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University of Turku and Åbo Akademi, 20521 Turku, Finland

*To whom correspondence should be addressed.

Associate Editor: Janet Kelso
†The authors wish it to be known that, in their opinion, the first two authors should be regarded as joint First Authors.

Received on December 15, 2015; revised on April 27, 2016; accepted on June 17, 2016

Abstract

Motivation: Cell differentiation is steered by extracellular signals that activate a cell type specific

transcriptional program. Molecular mechanisms that drive the differentiation can be analyzed by

combining mathematical modeling with population average data. For standard mathematical mod-

els, the population average data is informative only if the measurements come from a homoge-

neous cell culture. In practice, however, the differentiation efficiencies are always imperfect.

Consequently, cell cultures are inherently mixtures of several cell types, which have different mo-

lecular mechanisms and exhibit quantitatively different dynamics. There is an urgent need for

data-driven mathematical modeling approaches that can detect possible heterogeneity and, fur-

ther, recover the molecular mechanisms from heterogeneous data.

Results: We develop a novel method that models a heterogeneous population using homogeneous

subpopulations that evolve in parallel. Different subpopulations can represent different cell types

and each subpopulation can have cell type specific molecular mechanisms. We present statistical

methodology that can be used to quantify the effect of heterogeneity and to infer the subpopulation

specific molecular interactions. After a proof of principle study with simulated data, we apply our

methodology to analyze the differentiation of human Th17 cells using time-course RNA sequencing

data. We construct putative molecular networks driving the T cell activation and Th17 differenti-

ation and allow the cell populations to be split into two subpopulations in the case of heteroge-

neous samples. Our analysis shows that the heterogeneity indeed has a statistically significant ef-

fect on observed dynamics and, furthermore, our statistical methodology can infer both the

subpopulation specific molecular mechanisms and the effect of heterogeneity.

Availability and Implementation: An implementation of the method is available at http://research.

ics.aalto.fi/csb/software/subpop/.

Contact: jukka.intosalmi@aalto.fi or harri.lahdesmaki@aalto.fi

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The capability of a cell to transform from one cell type to several

more specialized cell types is crucial for the development of any

multicellular organism. Besides developmental processes, cell

specification is essential, e.g. for the immune system, particularly for

its adaptive arm, where T and B cells respond and differentiate upon

external signals. Cell differentiation processes are typically guided

by extracellular signals which activate and control intracellular
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mechanisms in a cell type specific way and, eventually, change the

cell’s gene expression pattern towards the pattern of a more special-

ized cell type. Given the central role of cell differentiation in biology,

there is a keen interest to achieve a detailed understanding of the

molecular mechanisms that drive differentiation processes and, espe-

cially, to understand the mechanisms that steer the activation of cell

type specific regulatory programs. Among other approaches, math-

ematical modeling has been used to learn and predict molecular dy-

namics of cell differentiation processes (Intosalmi et al., 2015;

Schulz et al., 2009).

Mathematical modeling can be especially useful when it is com-

bined with time-course data by means of statistical techniques

(Intosalmi et al., 2015; Schulz et al., 2009; Xu et al., 2010). Using

this approach, different hypotheses about the underlying molecular

mechanisms and interactions are quantitatively expressed in the

form of mathematical models and, further, the models can be object-

ively evaluated with respect to experimental data using well-defined

statistical methods. In a typical setting, the models are informed

using population average measurements, which are informative

about the mechanisms of interest only if they come from a homoge-

neous cell culture. If the underlying cell culture turns out to be het-

erogeneous, the standard approaches can fail or provide unreliable

results. In the context of cell differentiation, it is rather common

that the cell culture of interest is a mixture of several cell types. For

instance, if we consider a population of Type A cells which are either

activated to Type B cells or stimulated to differentiate into Type C

cells, it might be that only a fraction of the cells respond to the

stimulation and the resulting cell culture is a mixture of Type B and

C cells. When these kinds of data are analyzed, the possible hetero-

geneity needs to be taken into account properly.

The importance of heterogeneity modeling has been acknowl-

edged also in other studies (Hasenauer et al., 2011, 2014). In their

recent study, Hasenauer et al. (2014) developed ordinary differential

equation (ODE) constrained mixture models that can be used to de-

tect dynamically distinct subpopulations using population snapshot

data, such as FACS measurements. We also aim to detect dynamic-

ally distinct subpopulations and use ODEs to model molecular

mechanisms. However, our approach is different in that we inform

our models using population average sequencing data and, along

with subpopulation detection, we explicitly infer the subpopulation

specific regulatory mechanisms (i.e. network structures) from data.

Further, we outline advanced statistical tools that can be used to

quantitatively assess the significance of the modeling results.

