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Abstract

Motivation: 5-methylcytosine (5mC) is a widely studied epigenetic modification of DNA. The

ten-eleven translocation (TET) dioxygenases oxidize 5mC into oxidized methylcytosines (oxi-

mCs): 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC).

DNA methylation modifications have multiple functions. For example, 5mC is shown to be

associated with diseases and oxi-mC species are reported to have a role in active DNA

demethylation through 5mC oxidation and DNA repair, among others, but the detailed mechan-

isms are poorly understood. Bisulphite sequencing and its various derivatives can be used to

gain information about all methylation modifications at single nucleotide resolution. Analysis

of bisulphite based sequencing data is complicated due to the convoluted read-outs and

experiment-specific variation in biochemistry. Moreover, statistical analysis is often compli-

cated by various confounding effects. How to analyse 5mC and oxi-mC data sets with arbitrary

and complex experimental designs is an open and important problem.

Results: We propose the first method to quantify oxi-mC species with arbitrary covariate structures

from bisulphite based sequencing data. Our probabilistic modeling framework combines a previ-

ously proposed hierarchical generative model for oxi-mC-seq data and a general linear model com-

ponent to account for confounding effects. We show that our method provides accurate methyla-

tion level estimates and accurate detection of differential methylation when compared with

existing methods. Analysis of novel and published data gave insights into to the demethylation of

the forkhead box P3 (Foxp3) locus during the induced T regulatory cell differentiation. We also

demonstrate how our covariate model accurately predicts methylation levels of the Foxp3 locus.

Collectively, LuxGLM method improves the analysis of DNA methylation modifications, particularly

for oxi-mC species.

Availability and Implementation: An implementation of the proposed method is available under

MIT license at https://github.org/tare/LuxGLM/

Contact: taijo@simonsfoundation.org or harri.lahdesmaki@aalto.fi

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

5-methylcytosine (5mC) is a widely studied epigenetic modification

of DNA, which controls mammalian development, X-chromosome

inactivation, gene imprinting and genomic instability (Smith and

Meissner, 2013). DNA methylation research was revolutionized by

the discovery that the members of the ten-eleven translocation (TET)

protein family oxidise 5mC sequentially into 5-hydroxymethylcytosine

(5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC)
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(He et al., 2011; Ito et al., 2011; Tahiliani et al., 2009). These

oxidized methylcytosines (oxi-mC) have been proposed to play a role

in active DNA demethylation through 5mC oxidation and DNA re-

pair, and in chromatin regulation (Pastor et al., 2013). 5mC and all

the oxi-mC species are of great interest due to the alleged role of

DNA methylation in diseases, such as different cancers (Baylin,

2005), Alzheimer (De Jager et al., 2014), asthma (Rastogi et al.,

2013), autism (Nardone et al., 2014) and type 2 diabetes (Dayeh

et al., 2014). However, studies of primary human clinical samples are

complicated by many factors; for instance, greater biological vari-

ation compared with more controlled molecular biology studies, pos-

sible confounding factors and case-control matching.

Bisulphite sequencing (BS-seq) has become the gold standard

technique for profiling methylation at single nucleotide resolution

(Lister et al., 2009, 2013; Rein et al., 1998). In BS-seq, genomic

DNA is treated with sodium bisulphite, which will rapidly deami-

nate unmodified cytosine (and 5fC and 5caC) to uracil, while de-

amination of 5mC and 5hmC are much slower (Frommer et al.,

1992). Next, after PCR amplification, uracil and cytosine are read

as thymine and cytosine, respectively. Importantly, 5fC and 5caC

will have the same read-out as unmodified cytosine and, similarly,

5hmC and 5mC share the same read-out in BS-seq (Huang et al.,

2010). This observation drove the development of various modified

bisulphite sequencing protocols (reviewed in Plongthongkum et al.,

2014). For instance, oxidative bisulphite sequencing (oxBS-seq)

(Booth et al., 2012) and Tet-assisted bisulphite sequencing (TAB-

seq) (Yu et al., 2012) were developed for distinguishing 5hmC from

5mC. Both methods, oxBS-seq and TAB-seq, are based on oxida-

tion; 5hmC is oxidised into 5fC by KRuO4 in oxBS-seq, whereas in

TAB-seq 5mC is oxidised into 5caC by recombinant mouse Tet1. To

gain information on 5fC, 5fC chemical modification-assisted bisul-

phite sequencing (fCAB-seq) (Lu et al., 2013) and reduced bisulphite

sequencing (redBS-seq) (Booth et al., 2014) have been proposed.

Chemical modification-assisted bisulphite sequencing (CAB-seq) to-

gether with BS-seq allows the quantification of 5caC by protecting

5caC from deamination by sodium bisulphite with 1-ethyl-3-[3-

dimethylaminopropyl]-carbodiimide hydrochloride (Lu et al.,

2013). CpG methyltransferase (M.SssI) assisted bisulphite sequenc-

ing (MAB-seq) when combined with BS-seq distinguishes 5fC/5caC

from C (Wu et al., 2014). A summary of the read-outs of the

described bisulphite sequencing approaches is listed in Figure 1A.

In order to estimate proportions of multiple methylation modifi-

cations, one has to deconvolute and integrate data from multiple

bisulphite based measurements (Fig. 1A) which often have biases

due to imperfect experimental steps (Plongthongkum et al., 2014).

