runtimes because of being implemented in C.
In a recent benchmark, Fonseca et al. (2014) compared

htseq-count with these other counting tools and judged the
accuracy of htseq-count favourably. Nevertheless, neither htseq-
count nor the other tools offer much flexibility to deal with spe-

cial cases, which is why the HTSeq documentation (section
‘Counting reads’) discusses in detail how users can write their
own scripts for this important use case.

Interval queries are a recurring task in HTS analysis problems,
and several libraries now offer solutions for different program-
ming languages, including BEDtools (Quinlan and Hall, 2010;

Dale et al., 2011) and IRanges/GenomicRanges (Lawrence et al.,
2013). Typically, these methods take two lists of intervals and
report overlaps between them. HTSeq uses a different paradigm,

namely that one list of intervals is read in and stored in a
GenomicArrayOfSets object, and then the other intervals are
queried one by one, in a loop. This explicit looping can

be more intuitive; one example is the read counting problem

168

S.Anders et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/31/2/166/2366196 by guest on 20 M
arch 2024

``
''
-
 --
which
s
il
l
three
s
s
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
s
http://picard.sourceforge.net/
http://picard.sourceforge.net/
``
''
While
about 
about 
-
less than 
very 
due to
``
''


discussed above, where split reads, gapped alignments, ambigu-
ous mappings, etc. cause much need for treatment of special
cases that is addressed by branching statements within the
inner loop.

In conclusion, HTSeq offers a comprehensive solution to
facilitate a wide range of programming tasks in the context of
HTS data analysis.

Funding: S.A. and W.H. acknowledge support from the
European Union via the 6th Framework Programme network
Chromatin Plasticity (Project no. 35733) and 7th Framework

Programme project Radiant (Project no. 305626).

Conflict of interest: none declared.

REFERENCES

Beazley,D.M. et al. (1996) SWIG: an easy to use tool for integrating scripting lan-

guages with C and C++. In: Proceedings of the 4th USENIX Tcl/Tk workshop.

pp. 129–139.

Behnel,S. et al. (2011) Cython: the best of both worlds. Comput. Sci. Eng., 13,

31–39.

Bolger,A.M. et al. (2014) Trimmomatic: a flexible trimmer for illumina sequence

data. Bioinformatics, 30, 2114–2120.

Cock,P.J. et al. (2009) Biopython: freely available Python tools for

computational molecular biology and bioinformatics. Bioinformatics, 25,

1422–1423.

Dale,R.K. et al. (2011) Pybedtools: a flexible Python library for manipulating

genomic datasets and annotations. Bioinformatics, 27, 3423–3424.

Fonseca,N.A. et al. (2014) RNA-seq gene profiling –a systematic empirical compar-

ison. PLoS ONE, 9, e107026.

Gentleman,R.C. et al. (2004) Bioconductor: open software development for

computational biology and bioinformatics. Genome Biol., 5, R80.

Josuttis,N.M. (1999) The C++ Standard Library. Addison-Wesley, Boston.

Lawrence,M. et al. (2013) Software for computing and annotating genomic ranges.

PLoS Comput. Biol., 9, e1003118.

Liao,Y. et al. (2014) featurecounts: an efficient general purpose program for

assigning sequence reads to genomic features. Bioinformatics, 30, 923–930.

Love,M.I. et al. (2014) Moderated estimation of fold change and dispersion

for RNA-Seq data with DESeq2. bioRxiv, doi:10.1101/002832.

Quinlan,A.R. and Hall,I.M. (2010) Bedtools: a flexible suite of utilities for compar-

ing genomic features. Bioinformatics, 26, 841–842.

Robinson,M.D. et al. (2010) edgeR: a Bioconductor package for differential

expression analysis of digital gene expression data. Bioinformatics, 26,

139–140.

van der Walt,S. et al. (2011) The NumPy array: a structure for efficient numerical

computation. Comput. Sci. Eng., 13, 2230.

169

HTSeq

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/31/2/166/2366196 by guest on 20 M
arch 2024

high-throughput sequencing