In summary, we develop a novel modeling approach that can be

applied to analyze cell differentiation dynamics in the presence of

several co-existing cell types. We show how this approach can be

used to detect the heterogeneity of the underlying cell culture and to

infer cell type specific molecular interactions. We derive our model

for naive human CD4þhelper T (Th) cells that are induced to polar-

ize towards Th17 lineage but, nevertheless, our approach is fully

general. In our Th17 cell differentiation application, we construct al-

ternative models for the core regulatory network driving the Th17

polarization in the form of ordinary differential equations and com-

bine the alternative models with different hypotheses about the pos-

sible heterogeneity of underlying cell culture. To carry out

quantitative model and parameter inference, we combine these mod-

els with time-course RNA sequencing (RNA-seq) data using a re-

cently published statistical framework that is specifically designed

for sequencing count data. Our results show that the proposed mod-

eling approach works well for both simulated and experimental

data. Further, to the best of our knowledge, we are the first ones to

analyze the regulatory mechanisms that steer human Th17 lineage

specification by means of data-driven mathematical modeling.

2 Materials and methods

2.1 Cell type specific subpopulations
We exemplify the cell type specific subpopulation model in the con-

text of differentiation of naive human CD4þT cells into Th17 lin-

eage that can be induced by the cytokines transforming growth

factor b (TGFb), interleukin 6 (IL6) and interleukin 1 b (IL1b)

(Korn et al., 2009). These cytokines are crucial for the initiation of

the differentiation process as well as for lineage maintenance (Korn

et al., 2009). In an ideal experimental setup, all naive CD4þcells are

equally exposed to these cytokine signals and go through the differ-

entiation process as a homogeneous cell population as illustrated in

Figure 1a. In practice, however, the differentiation efficiency can be

notably lower than 100% as some fraction of cells typically re-

sponds only to the activation signal without actively going through

the differentiation program (Fig. 1b). That is, a cell culture which is

treated with the cytokines can thus consist of subpopulations of Th0

and Th17 cells. In model design, this can be taken into account by

considering two cell types, Th0 cells that are activated but not

exposed to the inducing cytokines and Th17 cells which are actively

going through the differentiation program. Consequently, if we ob-

serve some intracellular factor x through population average data in

the presence of heterogeneity, we actually observe a weighted aver-

age of the two subpopulations evolving in parallel. Formally, this

can be expressed by writing

xaverageðtÞ ¼ ð1� aÞxTh0ðtÞ þ axTh17ðtÞ (1)

where xTh0ðtÞ and xTh17ðtÞ are the abundances of the intracellular

molecule in Th0 and Th17 subpopulations, respectively, at time t

and a 2 ½0;1� is the fraction of cells in Th17 subpopulation. This

subpopulation approach is very convenient as there is typically a

control experiment in which the cells are activated in the absence of

cytokines and, consequently, data on the pure Th0 cell population

dynamics is directly available. Nevertheless, our method is fully gen-

eral and such control experiments are not necessary for our method

to work.

2.2 Mathematical models for Th17 and Th0 cell types
The most crucial transcriptional regulators driving the human Th17

cell differentiation are signal transducer and activator of transcrip-

tion 3 (STAT3) and the retinoic acid receptor-related orphan recep-

tor gamma t (RORct) (Korn et al., 2009). These two genes are

known to exhibit strong dynamics during the early phase of

(a)

(b)

Fig. 1. Illustration of (a) homogeneous and (b) heterogeneous cell cultures

going through Th17 cell differentiation process
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polarization (Ciofani et al., 2012; Yosef et al., 2013) and, in the fol-

lowing, we derive a mechanistic description for the core Th17 net-

work consisting of activation signaling, Th17 lineage specific

cytokine signaling, as well as messenger RNA (mRNA) and protein

levels for STAT3 and RORct.

In the presence of activation, Th17 cell differentiation process is

initiated by cytokine signals that induce STAT3 (Korn et al., 2009).