Many computational methods have been developed for analysing

the standard bisulphite sequencing data (here we will describe only

the most relevant methodologies, for a more comprehensive list of

different methods see €Aijö et al., 2016). Methods based on beta-

binomial models have been proposed allowing modeling of sampling

and biological variation. For instance, MOABS uses a hierarchical

beta-binomial model with an empirical Bayesian approach (Sun

et al., 2014). To assess differential methylation, MOABS uses cred-

ible methylation difference metric for summarizing statistical and

biological significance (Sun et al., 2014). Another method,

RADMeth, takes into account covariates under the beta-binomial

model using a generalised linear model approach with the logit link

function (Dolzhenko and Smith, 2014). RADMeth detects differen-

tial methylation by using the log-likelihood ratio test and the evi-

dence for differential methylation across neighbouring cytosines is

shared using the Stouffer-Liptak weighted Z test. Recently, the

MACAU method was proposed, which combines a binomial mixed

model with a sampling-based inference algorithm to model various

genetic relatedness/population structures (Lea et al., 2015).

MACAU uses Wald test statistics on the posterior samples to call

whether a covariate has an effect on methylation (Lea et al., 2015).

A C

B

Fig. 1. (A) The conversion chart of C, 5mC, 5hmC, 5fC and 5caC in BS-seq, oxBS-seq, TAB-seq, CAB-seq, fCAB-seq, redBS-seq and MAB-seq experiments. (B) The

experimental steps of BS- and oxBS-seq experiments are represented in terms of experimental parameters. Green and red arrows depict successful and unsuc-

cessful steps, respectively. (C) The proposed hierarchical model for modeling methylation modification proportions for BS-seq and oxBS-seq data and parts of

the original Lux model represented in the plate notation. The grey and white circles are used to represent observed variables and latent variables, respectively.

The grey squares represent fixed hyperparameters. The components, which model the experimental parameters and control cytosines are the same as in the Lux

model (€Aijö et al., 2016)
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Neither MOABS, RADMeth nor MACAU support model-based

consideration of experimental parameters or deconvolution of mul-

tiple oxi-mC data types. MLML partially solves the latter limitation

by integrating BS-seq and oxBS-seq or BS-seq and TAB-seq data to

provide consistent C, 5mC, and 5hmC estimates but it ignores other

oxi-mC species and imperfect experimental parameters and does not

support analysis of replicates or differential methylation (Qu et al.,

2013). These limitations motivated us to develop the Lux method-

ology, which integrates different combinations of oxi-mC measure-

ments (BS-seq, oxBS-seq, TAB-seq, redBS-seq, fCAB-seq, CAB-seq

and MAB-seq) while taking into account the relevant experimental

parameters (€Aijö et al., 2016). Lux is expressed as a hierarchical

generative model based on the experimental steps involved in the

measurement protocols. Specifically, Lux uses two hierarchical

Dirichlet components to model methylation modification propor-

tions and their variation between biological replicates. The first

Dirichlet component is used together with a gamma distributed ran-

dom variable to model the pseudo-count parameter of the second

Dirichlet component, which models the actual DNA methylation

modification proportions.

Here, we propose LuxGLM which uses a logistic matrix nor-

mal distribution and a general linear model (GLM) to model the

hierarchical structure across replicates, conditions, and confound-

ing factors. This extension has several important implications. For

example, first, it allows for modeling covariates through the GLM

and, second, it enables modeling covariation between the methyla-

tion modification proportions through the logistic matrix normal

distribution. The consideration of covariates decreases false posi-

tives and increases true positives when confounding effects are

present as we demonstrate on synthetic data. Analysis of novel

and published BS-seq and oxBS-seq data gave insights into the

demethylation of the forkhead box P3 (Foxp3) locus during

induced T regulatory cell differentiation. We used the inferred

model to produce a testable prediction on the methylation of the

Foxp3 locus and validated the prediction using independent data.

LuxGLM can also be applied in a reduced setting (only BS-seq

data is available and by ignoring imperfect experimental param-

eters), which corresponds to the standard BS-seq based DNA

methylation analysis. A comparison with the state-of-the-art

methods on this reduced setting illustrates that LuxGLM achieves

similar or better performance. In contrast to previous methods,

LuxGLM generalises for an integrative analysis of multiple oxi-

mC data types and, provided proper spike-in control cytosines are

included in experimental protocols, LuxGLM also supports

model-based analysis of experiment-specific variation in biochem-

istry. To summarize, LuxGLM improves the analysis of methyl-

omes from complex experimental designs and provides a

comprehensive tool for accurate quantification of all DNA methy-

lation modifications.

2 Methods

2.1 Probabilistic generative model for DNA methylation

quantification
In this section, we will first briefly review the Lux model (€Aijö et al.,

2016) before introducing the covariate-aware LuxGLM model. The

novel idea of Lux was to develop a generative model for oxi-mC-seq

data. Lux models the effects of the experimental steps (bisulphite

conversion, oxidation, chemical labeling, protection steps, etc.)

through their efficiencies on the sequencing read-outs (Fig. 1B and

C). For instance, the conditional probabilities of getting ‘C’ as a

read-out from BS-seq and oxBS-seq experiments given the methyla-

tion status of a cytosine is C (or 5fC, 5caC), 5mC or 5hmC are

pBSð‘‘C’’jCÞ ¼ ð1� BSeffÞð1� seqerrÞ þ BSeffseqerr;

pBSð‘‘C’’j5mCÞ ¼ ð1� BS�effÞð1� seqerrÞ þ BS�effseqerr;

pBSð‘‘C’’j5hmCÞ ¼ ð1� BS�effÞð1� seqerrÞ þ BS�effseqerr;

poxBSð‘‘C’’jCÞ ¼ ð1� BSeffÞð1� seqerrÞ þ BSeffseqerr;

