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Ulla Stenius2 and Anna Korhonen3

1Computer Laboratory, University of Cambridge, Cambridge, UK, 2Institute of Environmental Medicine, Karolinska

Institutet, Stockholm, Sweden and 3Department of Theoretical and Applied Linguistics, University of Cambridge,

Cambridge, UK

*To whom correspondence should be addressed.

Associate Editor: Jonathan Wren

Received on May 29, 2015; revised on September 11, 2015; accepted on September 28, 2015

Abstract

Motivation: The hallmarks of cancer have become highly influential in cancer research. They

reduce the complexity of cancer into 10 principles (e.g. resisting cell death and sustaining prolifera-

tive signaling) that explain the biological capabilities acquired during the development of human

tumors. Since new research depends crucially on existing knowledge, technology for semantic

classification of scientific literature according to the hallmarks of cancer could greatly support

literature review, knowledge discovery and applications in cancer research.

Results: We present the first step toward the development of such technology. We introduce a cor-

pus of 1499 PubMed abstracts annotated according to the scientific evidence they provide for the

10 currently known hallmarks of cancer. We use this corpus to train a system that classifies

PubMed literature according to the hallmarks. The system uses supervised machine learning and

rich features largely based on biomedical text mining. We report good performance in both intrin-

sic and extrinsic evaluations, demonstrating both the accuracy of the methodology and its potential

in supporting practical cancer research. We discuss how this approach could be developed and

applied further in the future.

Availability and implementation: The corpus of hallmark-annotated PubMed abstracts and the

software for classification are available at: http://www.cl.cam.ac.uk/�sb895/HoC.html .

Contact: simon.baker@cl.cam.ac.uk

1 Introduction

Cancer figures among the leading causes of mortality worldwide,

with c. 14M new cases and 8.2M cancer-related deaths reported in

2012 (Stewart and Wild, 2014). The number of new cases is ex-

pected to rise by c. 70% over the next two decades, making it more

important than ever to develop effective tools for prevention, detec-

tion and treatment of this disease. New research into cancer draws

on existing knowledge reported in scientific literature. Relevant lit-

erature has grown rapidly in both size and complexity. There are

over 3M citations related to ‘cancer’ in PubMed (www.ncbi.nlm.

nih.gov/pubmed). As many as 151 872 were added over the past

year. The high number of potentially relevant articles is a valuable

source on to which new research can build but at the same time

poses a challenge for scientists. While applications such as Google

Scholar (scholar.google.com) and PubMed Advanced Search (www.

ncbi.nlm.nih.gov/pubmed/advanced) can be of help, they fall short

in providing all and only the information of interest. To collect rele-

vant articles, keyword-based queries are the most common approach

for literature retrieval. However, because of the complexity of scien-

tific data in cancer research, the massive number of keywords, their

synonyms and combinations exceeds what researchers can realistic-

ally handle. For example, a cancer researcher would not find all the

literature about ‘sustaining proliferative signaling’ by searching for

‘proliferative signaling’. Rather, the use of hundreds of search terms
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(e.g. ‘growth factors’, ‘growth factor receptors’ and ‘cell cycle’)

would be required, along with manual filtering of the search results.

It is an extremely time-consuming task for researchers to read, inter-

pret, select and structure data in an organized manner.

Text mining (TM) can provide more targeted methodology for

identifying relevant information in scientific literature. Past decades

have seen a great development in biomedical TM that has made

large-scale information extraction (IE) and knowledge discovery

from literature possible and yielded impressive results in real-life

tasks (McDonald et al., 2012; Simpson and Demner-Fushman,

2012). To date, the main emphasis of cancer-centric TM work has

been on tasks such as text classification and IE [e.g. named entity

recognition (NER), relation and event extraction] (Spasic et al.,

2014; Zhua et al., 2011). Although only some of this work has been

evaluated in context of real-life cancer research, its enormous prom-

ises are evidenced by studies which have revealed new scientific

knowledge in text-mined information that are not observable by in-

formal data inspection (Korhonen et al., 2012).

In this article, we introduce a TM technique for supporting se-

mantic classification of scientific literature for cancer research. Our

classification is based on the hallmarks of cancer. First introduced

by Hanahan and Weinberg in an article that has been cited over

20 000 times (Google Scholar, March 2015) (Hanahan and

Weinberg, 2000), hallmarks are now widely employed in cancer re-

search. A complex disease, cancer involves genetic and epigenetic al-

terations that affect a large number of genes, proteins and signaling

networks during tumor progression (Marusyk et al., 2012). Ten

characteristics (i.e. hallmarks) of normal cells required for malignant

growth have been proposed that provide an organizing principle to

simplify the diversity of the biological processes leading to cancer.