For modeling purposes, we assume that the joint effect of the activa-

tion and cytokine induction can be described using an input signal

of the form

nðt; h0; h1; h2Þ ¼ h0ð1þ h1Þexpð�h2tÞ; (2)

which directly drives the STAT3 transcription. Here, h0 represents

the activation effect, h1 is the relative amplification of the signal due

to cytokines and h2 determines the time scale. When the input signal

is combined with basal transcription, the possible autoactivation of

STAT3 and the activation of STAT3 through RORct derived signals,

the STAT3 mRNA (STAT3mRNA) dynamics can be described using

the differential equation

½STAT3mRNA�
dt

¼ nðt; h0; h1; h2Þ þ h3 þ h4½STAT3prot�
þ h5½RORctprot� � h6½STAT3mRNA�; (3)

where h3, h4, h5 and h6 are unknown rate parameters (see

Supplementary Table S1). We assume linear translation dynamics

and describe the STAT3 protein (STAT3prot) level using the

equation

½STAT3prot�
dt

¼ h7½STAT3mRNA� � h8½STAT3prot�; (4)

where h7 and h8 are unknown rate parameters (see Supplementary

Table S1). In our model, the RORct activation is solely driven by

STAT3 derived signals and RORct autoactivation and, thus, the dy-

namics of RORct mRNA and protein (RORctmRNA and RORctprot,

respectively) levels can be described using the differential equations

½RORctmRNA�
dt

¼ h9½STAT3prot� þ h10½RORctprot� � h11½RORctmRNA�

(5)

½RORctprot�
dt

¼ h12½RORctmRNA� � h13½RORctprot�; (6)

where h9, h10, h11, h12 and h13 are unknown rate parameters (see

Supplementary Table S1). By combining the activation mechanisms

and interactions introduced above, we obtain a putative core net-

work driving the Th17 lineage specification and the corresponding

ODE system describing the time-evolution of the components.

Because we do not have prior information on the parameter values,

we assume an uninformative, standard normal prior distribution in

logarithmic scale for all parameters except the translation rates h7

¼ 1 and h12 ¼ 1 that are fixed. A schematic illustration of the core

network is shown in Figure 2.

To model Th0 cells, which receive only the activation signal, we

use the same mechanisms as for Th17 cells. However, we assume

that Th0 cells are not capable of producing the active RORct protein

and, further, in these cells, the Th17 specific activating feedback

mechanisms do not exist (dashed lines in Fig. 2). The regulatory

mechanisms that are active in Th0 cells are highlighted in Figure 2

using black color. Another difference between the cell type specific

models is that the input signal for Th0 cells is of the form nðt; h0; h2Þ
¼ h0expð�h2tÞ because Th0 cells are assumed to be affected only by

activation. Without losing any generality, the input signal can be

scaled by a constant (40 in this study) in both cell types. The mech-

anisms that are active in both cell types are assumed to have the

same rate parameters regardless of cell type. As a result, we have

two parallel ODE systems

_xMTh0 ðt; hÞ ¼ fMTh0 ðt; xMTh0 ðt; hÞÞ (7)

_xMTh17 ðt; hÞ ¼ fMTh17 ðt;xMTh17 ðt; hÞÞ (8)

for Th0 and Th17 cell types, respectively. Here, xMTh0 ðt; hÞ and

xMTh17 ðt; hÞ are the solutions of the systems, h is a vector containing

the parameters and MTh0 and MTh17 specify the models (i.e. struc-

tures of the ODE systems). Due to the linearity of the systems, xMTh0

ðt; hÞ and xMTh17 ðt; hÞ can be solved using analytical expressions (for

details, see Supplementary Material, Section 1).

2.3 Alternative models
We construct alternative models MTh17 by considering different

regulatory mechanisms (also called wirings) for the Th17 cell type

specific network. More precisely, we consider different combin-

ations of the activating feedback mechanisms (dashed connectors in

Fig. 2) and, as a result, we have altogether eight alternative wirings

for the network (Table 1). The model for Th0 cell type (MTh0) is

kept fixed throughout this study. Further, in our application, the

data contains independent replicates in two experimental conditions

and we can form three biologically reasonable alternative hypothe-

ses H considering the heterogeneity of the population; H1: the cell

culture treated with cytokines is pure and consists only of Th17 cells

(Fig. 3, upper panel), H2: the cell culture treated with cytokines is

heterogeneous and fractions of subpopulations in independent ex-

periments are the same (Fig. 3, middle panel), and H3: the cell cul-

ture treated with cytokines is heterogeneous and fractions of

subpopulations in independent experiments vary (Fig. 3, lower

panel). The cell culture in control experiment (activation only) is al-

ways taken to be a pure culture of Th0 cells (Fig. 3, left column).

Each of these hypotheses about the population structures results in

different expressions for the observable average behavior.

Fig. 2. Schematic illustration of putative Th17 core network. The black con-

nectors represent mechanisms that are active in both Th0 and Th17 cell types.