poxBSð‘‘C’’j5mCÞ ¼ ð1� BS�effÞð1� seqerrÞ þ BS�effseqerr;

poxBSð‘‘C’’j5hmCÞ ¼ oxeff ½ð1� BSeffÞð1� seqerrÞ þ BSeffseqerr�
þ ð1� oxeffÞ½ð1� BS�effÞð1� seqerrÞ
þ BS�effseqerr�; (1)

where BSeff ; BS�eff; oxeff and seqerr are bisulphite conversion effi-

ciency, inaccurate bisulphite conversion efficiency, oxidation effi-

ciency, and sequencing error, respectively (Fig. 1B). In practice,

we are interested in estimating the underlying unobserved methy-

lation modification proportions h ¼ pðCÞ; pð5mCÞ; pð5hmCÞð Þ
(
X

h ¼ 1) in a sample or among replicates [Note that with

BS-seq and oxBS-seq data one can only quantify pðCÞ; pð5mCÞ
and pð5hmCÞ and that pðCÞ � pðCÞ þ pð5fCÞ þ pð5caCÞ but the

model generalises to 5fC and 5caC too.]. The (unconditional)

binomial parameters, pBSð‘‘C’’Þ and poxBSð‘‘C’’Þ, for the sequenc-

ing data generation are obtained by applying the total probabil-

ity theorem

pBSð‘‘C’’Þ ¼ pðCÞpBSð‘‘C’’jCÞ þ pð5mCÞpBSð‘‘C’’j5mCÞ
þ pð5hmCÞpBSð‘‘C’’j5hmCÞ

poxBSð‘‘C’’Þ ¼ pðCÞpoxBSð‘‘C’’jCÞ þ pð5mCÞpoxBSð‘‘C’’j5mCÞ
þ pð5hmCÞpoxBSð‘‘C’’j5hmCÞ: (2)

The ‘C’ read-out counts are then distributed as NBS;C � BðNBS;

pBSð‘‘C’’ÞÞ and NoxBS;C � BðNoxBS; poxBSð‘‘C’’ÞÞ for BS-seq and oxBS-

seq data, respectively, where Bð�; �Þ denotes the binomial distribution

(Fig. 1C) (similarly for control cytosine). Details of the priors for ex-

perimental parameters are summarized in Supplementary Equations

(S2–S5).

The goal is to estimate the cytosine and condition specific h
parameters simultaneously with the sample specific experimen-

tal parameters (BSeff ; BS�eff ; oxeff and seqerr) (sample and cytosine

indices are omitted) (Fig. 1C). Previously, we have demonstrated

that the experimental parameters can be estimated from spike-in

control cytosines by providing prior knowledge, acontrol, on the

methylation levels of control cytosines, hcontrol (€Aijö et al.,

2016).

2.2 Matrix normal distribution
The matrix normal distribution is a generalisation of the multivari-

ate normal distribution to matrix-valued random variables

X �MNðM;U;VÞ; (3)

where M 2 RN�M is the location matrix and U 2 RN�N
pos�def and V

2 RM�M
pos�def are scale matrices. The first and second moments of X

are

E X½ � ¼M;

E ðX�MÞðX�MÞT
h i

¼ U trðVÞ;

E ðX�MÞTðX�MÞ
h i

¼ V tr Uð Þ;

(4)

where tr ð�Þ is the matrix trace. The matrix-valued random variable

X 2 RN�M in Equation (3) can be stated equivalently as a vector-

valued random variable vec ðXÞ 2 RNM
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vec ðXÞ � Nðvec ðMÞ;V	UÞ; (5)

where vec ð�Þ is the vectorization operator and 	 is the Kronecker

product (Gupta and Nagar, 1999).

2.3 Logistic normal distribution
Let us consider that x 2 RM is distributed according to the multi-

variate normal distribution

x � Nðl;RÞ; (6)

where l 2 RM is the location parameter and R 2 RM�M
pos�def is the co-

variance matrix. Next, let us apply the softmax transformation on x

h ¼ Softmax ðxÞ ¼ expðx1Þ
RM

k¼1expðxkÞ
; . . . ;

expðxMÞ
RM

k¼1expðxkÞ

 !T

: (7)

Then, the following two statements are true: (1) h 2 ½0; 1�M and

(2) RM
k¼1hi ¼ 1. In other words, h 2 SM is a M-dimensional simplex-

valued random variable.

2.4 General linear model
The GLM has the following form

Y ¼ DBþ E; (8)

where Y is a matrix containing multivariate measurements, D is a

design matrix, B is a parameter matrix, and E is a noise matrix.

Bayesian inference of the model in Equation (8) requires that we spe-

cify modeling assumptions and set the priors. Often, it is assumed

that E and B have the following prior distributions

EjUE;VE �MNð0;UE;VEÞ (9)

and

BjMB;UB;VB �MNðMB;UB;VBÞ: (10)

Under these assumptions

vec Yð ÞjD;MB;UB;VB;UE;VE � NððI	DÞvec ðMBÞ;
ðI	DÞðVB 	UBÞðI	DÞT þ VE 	UEÞ; (11)

where we have used the property vec ðDBÞ ¼ ðI	DÞvec ðBÞ. Finally,

one can also specify hyperpriors for the hyperparameters

MB; UB; VB; UE, and VE.

2.5 Probabilistic generative covariate model for DNA

methylation quantification
Here, we describe our covariate approach to model oxi-mC data. The

statistical models of LuxGLM and Lux have common components in that

given the methylation modification proportions h (and hcontrol) the ‘C’

read-out counts as well as the experimental parameters are handled simi-

larly (Fig. 1C). Lux’s hierarchical Dirichlet component allows model-

based analysis of replicates but it does not support covariates. LuxGLM

generalises the model for methylation modification proportions h by

incorporating the GLM to account for complex covariate structures.