These include (i) sustaining proliferative signaling, (ii) evading

growth suppressors, (iii) enabling replicative immortality, (iv) acti-

vating invasion and metastasis, (v) inducing angiogenesis, (vi) resist-

ing cell death, (vii) deregulating cellular energetics, (viii) avoiding

immune destruction, (ix) genome instability and mutation and (x)

tumor-promoting inflammation) (Hanahan and Weinberg, 2011).

Rationalizing the complexity in the underlying biological processes,

hallmarks can help researchers gain a better understanding of the

cellular events leading to cancer. The ability to identify important

pathways within one or several hallmarks may also lead to the de-

velopment of e.g. more effective cancer drugs (Hanahan and

Weinberg, 2011).

Within the bioinformatics community, hallmarks have inspired

harvesting interactions between genes and proteins and relations be-

tween environment and cancer from high-throughput omics data

and scientific literature. The latter work has led into the develop-

ment of ontology tools [e.g. OncoCL (Doland, 2014) and

OncoSearch (Lee, 2014)] for discovery of information related to spe-

cific proteins, genes or cancers. Within biomedical TM, some re-

search has been conducted on identifying hallmark-based processes

(i.e. events) in biomedical literature (Pyysalo et al., 2013). This

work has been based on the initial hallmark classification of

Hanahan and Weinberg (2000), and it has focused on a set of events

known to be relevant for the cancer genetics domain. Since hall-

marks involve complex processes, relevant scientific data are diverse

and difficult to harvest using standard search techniques. What is

ideally needed is powerful technology, which categorizes and ranks

data in literature on the basis of their relevance for hallmarks.

Exploration of the resulting semantically structured data could help

scientists find relevant information faster, make links between other-

wise unconnected articles and create summaries and novel hypothe-

ses from the scientific literature.

We present here a TM technique capable of such large-scale se-

mantic classification of PubMed literature according to the current

10 hallmarks of cancer (Hanahan and Weinberg, 2011). We first

introduce a corpus of 1499 cancer-related PubMed abstracts, which

we have annotated according to the evidence they provide for hall-

marks. We show that the annotations are accurate and that the cor-

pus is representative. We then report experiments where the corpus

is used as training and test data for automatic hallmark classification

of literature. Our machine learning approach is based on support

vector machines (SVM) and employs a rich set of features based on

natural language processing (NLP) and existing resources. We pre-

sent direct and task-based evaluation of the classification which

demonstrates both the accuracy of the approach and its usefulness in

supporting cancer research. We discuss future development and ap-

plications of our methodology.

2 Methods

The following two sub-sections describe the development of the hall-

mark corpus and the classifiers, respectively.

2.1 The hallmarks of cancer corpus
2.1.1 Evidence for hallmarks of cancer

Our starting point was to define the scientific evidence for hallmarks

of cancer. Our primary resource was the two articles by Hanahan

and Weinberg (2000, 2011), which describe examples of the cellular

processes, proteins and genes involved in individual hallmarks. For

example, ‘apoptosis’ can provide evidence for the ‘resisting cell

death’ hallmark, and similarly ‘caspase 3’ because it is known to

drive the apoptotic process. We also gathered additional evidence in

literature during the annotation process. For example, articles study-

ing specific cellular processes often also mention proteins or genes

that can provide evidence for hallmarks. When needed, we used the

KEGG pathways in cancer to confirm a proteins function and its

role in cell signaling (http://www.genome.jp/kegg/disease/cancer.

html).

2.1.2 PubMed literature retrieval

Abstracts were retrieved from PubMed journals representing sub-

areas of biomedicine relevance to cancer research (e.g. molecular

biology, public health and clinical medicine) using a set of search

terms representative for each of the 10 hallmarks (Table 1). The

terms and their synonyms appearing in Hanahan and Weinberg

(2000, 2011) were employed, along with additional ones selected by

a team of cancer researchers at Karolinska Institutet, Sweden. When

needed, the term ‘cancer’ was added to filter out irrelevant abstracts

(e.g. those concerning the ‘immune response’ without any obvious

link to cancer). The PubMed searches were limited to years 1992,

2002 and 2012 to ensure coverage of varied data over time. The

total number of retrieved abstracts per hallmark ranged from less

than a hundred to several thousands. The abstracts were down-

loaded in the XML format.

2.1.3 Annotation

The annotation was conducted by an expert with 15þ years of ex-

perience in cancer research. The XUL-based annotation tool

described in (Guo et al., 2012) was used with its menu items custom-

ized to our hallmark task. The abstracts were chosen for annotation

randomly, starting from the top of the list returned by PubMed

search. Abstracts not containing information about hallmarks were

left unannotated, as were those linked to review articles. Annotation
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was performed at sentence level, so that only sentences describing

findings or conclusions of the study in question were included. A

sentence was annotated when it contained clear evidence for one or

several hallmarks of cancer. In the latter case, multiple labels were

assigned to the sentence. Figure 1 shows annotated example sen-

tences for different hallmarks, with hallmark evidence highlighted.