The gray connectors represent mechanisms that are active only in Th17 cell

type. The dashed connectors denote the mechanisms that are considered

when alternative models are constructed (Table 1)

Table 1. Alternative regulatory mechanisms for Th17 specific

network

Mechanism M1 M2 M3 M4 M5 M6 M7 M8

RORct autoactivation – – – – � � � �
STAT3 autoactivation – – � � – – � �
RORct! STAT3 – � – � – � – �

Symbols� and – denote active and inactive mechanisms, respectively.
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If we denote the predicted population average responses in con-

trol experiment (activation only) and the differentiation experiment

(activationþ cytokines) by /0
k and /1

k, respectively, the hypothesis

H1 results in the expressions

/0
k t; h;MTh0
� �

¼ xMTh0 ðt; hÞ (9)

/1
k t; h;MTh17
� �

¼ xMTh17 ðt; hÞ; (10)

which indicate that pure Th0 and Th17 populations are observed in

all independent experiments (k ¼1, 2, 3 denotes the index of the

replicate). On the other hand, under the hypothesis H2 the expres-

sion for /0
k remains the same but the cell population which is treated

with cytokines consists of Th0 and Th17 subpopulations thus

indicating

/1
k t; h;MTh0;MTh17; a
� �

¼ ð1� aÞxMTh0 ðt; hÞ þ axMTh17ðt; hÞ: (11)

In this expression, the subpopulation fractions are determined by

the replicate independent parameter a. Similarly, we can write the

predicted average response under the hypothesis H3 in the form

/1
k t; h;MTh0;MTh17; a
� �

¼ ð1� akÞxMTh0 ðt; hÞ þ akxMTh17 ðt; hÞ; (12)

where a ¼ ða1; a2; a3Þ are the parameters representing the replicate

dependent fractions of subpopulations. We treat a; a1; a2 and a3 as

free parameters with the uniform prior distribution on ½0; 1�.
For notational convenience, we merge a; a1; a2 and a3 with h and

denote the predicted population average responses in control and ac-

tual differentiation experiments by /0
k t; hð Þ and /1

k t; h;M;Hð Þ, re-

spectively. Here, we denote M ¼MTh17 and omit MTh0 from the

notation because it remains fixed. Further, we add the population

structure hypothesis H explicitly into the arguments of /1
k.

Collectively, when the hypotheses (H) regarding the heterogeneity of

the underlying cell culture are combined with the alternative wirings

of the Th17 core network (M), we can specify 8�3¼24 alternative

pairs (M, H) which represent our alternative models. We also note

that the dimension of the parameter vector h depends on the pair

(M, H) but we omit the subindex for clarity.

2.4 Statistical framework for RNA-seq data
To combine mathematical modeling with discrete, read count RNA-

seq data, we use a recently published statistical framework which

has been specifically designed for this data type (Intosalmi et al.,

2015). The framework is based on the negative binomial (NB) distri-

bution which has been found particularly suitable for RNA-seq data

(Robinson et al., 2010).

We collect time-course RNA-seq data from both experimental

conditions in three dimensional matrices D so that the element

Dijk; ði ¼ 1; . . . ; n; j ¼ 1; . . . ;m; k ¼ 1; . . . ; lÞ represents the read

count of gene i at the jth time point tj in the kth replicate and use the

NB distribution to model each element in the matrix. In other

words,

De
ijk � NBðCe

ijkpijk;/ijÞ; (13)

where Ce
ijk ¼ LiN

e
jk10�9 (Li is the gene length, Ne

jk is the total num-

ber of mapped reads and e denotes the experimental condition), /ij

is the gene specific, time-dependent dispersion parameter and pijk is

the relative mRNA abundance of gene i at time tj in the kth repli-

cate. In this study, we make use of genome-wide data to obtain reli-

able estimates for the dispersion parameters and parameterize the

sampling distribution accordingly. In general, however, if the

genome-wide information is not available, the dispersion parameters

can also be estimated along with the rate parameters using time-

course data on model components. Further, we denote the data

matrices corresponding to control and actual differentiation experi-

ments by D0 and D1, respectively, and, thus, the likelihood of repro-

ducing the data D ¼ fD0;D1g using the model (M, H) can be

written in the form

pðDjh;M;HÞ ¼
Yn

i¼1

Ym
j¼1

Yl

k¼1

NBðD0
ijk; C0

ijku
0
ijkðhÞ;/ijÞ

�
Yn
i¼1

Ym
j¼1

Yl

k¼1

NBðD1
ijk; C1

ijku
1
ijkðh;M;HÞ;/ijÞ;

(14)

where u0
ijkðhÞ is the ith component of /0

k tj; h
� �

and u1
ijkðh;M;HÞ is

the ith component of /1
k tj; h;M;H
� �

(confer, Intosalmi et al., 2015).