In contrast to Lux, we model M methylation modification pro-

portions hi (
X

hi ¼ 1) over N samples using the GLM given in

Equation (8) that supports covariates and the softmax transformation

defined in Equation (7) which is needed for mapping real-valued vec-

tors into simplex-valued vectors h. Let us assume that there are P

covariates, hence Y 2 RN�M; D 2 RN�P, and B 2 RP�M. Naturally,

the design matrix D relates N samples to P covariates. Finally, the

parameter hi 2 SM is given by Softmax ðrowiðYÞÞ, where rowiðYÞ is

the ith row of Y.

Now we will describe how we choose the priors. First, we as-

sume that E is distributed as follows

vec ðEÞ � N ðvec ð0Þ; r2
EðI	 IÞÞ: (12)

Second, we assume an inverse gamma prior on r2
E

r2
E � C�1ða; bÞ; (13)

where a ¼ b ¼ 1. Third, we assume that B is distributed as follows

vec ðBÞ � N ðvec ð0Þ; r2
BðI	 IÞÞ; (14)

where r2
B ¼ 5. Consequently, Y is distributed as follows

vecðYÞjD; r2
B;r

2
E � Nðvec ð0Þ; r2

BðI	DÞðI	 IÞðI	DÞT þ r2
EðI	 IÞÞ:

(15)

To illustrate the selected B prior [Equation (14)], we visualise

the softmax transformed independent and identically distributed 3-

dimensional normal random variable with zero mean and variance 5

(Supplementary Fig. S1). The prior on B will have an effect on the

sensitivity of the methylation level estimates hi. That is, if the value

of the variance parameter r2
B in Equation (16) is small, then the prior

of vec ðYÞ is concentrated more around zero or, equivalently, hi is

concentrated around 1
3 ;

1
3 ;

1
3

� �
. Consequently, it will take more obser-

vations (deeper sequencing depth or more replicates) to update the

posterior distribution away from the prior. The graphical model im-

plemented in LuxGLM is shown in Figure 1C.

2.6 Model inference
Bayesian inference of the aforedescribed model is analytically in-

tractable. Therefore, to estimate the posterior distributions, we use

Hamiltonian Monte Carlo (HMC) as implemented in Stan’s No-U-

Turn sampler (NUTS) to obtain posterior samples (Carpenter et al.,

in press). Convergence of the chains was monitored using the

Gelman-Rubin statistic ( bR < 1:1). Importantly, prior and data con-

tributions on the parameters are fully summarised in the parameter

posterior distributions allowing us to estimate different statistical

measures on the distributions, such as mean and credible intervals.

2.7 Detection of differential methylation
Similar to our earlier work €Aijö et al. (2016), we use the Savage-

Dickey density ratio to quantify evidence of differential methylation.

Specifically, we consider two schemes of testing differential methyla-

tion: (i) testing whether two covariates differ and (ii) testing whether

a covariate has an effect (differs from zero).

Let us start with case (i) by assuming that we are interested in assess-

ing differential methylation between two conditions C1 and C2. Without

loss of generality, let C1 and C2 be represented in the design matrix D by

the ith and jth covariates, respectively. Then, rowiðBÞ and rowjðBÞ cor-

respond to the ith and jth covariates, respectively. To assess the difference

in methylation between the conditions C1 and C2, we study the difference

of the random variables rowiðBÞ � rowjðBÞ � C1 � C2. Next, we will

formulate two hypotheses: (i) the null hypothesis H0 : C1 � C2 ¼ 0 (no

differential methylation) and (ii) the alternative hypothesis H1 : C1 � C2

6¼ 0 (differential methylation). To approximate the Bayes factor (BF) be-

tween the models representing the hypotheses H0 and H1, we use the

Savage-Dickey density ratio
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BF 
 pðC1 � C2 ¼ 0jH1Þ
pðC1 � C2 ¼ 0jH1;DÞ

; (16)

where D denotes data. The numerator is analytically solvable under

the assumption of the normal prior defined in Equation (14),

whereas, the denominator is estimated using the standard kernel

density estimation with the normal kernel on the samples from the

posterior obtained through HMC sampling (€Aijö et al., 2016).

Notable, the value of r2
B in Eq. (14) has an effect on the approxima-

tion of the BFs (16) through the numerator. That is, the variance r2
B

commensurate with the value of the numerator; thus, the approxi-

mated BFs tend to decrease as r2
B increases (albeit r2

Balso has an ef-

fect on the denominator through the posterior).

Next, we will describe how differential methylation of case (ii) is

quantified. Let us assume that the condition C1 is represented in the

design matrix D by the ith covariate. Consequently, rowiðBÞ � C1

corresponds to the ith covariate. Similarly to the previous case, we

formulate two hypotheses: (i) the null hypothesis H0 : C1 ¼ 0 (no

differential methylation) and (ii) the alternative hypothesis H1 : C1

6¼ 0 (differential methylation). The Savage-Dickey density ratio for

approximating the BF in this case is

BF 
 pðC1 ¼ 0jH1Þ
pðC1 ¼ 0jH1;DÞ

: (17)

As in the previous case, the numerator can be solved analytically

under the assumption of the normal prior, whereas, the denominator

is estimated from the posterior samples as described earlier.

