
Structural bioinformatics

3Dmol.js: molecular visualization with WebGL

Nicholas Rego1,2 and David Koes1,*

1Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA and
2Department of Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA

*To whom correspondence should be addressed.

Associate Editor: Anna Tramontano

Received on October 16, 2014; revised on November 18, 2014; accepted on December 8, 2014

Abstract

Summary: 3Dmol.js is a modern, object-oriented JavaScript library that uses the latest web tech-

nologies to provide interactive, hardware-accelerated three-dimensional representations of mo-

lecular data without the need to install browser plugins or Java. 3Dmol.js provides a full featured

API for developers as well as a straightforward declarative interface that lets users easily share and

embed molecular data in websites.

Availability and implementation: 3Dmol.js is distributed under the permissive BSD open source

license. Source code and documentation can be found at http://3Dmol.csb.pitt.edu

Contact: dkoes@pitt.edu

1 Introduction

Molecular visualization is an essential tool for computational chemists

and biologists. Due to the demanding nature of three-dimensional

(3D) graphics, most molecular viewers are desktop applications. The

need to install specialized applications and, in some cases, the restrict-

ive nature of the software licenses, introduces hurdles to the sharing

of molecular data. Unlike a desktop application, a standards-based cli-

ent-side web application comes pre-installed with every computer and

mobile device with a modern web browser and can be seamlessly inte-

grated into online environments for accessing and analyzing molecular

data.

Currently, Jmol (Hanson, 2010) (http://www.jmol.org) is the

most used web-based molecular viewer. Jmol is implemented as a

Java applet and includes a custom rendering engine for efficiently

rendering common molecular data representations, such as spheres

and sticks. Due to this custom rendering engine and Java’s optimiz-

ing just-in-time compiler, the performance of Jmol can approach

that of native, desktop applications. However, due to heavily publi-

cized security failures, the Java install base is shrinking (Yegulalp,

2013). Even when Java is installed, users are presented with multiple

security prompts that must be correctly navigated before a Java app-

let, such as Jmol, can run. To address these concerns, JSmol

(Hanson et al., 2013) was developed. JSmol is the product of apply-

ing a Java to JavaScript translator to Jmol. However, particularly

for large and complex visualizations, the performance of JSmol lags

behind that of Jmol.

An alternative to the software-based rendering of Jmol/JSmol is

to use hardware-accelerated graphics, as is done with desktop appli-

cations. This is enabled by the recently adopted WebGL 1.0 stand-

ard, which is now supported natively by all major desktop and

mobile browsers. PV (http://biasmv.github.io/pv) and GLmol (http://

webglmol.sourceforge.jp) are two examples of WebGL-based mo-

lecular viewers. GLmol was the first WebGL viewer and uses the

Three.js (http://threejs.org) framework for interfacing with WebGL.

However, GLmol lacks a full featured API and the use of the

Three.js library results in performance inefficiencies. We forked

GLmol and radically reworked its architecture to overcome these

deficiencies and create 3Dmol.js. PV, like 3Dmol.js, uses WebGL

directly, but has a focus on displaying protein structures and does

not provide the same set of features as 3Dmol.js.

2 3Dmol.js

3Dmol.js is a pure JavaScript, hardware-accelerated, object-oriented

molecular visualization library that enables web developers and cas-

ual users to visualize and interact with molecular data in any mod-

ern desktop or mobile web browser with near native performance.

The focus of 3Dmol.js is providing a full-featured API for online

VC The Author 2014. Published by Oxford University Press. 1322
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits

unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 31(8), 2015, 1322–1324

doi: 10.1093/bioinformatics/btu829

Advance Access Publication Date: 12 December 2014

Applications Note

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/31/8/1322/213186 by guest on 20 M
arch 2024

http://3Dmol.csb.pitt.edu
3D
http://www.jmol.org
http://biasmv.github.io/pv
http://webglmol.sourceforge.jp
http://webglmol.sourceforge.jp
http://threejs.org
http://www.oxfordjournals.org/

high-performance molecular visualization. This allows 3Dmol.js to

be integrated with other web applications that provide additional

cheminformatics and analysis capabilities. A variety of common

styles are supported, as demonstrated by Figure 1a, and supported

file formats include pdb, sdf, mol2, xyz and cube. 3Dmol.js can be

used to view molecular data by web application developers, HTML

authors and end users.