According to Bayes’ theorem, the parameter posterior of model (M,

H) can now be expressed in the form pðhjD;M;HÞ /
pðDjh;M;HÞpðhjM;HÞ, where pðhjM;HÞ is the prior distribution

for the parameters of model (M, H) (for details about Bayesian

methodology, see e.g. Gelman et al., 2013). Further, the posterior

distribution over alternative models can be written in the form

pðM;HjDÞ / pðDjM;HÞpðM;HÞ, where p(M, H) is a prior distribu-

tion over alternative models (the uniform distribution in this study)

and

pðDjM;HÞ ¼
ð

h

pðDjh;M;HÞpðhjM;HÞdh; (15)

is the marginal likelihood. In the context of mathematical models,

the marginal likelihood can only rarely be solved analytically and

different kinds of approximative and numerical approaches need to

be used (Vyshemirsky and Girolami, 2008). The posterior predictive

distribution over model dynamics can be estimated using the average

library size and an interpolated version of time-dependent dispersion

parameters as described in Intosalmi et al. (2015).

2.5 Population-based Markov chain Monte Carlo

sampling and thermodynamic integration
The posterior distributions of the models derived above might end

up being multimodal and contain complex dependencies, and it

might be problematic to carry out the posterior analysis using stand-

ard Markov chain Monte Carlo (MCMC) methods. Consequently,

we utilize the population-based MCMC sampling which is known

Fig. 3. Illustration of three hypothetical structures of the underlying cell cul-

ture. We assume that when cytokines are not added the resulting cell culture

consists only of Th0 cells. In the presence of cytokines, the culture can be a

homogeneous Th17 culture (H1) or a mixture of Th0 and Th17 cell types (H2

and H3). In addition, the fractions of the cell types can be the same between

independent cell cultures (H2) or they may vary (H3)

Heterogeneous cell differentiation dynamics 3309

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/32/21/3306/2415099 by guest on 09 April 2024



to perform well even with complex target distributions (Jasra et al.,

2007). Population-based MCMC sampler can be constructed by

considering a product form of the target density

p�ðhb1
; hb2

; . . . ; hbNb
jD;M;HÞ ¼

YNb

i¼1

pbi
ðhbi
jD;M;HÞ; (16)

where pbi
ðhjD;M;HÞ / pðDjh;M;HÞbi pðhjM;HÞ is the power pos-

terior for fixed 0 ¼ b1 < . . . < bNb
¼ 1 (confer, e.g. Calderhead

and Girolami, 2009). The distributions pbi
, including the posterior

distribution pðDjh;M;HÞpðhjM;HÞ, are marginal distributions of

the product form of the target density and, by means of population-

based MCMC sampling, we draw samples from each of these distri-

butions in parallel. The sampling in each individual distribution pbi

can be carried out by using standard MCMC techniques and, be-

sides the local exploration of the distributions, the population-based

MCMC sampling allows global moves between the distributions

which notably improves the mixing properties of the chain. Further,

the samples obtained from the population-based MCMC sampler

can be directly used to estimate the marginal likelihood via thermo-

dynamic integration (Friel and Pettitt, 2008; Friel et al., 2014). The

derivation of the thermodynamic integration can be found in

Supplementary Material.

2.6 RNA-seq data and data pre-processing
The samples were prepared as previously described in Tuomela et al.

(2016). In brief, the samples originate from CD4þcells that were iso-

lated from human umbilical cord blood. To induce Th17 polariza-

tion, the naive cells were activated and simultaneously treated with

IL6, IL1b and TGFb in the presence of neutralizing anti-interferon c

and anti-IL4. For the control experiment, the cells were activated

and cultured in the presence of neutralizing antibodies. In both ex-

periments, the samples were collected in triplicates at the indicated

time-points and the expression profiles were quantified by means of

RNA sequencing. The data used in this study can be found in the

Supplementary Table S2.

Sequence reads were mapped using Tophat (version 1.3.2) with

default parameters to the GRCh37 human reference genome and

Ensembl human transcriptome (release 63). Expression values of

Ensembl genes were calculated using Python package HTSeq

(Anders et al., 2015) (version 0.5.3p3) with parameters ‘–type-

¼ exon –idattr¼ gene_id –stranded¼no’. Bioconductor package

edgeR (Robinson et al., 2010) was used to estimate the time-

dependent dispersion parameters (Supplementary Table S3) and the

relative mRNA abundances were presented using reads per kilo base

per million (RPKM) values. The data is accessible through GEO

Series accession number GSE52260.