3 Results

In our previous study, we demonstrated the identifiability of the experi-

mental parameters of the statistical model of Lux from spike-in controls

(€Aijö et al., 2016). Hence, we focus on validating the novel part of the

model here, that is, the simplex model component implemented with

the matrix normal distribution together with the GLM and softmax

transformation. Briefly, we will confirm LuxGLM’s ability to estimate

methylation levels, detect differential methylation and incorporate cova-

riates into the analysis. Additionally, we will compare LuxGLM with

MLML (Qu et al., 2013) and Lux (€Aijö et al., 2016) in the context of

oxi-mC quantification and with RADMeth (Sun et al., 2014) and

MACAU (Lea et al., 2015) in the context of the standard BS-seq data

analysis. Finally, we will analyse novel and published targeted BS-seq

and oxBS-seq data on T cells. Although in this study we focus on BS-seq

and oxBS-seq data, the integrative analysis described here can be easily

generalised for other oxi-mC data types (€Aijö et al., 2016).

3.1 LuxGLM accurately estimates methylation levels
To demonstrate that the proposed covariate-aware LuxGLM model

can identify methylation levels, we carried out a simulation experi-

ment for comparing the performances of LuxGLM, Lux and

MLML in estimating methylation levels from BS-seq and oxBS-seq

data with different sequencing depths. We consider three cases

commonly observed in experiments: (i) a hypomethylated cytosine

(Supplementary Fig. S2; top row), (ii) a hypermethylated cytosine

(Supplementary Fig. S2; middle row) and (iii) an actively demethy-

lated cytosine (Supplementary Fig. S2; bottom row). Additionally,

we assume realistic values for the experimental parameters in the

simulation of the data (Supplementary Fig. S2). The box plots of the

LuxGLM, Lux and MLML estimates on data with different

sequencing depths are shown in Supplementary Figure S2. In 48%

(26/54) of the considered cases LuxGLM produced the most accur-

ate estimate (the median of the estimates is closest to the true value),

whereas in 37% (20/54) and 15% (8/54) of the cases Lux and MLML

produced the most accurate estimate, respectively. The GLM part of

the LuxGLM model together with its priors appear to make the

LuxGLM more sensitive for methylation level estimation than the ori-

ginal Lux model. Importantly, the LuxGLM and Lux estimates lack

the small biases of MLML estimates due to the explicit modeling of im-

perfect experimental parameters. LuxGLM and Lux also generally re-

sult in smaller variance in the methylation level estimates than MLML.

Collectively, the results show that LuxGLM achieves similar or better

performance on methylation level estimation than Lux and MLML

when the experimental data is not confounded with covariates.

3.2 Detecting differential methylation from BS-seq data
We next validate the described Savage-Dickey approach described in

Equation (16) and compare it with state-of-the-art methods,

RADMeth and MACAU, for detecting differential methylation. To

compare LuxGLM with RADMeth and MACAU in a fair manner,

we considered only BS-seq data and assumed perfect experimental

steps (BSeff ¼ 1; BS�eff ¼ 0 and seqerr ¼ 0). To include co-varying ef-

fects, we generated synthetic data in two batches (‘pure’ and

‘garbled’) from differentially methylated and similarly methylated

cytosines between two conditions [see Supplementary Equations

(S6–S8) and Supplementary Fig. S3]. Specifically, we generated data

sets of 400 differentially and 400 similarly methylated cytosines

with different numbers of replicates and sequencing depths.

The generated data sets were analysed with LuxGLM,

RADMeth, and MACAU using the true design matrices followed by

ranking the cytosines according to the BFs (LuxGLM) and p-values

(RADMeth, MACAU) and deriving the receiver operating character-

istics curves. Overall, LuxGLM, RADMeth and MACAU perform

similarly in distinguishing differential methylation; however,

LuxGLM produced slightly greater area under receiver operating

characteristics (AUROC) curve values in most of the cases

(Supplementary Table S1). As expected, the performances of all the

three methods improve commensurate with the number of replicates

and sequencing depth (Supplementary Table S1). Notably, when

there are only few replicates available, detection performances can

be improved by increasing the sequencing depth. In general, how-

ever, it is more beneficial in terms of detecting differential methyla-

tion to increase the number of replicates than sequencing depth. The

similar performance of the methods in this settings is not surprising

due to the high similarity of the statistical models of RADMeth and

MACAU and the reduced version of LuxGLM (only BS-seq data

and perfect experimental parameters). The only major difference be-

tween the approaches is the inference; for instance, RADMeth uses

maximum likelihood principle, whereas LuxGLM uses Bayesian rea-

soning. However, the full version of LuxGLM has two important

advancements over RADMeth and MACAU: (i) LuxGLM general-

ises for the integrative and simultaneous analysis of multiple oxi-mC

data types and (ii) LuxGLM supports a model-based analysis of ex-

perimental parameters.

Next, we considered a scenario motivated by clinical studies in

which subjects are monitored over time using BS-seq. To model tra-

jectories of two conditions, we incorporate two additional covari-

ates to the previous model [see Supplementary Equations (S9 and

S10)]. We generate synthetic data sets composed of differentially

and similarly methylated cytosines with different number of repli-

cates and sequencing depths using the aforementioned model. Then,

we studied how well LuxGLM, RADMeth, and MACAU detect dif-

ferentially methylated cytosines from similarly methylated cytosines.

As in the previous example, we assume that the design matrices are
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known. Since RADMeth supports only binary covariates, we discre-

tised the time covariates in the RADMeth analyses using the follow-

ing criterion

dðtri
Þ ¼

0; if tri
� 0:5

1; otherwise:

(
(18)

To quantify the performances of the methods, we calculated the

receiver operating characteristics statistics as above (Table 1).