2.1 JavaScript API
JavaScript developers can use 3Dmol.js by including a single mini-

fied script and using the routines provided in the $3Dmol name-

space. There are routines to manipulate and style molecular data,

create isosurfaces from grid data, generate molecular surfaces, create

arbitrary shapes, such as spheres and arrows, annotate the view

with text and image labels and install callback handlers for when a

user interacts with the viewer contents (e.g. clicks on an atom).

Molecular styles include lines, crosses, sticks, spheres and cartoons,

and atoms and surfaces can be colored by user specified properties,

such as partial charge or atom type. An example of programmatic-

ally controlling a 3Dmol.js viewer to create the scene shown in

Figure 1a is provided in Figure 1b.

2.2 Embeddable viewer
HTML authors do not need to use JavaScript to embed 3D viewers

within their websites. 3Dmol.js will automatically turn any HTML

element annotated with the viewer_3Dmoljs class into a viewer.

The contents of the viewer are set and styled through the use of

HTML data tags, as shown in Figure 1c. The molecular data can

be retrieved from a remote URL or from an element that is

embedded within the web page.

2.3 Hosted viewer
End users may use 3Dmol.js through a hosted viewer as shown

in Figure 1d. In this case, the molecular data is set and styled

through a URL specification. Data may be retrieved from a remote

URL, such as a publicly accessible shared folder on cloud storage.

This allows users to easily share complex scenes without requiring

that the recipients have any software other than a modern web

browser.

3 Performance comparison

The performance of 3Dmol.js is compared to Jmol, JSmol, GLmol

and PV in Figure 1e. The time to create the scene of Figure 1a, which

contains several visual styles applied to 12 375 atoms, and then to

perform a single rotation was measured using JavaScript wall clock

time. The scene was rendered in a 600 pixel square HTML element.

Firefox 31 on a 2.4 GHz Core Duo 2008 MacBook with 4 GB of

RAM running OS X 10.9.5 was used to time the operations and the

average of the three best times of five trials is reported.

The initial creation time for a scene can be more time consuming

in 3Dmol.js compared to a software-rendering approach like Jmol.

The scene needs to be decomposed into a mesh of triangles since this

is what is expected by the graphics subsystem. However, once a 3D

scene is created, interactions with the scene that do not change its

fundamental geometry, such as rotating, translating and zooming,

are extremely fast (a few milliseconds) since the 3D scene data are

managed by the native graphics subsystem. Consequently, even

complex scenes can be smoothly manipulated by the user.

4 Conclusion

3Dmol.js is an high-performance interactive viewer for 3D molecu-

lar data that requires no plugins to work in modern desktop and mo-

bile web browsers. 3Dmol.js provides a full-featured API to

JavaScript developers, but can also be used by HTML authors and

(a)

(b)

(c)

(d)

(e)

Fig. 1. (a) A capsid protein (PDB: 3M8L) with 12 375 atoms as rendered by

3Dmol.js. This same scene can be generated (b) programmatically in

JavaScript, (c) from within HTML or (d) by specifying a properly formatted

URL to the 3Dmol.js hosted viewer. (e) The time required to create this scene

and then rotate it for Jmol/JSmol 14.2.2, GLmol.47, PV v1.1-126-g85f16da and

3Dmol.js. PV was configured to be in high quality mode to better match the

default quality of 3Dmol.js

Molecular visualization with WebGL 1323

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/31/8/1322/213186 by guest on 20 M
arch 2024

,
,
,
.,
,
V
V
C
,
,
4Ghz
4GB
,
is

end users to share and distribute 3D visualizations of molecular

data. 3Dmol.js is available under a permissive BSD open source

license from http://3dmol.csb.pitt.edu.

Acknowledgements

We are grateful to Takanori Nakane for creating GLmol. We would also like

to thank Caleb Martin for his contributions.

Funding

This work was supported by the National Institute of Health

[R01GM108340]. The content is solely the responsibility of the authors and

does not necessarily represent the official views of the National Institutes of

Health.

Conflict of Interest: none declared.

References

Hanson,R.M. (2010) Jmol-a paradigm shift in crystallographic visualization.

J. Appl. Crystallogr., 43, 1250–1260.

Hanson,R.M. et al. (2013) JSmol and the next-generation web-based represen-

tation of 3D molecular structure as applied to proteopedia. Isr. J. Chem.,

53, 207–216.

Yegulalp,S. (2013) Java’s insecurity has doomed it on the desktop. InfoWorld.

October 17.

1324 N.Rego and D.Koes

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/31/8/1322/213186 by guest on 20 M
arch 2024

http://3dmol.csb.pitt.edu