2.7 Computational implementation
The mathematical models and the sampling algorithm were imple-

mented in Matlab (The MathWorks Inc., Natick, MA, USA). The

initial values for mRNA levels are taken directly from data (under

hypotheses H1 and H2, we use the average expression levels). The

abundances of active proteins are assumed to be negligible in the be-

ginning of the experiment. Population-based MCMC sampling

was carried out using 10 different temperatures that were specified

by bi ¼ ðði� 1Þ=ð10� 1ÞÞ5; i ¼ 1; . . . ; 10 [confer, e.g. Calderhead

and Girolami (2009)]. Before the actual run, the proposal distribu-

tions were tuned adaptively. After the adaption and burn-in period,

the sampler was run using fixed proposal distributions and every

1000th sample was collected until 1000 independent samples were

obtained. This procedure was repeated at least three times for each

model and, based on the resulting independent MCMC chains, the

convergence was monitored using the potential scale reduction fac-

tor (Gelman et al., 2013). Posterior analysis for each model is based

on at least 3000 independent samples.

3 Results

3.1 Benchmarking the method using simulated data
In order to test the feasibility of our modeling approach and to

evaluate the performance of our sampling algorithm, we run the in-

ference first for simulated data. We generate the data using the wir-

ing models M1; . . . ;M8 in combination with all three alternative

hypotheses about the structure of the underlying population (H1,

H2, and H3). We simulate two realizations from each model and, as

a result, obtain 2�24¼48 simulated datasets. Each dataset consists

of the same number of replicates and time-points in two different

conditions as our experimental data and, in addition, we use the dis-

persion levels obtained from the real RNA-seq data to set the vari-

ation in the simulated datasets at a realistic level. For details about

data simulation and visualizations of simulated datasets, see

Supplementary Material (Section 3 and Fig. S1). For each of the 48

datasets, we carry out posterior analysis over all 24 models, and

conclude that, in general, the posterior model distributions show

high probabilities for the models that were used to simulated the

data (Supplementary Fig. S2).

Even though the results are in a reasonably good agreement with

the ground truth, the posterior model probabilities clearly vary from

one realization to another. To assess how strong this variability is,

we carry out a more extensive testing of our method’s model ranking

performance by considering a subset of the wiring models (i.e. the

wiring models M5; . . . ;M8) in combination with all three hypotheses

H1, H2 and H3. Here, only a subset of models is considered to keep

the computational burden of the experiment feasible. We simulate

ten independent realizations from each model and carry out poster-

ior analysis for all 10�12¼120 simulated datasets. The resulting

posterior model distributions are summarized in Figure 4. The pos-

terior analysis results show robust model ranking performance in

the case of models M5 and M7 in combination with all three hypoth-

eses H1, H2 and H3 (Fig. 4, the first and third row). When models

M6 and M8 are considered, the posterior model probabilities seem to

depend more on the underlying realization and there is more scatter

in the distributions (Fig. 4, the second and fourth row). However,

also in these cases a notable amount of probability mass is concen-

trated on the correct model and, consequently, the inference is likely

to provide useful information in a wide range of practical settings.

An important aspect in our experiments with simulated data is

that we simulate the data using fixed parameters for all mechanisms

of interest and once a mechanism is removed from the model, we

simply remove the corresponding parameter. The model ranking re-

sults may, at least to some extent, depend on the selected parameter

values. To assess how sensitive our results are for the selection of the

population fraction parameters, we simulate some further data using

the well behaving model M5 under the hypotheses H2 and H3 so that

the population fraction parameters for each realization are drawn

from the uniform distribution. We generate ten realizations using

each combination (M5H2 or M5H3) and carry out posterior analysis

for these data. The posterior analysis results are summarized in

Supplementary Figure S3 and show that the model ranking perform-

ance is not sensitive to the population fraction parameters.
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Along with the analysis of the model posterior distributions, we

study how well the proposed method performs in recovering specific

mechanisms or population structure from simulated data. For this

purpose, we compute the receiver operating characteristic (ROC)

curves with respect to methods capability of discriminating if a

mechanism or population structure is present or not. The ROC ana-

lysis is carried out using the simulated 120 datasets introduced

above (for details about the ROC curve computation, see

Supplementary Material, Section 4). The results of ROC analysis are

summarized in Figure 5. The recovery of STAT3 autoactivation is al-

most perfect (Fig. 5a) and the activation of STAT3 by RORct can be

recovered successfully in most cases (Fig. 5b). Our method also re-

covers the underlying population structure successfully (Fig. 5c).

In addition to the good performance in the model discrimination

tests, our method provides us with the estimates of the parameter

posterior distributions. In all experiments, the parameter posterior

distributions are notably updated from the prior distributions which

indicate good model identifiability (for an example, see,

Supplementary Fig. S4). Further, successful posterior analysis can be

carried out even in the case of challenging posterior parameter distri-

butions that exhibit multimodality and include complex dependen-

cies between the parameters (for an example, see, Supplementary

Fig. S5). The good sampling properties originate from the use of the

population-based MCMC approach which is known to perform

well even with complex distributions.