Overall, the obtained AUROC values are lower in this case due to

the additional confounding covariates. Additionally, LuxGLM and

MACAU produce measurably better AUROC values than

RADMeth in all nine cases. Presumably, this is due to two reasons:

(i) LuxGLM and MACAU supports continuous covariates and (ii)

the uncertainty introduced by additional covariates is better ac-

counted for with the fully probabilistic approach.

3.3 Importance of including covariates in methylation

analysis
Next, we demonstrate the importance of covariate modeling in esti-

mating methylation levels and in detecting differential methylation

for oxi-mC species. To do this, we consider similar scenarios as

above: (i) a batch effect (termed as ‘garbled’) concealing a true dif-

ference between the ‘pure’ conditions (Fig. 2A) and (ii) a batch effect

(‘garbled’) causing a false difference (Fig. 3A). First, we generate

synthetic data with 20 replicates (10 “pure” and 10 “garbled” sam-

ples) per condition using the model [see Supplementary Equations

(S12–S14)]. Then, we analyse the generated data with LuxGLM and

MLML; the covariate structure is used in the LuxGLM analysis but

ignored in the MLML analysis as it does not support covariates. To

see how well our covariate model extracts information from the

garbled samples, we visualise the posterior samples of h correspond-

ing to the ‘pure’ samples (Fig. 2B and Fig. 3B). For comparison, we

include the MLML covariate-ignorant point estimates to the ternary

plots. The results show that LuxGLM is able to integrate informa-

tion from ‘pure’ and ‘garbled’ samples through the covariate model.

Moreover, the comparison with MLML estimates shows that our

covariate model produces more accurate estimates in both of the

considered scenarios. As a matter of fact, LuxGLM (and Lux) also

fails to estimate methylation accurately when the covariates are not

considered (data not shown).

To quantify the benefits of covariate modeling, we compared the

results obtained with (‘full’ model) or without (‘reduced’ model) the

batch covariates (‘pure’/‘garbled’). As expected, the differential

methylation detection is improved (BF is greater) when the covariate

information is included in the analysis (Fig. 2C); In 78, 84 and 88%

of the cases with 6, 10 and 20 replicates the BF is greater,

respectively. Similarly, the non-differential methylation detection is

improved when the covariate information is included in the analysis

(Fig. 3C); In 49, 55 and 84% of the cases with 6, 10, 20 replicates

the BF is decreased, respectively. The demonstrated advantage of

covariate modeling is important because it enables to utilise repli-

cates more efficiently across covariates.

Finally, we checked the effects of the increased (Fig. 2C) and

decreased (Fig. 3C) BFs in discriminating differential methylation.

To do this, we first pooled the differentially and similarly methy-

lated cytosines, and then, we analysed the cytosines for differential

methylation. Next, we derived the receiver operating characteristics

curves to quantify the performances of the ‘full’ and ‘reduced’

Table 1. The AUROC values obtained using LuxGLM, RADMeth and MACAU on the data generated using the model in Supplementary

Equation (S9) are listed

Number of replicates

6 10 20

Number of reads LuxGLM RADMeth MACAU LuxGLM RADMeth MACAU LuxGLM RADMeth MACAU

6 0.674 0.621 0.654 0.843 0.746 0.818 0.976 0.900 0.967

12 0.744 0.633 0.713 0.884 0.772 0.878 0.985 0.913 0.985

24 0.760 0.642 0.722 0.900 0.774 0.890 0.993 0.927 0.993

The cases of 6, 12 and 24 reads are considered. Moreover, the cases of 6 (3 ‘pure’ and 3 ‘garbled’), 10 (5 ‘pure’ and 5 ‘garbled’) or 20 (10 ‘pure’ and 10

‘garbled’) replicates are considered. The values are calculated from 2000 simulated cytosines (1000 differentially methylated and 1000 similarly methylated cyto-

sines) in each case. The greater AUROC for each case is in boldface.
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Fig. 2. (A) Ternary plot representations of the two considered different condi-

tions (columns) and the corresponding two batches (‘pure’ on top row;

‘garbled’ on bottom row). (B) The ternary plot shows the condition specific

posterior distributions obtained using LuxGLM. The samples of h correspond-

ing to the ‘pure’ samples are used. The estimates of condition 1 and 2 are on

left and right, respectively. The white dots and gray triangles are the MLML

estimates for the ‘garbled’ and ‘pure’ samples, respectively. The analysis is

done with 20 (10 ‘pure’ and 10 ‘garbled’) replicates per condition. (C) The BFs

obtained using the full or reduced model are compared. The full model has

covariates for the condition and batch, whereas the reduced model has only a

covariate for the condition. The data in the box plots are the changes of the

BFs (log2). The analysis is done either with 6 (3 ‘pure’ and 3 ‘garbled’), 10 (5

‘pure’ and 5 ‘garbled’) or 20 (10 ‘pure’ and 10 ‘garbled’) replicates per condi-

tion. The box plots are derived from 200 random simulations
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models in detecting differential methylation (Fig. 3D). Indeed, the

‘full’ model provided measurably better performance then the

‘reduced’ model with 6, 10, 20 replicates; for instance, with 10 repli-

cates AUROC values were 0.915 and 0.620 with the ‘full’ and

‘reduced’ models, respectively. Therefore, the covariate model of

LuxGLM has practical importance as it improves the detection of

methylation levels and differential methylation.

3.4 Quantifying the effects of time and vitamin C on

demethylation of the Foxp3 CNS1 locus
To investigate the applicability of LuxGLM on real biological data,

we analysed a subset of a recently published longitudinal data set

and novel data containing targeted BS-seq and oxBS-seq data (Yue

et al., 2016). The data were measured from induced T regulatory

cells (iTregs) [generated in vitro from naı̈ve CD4þ T cells with TGF-

b (Chen et al., 2003)] under different conditions and the sequencing

was targeted to loci within the Foxp3 gene (Yue et al., 2016). iTregs

(in vivo generated) develop outside of the thymus from naı̈ve CD4þ

T cells and they have an important role in immune tolerance by sup-

pressing T cell proliferation and autoimmune diseases (Sakaguchi

et al., 2008). The Foxp3 protein-coding gene has been shown to be

essential for the development and function of regulatory T cells

(Ramsdell and Ziegler, 2014). Among other mechanisms, the func-

tion of Foxp3 has been reported to be regulated through three con-

served non-coding sequence (CNS1, CNS2 and CNS3) loci in the

Foxp3 gene (Ramsdell and Ziegler, 2014). For instance, regulatory

T cell lineage stability is regulated by DNA methylation at the

Foxp3 CNS2 locus (Zheng et al., 2010).

Here we analysed the BS-seq and oxi-mC-seq data collected dur-

ing in vitro iTreg differentiation with and without vitamin C (VitC)

at multiple time points and with varying number of replicates. The

sequencing libraries had spike-in control C, 5mC and 5hmC cyto-

sines allowing to confirm that the experiments were successful.

Additionally, these spike-in controls enabled us to estimate the

values of the experimental parameters; the values of the experimen-

tal parameters are in the expected ranges; BSeff varies between 0.988

and 0.999, BS�eff between 0.020 and 0.023, oxeff between 0.733 and

0.937 and seqerr between 0.001 and 0.002 (Supplementary Table

S2). Presumably, the observed variation in oxeff has an observable

effect on the oxBS-seq read-outs (incomplete oxidation increases ‘C’

read-outs) emphasizing the importance of including the experimen-

tal parameters to the analysis.

Next, we aimed to quantify the effects of the presence of VitC

and time on demethylation of the CpG nucleotides (assumed to be

independent from each other) in the Foxp3 CNS1 locus. To do this,

we used the presence/absence of VitC and time as covariates [see

Supplementary Equation (S15)]. Note that the ‘Basal/TGF-b’ term

also takes into account, in addition to TGF-b, the methylation state

in the naı̈ve CD4þ T cells. To quantify the effects of VitC and time,

we studied the posterior distributions of B for all the four CpG cyto-

sines within the Foxp3 CNS1 locus (Fig. 4A, Supplementary Fig.

S4). The posterior distributions and the calculated (BF>10) for the

individual covariates suggest that the cytosines chrX:7159186,

chrX:7159222 and chrX:7159235 are methylated in the TGF-b
stimulated cells at early time points. Moreover, our analysis suggests

(BF>10) a vital role for VitC in demethylation of these cytosines;

the estimated parameters slightly increase the proportion of C, de-

crease the proportion of 5mC, and in three cases of four slightly in-

crease the proportion of 5hmC. Finally, our model proposes a

significant role (BF>10) for the time in demethylation of all the four

considered cytosines (proportion of C and 5hmC increases and de-

creases, respectively).

We investigated more closely the methylation status of the cyto-

sine chrX:7159069 and tested whether LuxGLM can be used to pre-

dict methylation proportions for unseen experimental conditions.

First, we represented the considered conditions (i.e. 16, 24, 32, 40,

48, 56, 64, 72 h with TGF-bþVitC) using our GLM [see

Supplementary Equation (S16) for the model]. We estimated the

posterior model parameters from BS-seq and oxBS-seq data
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Fig. 3. (A) Ternary plot representations of the two considered similar conditions (columns) and the corresponding two batches (‘pure’ on top row; ‘garbled’on bot-

tom row). (B) The ternary plot shows the condition specific posterior distributions obtained using LuxGLM. The samples of h corresponding to the ‘pure’ samples

are used. The estimates of condition 1 and 2 are on top and bottom row, respectively. The white dots and gray triangles are the MLML estimates for the ‘garbled’

and ‘pure’ samples, respectively. The analysis is done with 20 (10 ‘pure’ and 10 ‘garbled’) replicates per condition. (C) The BFs obtained using the full or reduced

model are compared. The full model has covariates for the condition and batch, whereas the reduced model has only a covariate for the condition. The data in

the box plots are the changes of the BFs (log2). The analysis is done either with 6 (3 ‘pure’ and 3 ‘garbled’), 10 (5 ‘pure’ and 5 ‘garbled’) or 20 (10 ‘pure’ and 10

‘garbled’) replicates per condition. The box plots are derived from 200 random simulations. (D) A receiver operating characteristics analysis of discriminative abil-

ities of the full and reduced models. Differentially (N¼200) and similarly methylated (N¼200) cytosines are generated as in Figures 2A and 3A, respectively. The

cases of 6 (3 ‘pure’ and 3 ‘garbled’), 10 (5 ‘pure’ and 5 ‘garbled’) and 20 (10 ‘pure’ and 10 ‘garbled’) replicates are considered. The cytosines are ordered based on

the BFs and the receiver operating characteristics curves are derived. The areas under the curves are listed in the parentheses
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measured at time points 16, 24, 48, 72 h and then produced the

model output in all the conditions using the posterior samples of B

(Fig. 4B). The model output illustrates the aforedescribed role of

VitC and time in demethylation of chrX:7159069. Notably, our

covariate model allows us to predict methylation levels at time

points without measurements (32, 40, 56, 64h).