3.2 Analysis of Th17 RNA-seq data reveals

heterogeneity and the most likely core network
We initiate the analysis of real RNA-seq data by estimating the

time-dependent dispersion parameters (Supplementary Table S3).

The resulting gene-wise dispersion values are very similar to the

common dispersion values (data not shown) and, consequently, we

can use the common dispersion in our inference without causing no-

ticeable bias.

We run the inference for the real data using all eight alternative

models for the network wiring in combination with the three

alternative heterogeneity scenarios about the cell population. The

estimated posterior distribution over the alternative models values

are shown in Figure 6a. The wiring model M6 combined with the

hypothesis H3 has clearly the highest evidence amongst the alterna-

tive scenarios (the estimated parameter posterior is illustrated in

Supplementary Fig. S8). This suggests that the underlying cell cul-

ture is indeed heterogeneous and the fractions of cells in different

cell types vary between independent experiments. Further, the result

suggests that RORct autoactivation and STAT3 activation through

RORct derived signals are actively affecting the differentiation pro-

cess. On the other hand, these findings suggest that STAT3 autoacti-

vation is not necessarily needed.

The above listed mechanisms inferred by our analysis have been

discussed also in the recent literature related to murine Th17 lineage

specification (see, for instance, Ciofani et al., 2012). Autocrine

mechanisms that result in positive feedback loops around RORct

have been reported in several studies (Murphy and Stockinger,

2010) and, thus, our findings based on human data are in agreement

with these results. The inferred STAT3 activation through RORct

derived signals is a more controversial finding. In fact, a recent study

shows that this kind of feedback mechanisms from RORct to

STAT3 should not exist, at least when mouse system is considered

(Ciofani et al., 2012). Further, mouse studies support the view that

there should be many RORct independent feedback mechanisms

regulating the STAT3 expression and, as explained above, our infer-

ence does not support the existence of this kind of feedbacks (in our

models, these feedback mechanisms are implicitly modeled through

the STAT3 autoactivation). Our conclusion here is that our RNA-

seq data alone is not sufficient to draw persuasive conclusions about

the STAT3 regulation by RORct.

To perform a more comprehensive inference about the wiring

mechanisms, we complement the time-course RNA-seq data with

qualitative information from murine studies. By means of RORct
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Fig. 4. Model discrimination results for 120 simulated datasets that are gener-

ated using the wiring models M5;M6;M7;M8 in combination with three popu-

lation structure hypotheses. The model which is used to simulate the data is

given on top of each subplot (indicated also by the vertical line) and the aver-

age posterior probability of the correct model is given in parentheses. The

posterior probabilities of alternative models are plotted using circles and the

fill color of the circle indicates the underlying population structure hypothesis

(H1, H2 and H3 are color coded using white, gray and black circles,

respectively)

0 0.5 1

False positive rate

0

0.5

1

T
ru

e 
po

si
tiv

e 
ra

te

STAT3 autoactiv.,
AUC = 0.996

0 0.5 1

False positive rate

0

0.5

1

ROR t  -> STAT3,
AUC = 0.896

0 0.5 1

False positive rate

0

0.5

1

H
1
: AUC = 0.971

H
2
: AUC = 0.971

H
3
: AUC = 1

(a) (b) (c)

g

Fig. 5. ROC curves summarizing the method’s performance in recovering spe-

cific mechanisms and population structure hypotheses from simulated data.

The curves are computed based on the 120 simulated datasets for which the

posterior model distributions are illustrated in Figure 4. The ROC curves are

computed for recovering (a) STAT3 autoactivation, (b) RORct ! STAT3 and

(c) the underlying population structure. The performance is also summarized
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Fig. 6. Model discrimination results for the RNA-seq data. (a) The estimated
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structure hypotheses. (b) The same as in (a) but the RNA-seq data is comple-

mented with additional qualitative data. The color coding for hypotheses H1,

H2 and H3 is the same as in Figure 4. The logarithmic marginal likelihood val-

ues that have been used to compute the posterior probabilities as well as con-

vergence diagnostics of these runs can be found in Supplementary Table S4

and Figures S6–S7
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knock-out experiments, Ciofani et al. (2012) have shown that

STAT3 expression level at time 48 h does not depend on RORct ex-

pression (even though RORct binds the vicinity of STAT3 gene). We

incorporate this qualitative information into our likelihood function

by requiring that the difference between STAT3 levels at time 48 h

in wild-type and RORct knock-out experiments follows a normal

distribution with a relatively small variance (for details, see

Supplementary Material). The whole inference is then repeated for

all 24 alternative scenarios using this extended setting.