Additionally, we used the model, similarly as above, to predict

the methylation landscapes of chrX:7159069 at 0 h with TGF-b
stimulus and at 144 h with the TGF-b and VitC stimuli [Table 2; see

Supplementary Equation (S17) for the model]. To validate these pre-

dictions, we used independent BS-seq data from (Yue et al., 2016)

(Table 2); briefly, Yue et al. measured (only BS-seq) three naı̈ve

CD4þ T cell populations and four cell populations stimulated with

TGF-b and VitC at 144 h. Although the predictions do not fully

match the experimental values, our predictions are still notably ac-

curate. It is important to remember that the assumed model

[Supplementary Equation (S15)] is a simplification of the biological

phenomenon; for instance, the assumed linear effect of time might

be unrealistic because the effect of time on demethylation will likely

dampen over time. Additionally, the prediction and experiment con-

ditions at 0 h do not fully match; training data did not have any con-

ditions without TGF-b, thus our prediction technically corresponds

to naı̈ve T cells with TGF-b (‘Basal/TGF-b’). Nevertheless, our pre-

dictions clearly capture the biological phenomenon correctly and

thus demonstrate that LuxGLM can also be used for predicting

DNA methylation modifications.

3.5 Quantifying the effects of vitamin C and retinoic acid

on demethylation of the Foxp3 CNS1 locus
To study LuxGLM further on real biological data, we investigated the

effects of VitC and retinoic acid (RA) on demethylation of the Foxp3

CNS1 locus at 24h (Yue et al., 2016). Interestingly, RA has been re-

ported to promote iTreg differentiation and suppress Th17 differenti-

ation (Raverdeau and Mills, 2014). Similarly to above, we formulated

a covariate model to study the effects of VitC and RA [the model is

defined in Supplementary Equation (S18)]. Notably, the total number

of samples and the number of ‘RA’ samples are rather small in this

case [see the design matrix D in Supplementary Equation (S18)].

The oxidation efficiencies of the samples Sample nos. 7 and 8

were 0.888 and 0.814, respectively. To quantify the VitC and RA ef-

fects, we investigated the distributions of B across the CpG cytosines

of the Foxp3 CNS1 locus (Fig. 4C, Supplementary Fig. S5). The

VitC and RA effects were subtle and nearly nonexistent on the

Foxp3 CNS1 methylation, respectively; VitC had minor effects

(BF>1) on the cytosines chrX:7159069 and chrX:7159222 and RA

did not have significant effect on any of the four cytosines.

Presumably, the observed minor effect of VitC is due to the early

time point and small sample size. Finally, the observed nonexistent

effect of RA is supported by literature as RA has been reported to

regulate Foxp3 through histone modifications instead of DNA

methylation (Lu et al., 2011).

4 Discussion and conclusions

Here we described the first method which allows integrative analysis

of different oxi-mC data sets with experimental parameters and ar-

bitrary, complex experimental designs. The method is applicable in
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Fig. 4. (A) The posterior distributions of the parameter matrix B defined in Supplementary Equation (S15) of two CpG cytosines within the Foxp3 CNS1 locus. The

prior and posterior distributions are shaded in blue and green, respectively. The red lines depict the posterior means. The log10 transformed BFs of individual

covariates are listed. (B) Predicted proportions of unmodified Cnm of the cytosine chrX:7159069 in the Foxp3 CNS1 locus at different time points after the TGF-b

and VitC stimuli. The posterior model parameters are estimated from BS-seq and oxBS-seq data at time points 16, 2, 48, 72 h and the predicted levels of unmethy-

lated Cs at the time points 32, 40, 56, 64, h (shaded rectangles) are obtained using the posterior parameter samples of B. The means with the sSDs are depicted.

(C) The posterior distributions of the parameter matrix B defined in Supplementary Equation (S18) of two CpG cytosines within the Foxp3 CNS1 locus. The prior

and posterior distributions are shaded in blue and green, respectively. The red lines depict the posterior means. The log10 transformed BFs are listed

Table 2. The predicted and experimentally quantified proportion of

unmodified C’s of the cytosine chrX:7159069 in the Foxp3 CNS1

locus) and four (VitC 144 h) experiments

Time point

0 h (naı̈ve CD4þ) 144 h (VitC)

Prediction Experimental Prediction Experimental

0.117 6 0.045 0.142 6 0.021 0.997 6 0.004 0.971 6 0.023

The listed predictions are the posterior means with the SDs. The means and

SDs of the experimental data are calculated from three (naı̈ve CD4þ) and four

(VitC 144 h) experiments.
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analysis of genome-wide, reduced representation and targeted bisul-

phite sequencing data. Comparisons to existing methods demon-

strated that LuxGLM has similar or better differential methylation

detection performance than existing tools on BS-seq data. Analysis

of simulated data showed that LuxGLM can provide accurate esti-

mates of DNA methylation modifications even when confounding

factors are present. Moreover, for oxi-mC species measured using

complex experimental designs, LuxGLM is superior in differential

methylation analysis when compared with existing methods.

Recent studies have indicated multiple functions for oxi-mC spe-

cies, including intermediates in active DNA demethylation pathway

as well as epigenetic marks that recruit chromatin regulators and

interact with RNA polymerase. Taken together with findings of

5mC associations to several diseases, such as different cancers, inter-

est in oxi-mCs in clinical setting is likely to emerge in near future.

Clinical samples are commonly obtained using complex experimen-

tal designs and our method will allow better utilisation such data

sets by enabling the control of confounding effects through covari-

ates. Additionally, our covariate model introduces a flexible model-

ing framework to study and pinpoint the effects of different factors

on DNA methylation modifications.
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