Even though the qualitative information is introduced only at

one time point (48 h), it has a notable effect on the posterior proba-

bilities over alternative scenarios (Fig. 6b). When the qualitative in-

formation is added, the inference still supports the population

structure hypothesis H3 but prefers the wiring model M7 (the esti-

mated parameter posterior is illustrated in Supplementary Fig. S9).

The wiring model M7 includes exactly the mechanisms that are re-

ported in murine studies, that is, RORct and STAT3 autoactivation

but, on the other hand, does not support the controversial feedback

from RORct to STAT3. Our view is that the extended inference pro-

duces reasonable predictions that are in agreement with the existing

results from murine studies and could be relevant also in the context

of human system.

The time-course data as well as the posterior predictive distribu-

tion of the best ranking model (M7,H3) are illustrated in Figure 7.

All in all, the predictive distributions are in a good agreement with

the data. The estimated means of the parameters ai; i ¼ 1; 2; 3, in the

model (M7,H3) indicate that, on average, the subpopulation frac-

tions in the three independent experiments are 84, 94 and 87%. It is

noteworthy that the variation of the fractions of subpopulations dif-

fers between the replicates and this explains why evidence for H3 is

higher than the evidence for H2.

4 Discussion and conclusions

Understanding dynamic gene regulatory mechanisms is a central

challenge in the field of systems biology. Mathematical modeling in-

evitably has an essential role in this endeavor. In this study, we

introduce a general methodology for constructing mechanistic mod-

els that are based on subpopulations which evolve in parallel. The

subpopulations represent distinct cell types that are steered by differ-

ent molecular mechanisms and exhibit different dynamic behaviors

within a heterogeneous cell population. We demonstrate how the

derived models can be calibrated in a data-driven manner and, most

importantly, show how the significance of the modeling results can

be assessed by means of rigorous statistical testing. Our integration

of subpopulation modeling with population average data is unique

and complements well the existing models for population snapshot

data (Hasenauer et al., 2011, 2014). In general, we believe that tak-

ing possible heterogeneity of experimental samples into account can

be advantageous in many applications.

The computational implementation that we present for our

method relies heavily on advanced Markov chain Monte Carlo

(MCMC) techniques. More specifically, we use population-based

MCMC sampling (Jasra et al., 2007) to carry out posterior analysis

and estimate marginal likelihoods using thermodynamic integration

(Friel and Pettitt, 2008). Excellent performance of our statistical im-

plementation is for a great part due to these methods that can handle

also complex posterior distributions. Due to the good performance

of the sampling algorithm, our approach presumably also scales up

to moderate sized ODE models if a feasible amount of data is

available.

We apply our method to RNA-seq data that consists of activated

CD4þcells and cells polarizing towards Th17 lineage to analyze the

regulatory interactions between the core genes driving the Th17 cell

differentiation. The interactions of these core genes have been

studied by means of mechanistic models also in earlier studies in the

context of murine data (Intosalmi et al., 2015). However, to the best

of our knowledge, the analysis that we present here is the first one

that has been carried out for human data. Our results are in a good

agreement with the current understanding about the molecular

underpinnings of the Th17 regulatory mechanisms. Further, the pre-

dictions that we provide about the possible regulatory network top-

ologies may turn out to be useful in future studies.

Like mentioned earlier, the applicability of our method is not re-

stricted to the application presented in this study. As a matter of

fact, the method is fully general and can be extended to cover also

more than two subpopulations. In T cell biology, there are numer-

ous interesting applications that could benefit from the kind of mod-

eling we present. For instance, the differentiation from naive

CD4þcells to the Th17 and regulatory T (Treg) cell lineages is recip-

rocal in nature (Bettelli et al., 2006) and it would be natural to con-

struct a model consisting of Th0, Th17 and Treg subpopulations

and to study the regulatory mechanisms guiding the differentiation

into these lineages. However, it is noteworthy that the amount of

required data increases when the number of subpopulations be-

comes greater and, consequently, the models need to be carefully

benchmarked using simulated data prior to application to real data.

In a similar manner, our method could be used to analyze regulatory

mechanisms of other subsets of T helper cells such as the subsets of

Th1 and Th2 cells. One further strength of our approach is that it

allows also the modeling of possible cross-talk between cell types

which is central, for instance, for achieving a proper balance be-

tween T cell subsets and, thereby, proper regulation of the immune

response.

In summary, we present a novel modeling approach that can be

used to analyze cell differentiation processes within heterogeneous

cell populations and show how it can be applied in practice. We test

the approach first using simulated data and then apply it to analyze

the gene regulatory network steering the Th17 lineage specification.
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