The annotation labels for a given abstract are the combined set of

labels of its individual sentences.

After the first round of annotation, additional annotation was

required. For this, 10 supplementary sets of abstracts were retrieved

from PubMed limited to the year 2010 using the search terms ‘cell

cycle’, ‘cellular energetics’, ‘DNA repair’, ‘glycolysis metabolism’,

‘immunosuppression’, ‘inflammation immune system cancer’, ‘ in-

flammation oxidative stress cancer’, ‘necrosis cancer’, ‘cell cycle

checkpoints’ and ‘contact inhibition’.

2.1.4 Statistics of annotated data

Table 2 lists the distribution of 1499 abstracts and sentences for

each of the hallmark categories (for the shorthand notation of each

hallmark category see Table 1). While we succeeded in finding a suf-

ficient number of abstracts for most hallmarks, a few (e.g. CE) re-

mained fairly low in frequency, most likely reflecting the lack of

relevant scientific data in literature. To investigate the accuracy of

annotations, we performed inter-annotator agreement analysis

where a second expert annotator was asked to annotate a subset of

155 abstracts. The annotation was compared against that of the an-

notator who annotated the whole corpus. Good agreement was

found between the two annotators with the average Cohen’s Kappa

of.81 for all the categories.

2.2 Hallmark classification
2.2.1 An overview of the classification process

Our methodology for hallmark classification consists of processing

texts using an NLP pipeline, extracting a rich set of features from

the resulting processed data and external resources and classifying

the features using supervised machine learning. We have binary clas-

sifiers for each hallmark category, so that a given text can be classi-

fied under more than one category when each classifier is trained

independently.

The NLP pipeline is illustrated in Figure 2. We start by

tokenizing and Part-of-Speech tagging input text using the C&C tag-

ger (Clark, 2002) which employs the Penn Treebank grammatical

categories and is trained on biomedical texts. We lemmatize (stem)

the output using the BioLemmatizer trained for biomedical texts

(Liu et al., 2012). The C&C Parser is then used to extract grammat-

ical relations from lemmatized text. We trained the C&C Parser

using available annotations from molecular biology (Rimell and

Clark, 2009). Finally, named entities of relevance to hallmarks are

extracted from parsed data using the state-of-the-art NER tool

ABNER (Settles, 2005). ABNER is trained on the NLPBA and

BioCreative corpora and achieves an F-score accuracy of 70.5% and

69.9% on these two corpora, respectively (Leitner et al., 2010).

In the feature filtering (feature selection) stage of the pipeline,

features that are deemed too rare or too common in the annotated

corpus are filtered out, so that only the most discriminating features

are used by the classifiers. The thresholds are set for each of the hall-

marks by a process of trial and error, typically a minimum threshold

value of 5, while the maximum threshold varies greatly depending

on the feature type; usually a value larger than 500.

This improves both accuracy and reduces training time. This

procedure is done separately for each of the hallmarks, i.e. we only

select the features in the corpus that occur in abstracts annotated

Table 1. Hallmarks and their search terms

Hallmark Search term

1. Sustaining proliferative

signaling (PS)

Proliferation Receptor Cancer

‘Growth factor’ Cancer

‘Cell cycle’ Cancer

2. Evading growth

suppressors (GS)

‘Cell cycle’ Cancer

‘Contact inhibition’

3. Resisting cell death

(CD)

Apoptosis Cancer

Necrosis Cancer

Autophagy Cancer

4. Enabling replicative

immortality (RI)

Senescence Cancer

Immortalization Cancer

5. Inducing angiogenesis

(A)

Angiogenesis Cancer

‘Angiogenic factor’

6. Activating invasion &

metastasis (IM)

Metastasis Invasion Cancer

7. Genome instability &

mutation (GI)

Mutation Cancer

‘DNA repair’ Cancer

Adducts Cancer

‘Strand breaks’ Cancer

‘DNA damage’ Cancer

8. Tumor-promoting

inflammation (TPI)

Inflammation Cancer

‘Oxidative stress’ Cancer

Inflammation ‘Immune response’ Cancer

9. Deregulating cellular

energetics (CE)

Glycolysis Cancer; ‘Warburg effect’

Cancer

10. Avoiding immune

destruction (ID)

‘Immune system’ Cancer

Immunosuppression Cancer

Fig. 1. Example sentences and color-highlighted evidence for hallmarks

Table 2. Distribution of data for the 10 hallmarks

Hallmark No. abstracts No. sentences

1. PS 462 993

2. GS 242 468

3. CD 430 883

4. RI 115 295

5. A 143 357

6. IM 291 667

7. GI 333 771

8. TPI 194 437

9. CE 105 213

10. ID 108 226

434 S.Baker et al.
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with the given hallmark. Therefore, each hallmark classifier has a

unique set of selected features. Table 3 summarizes the number of

features for each hallmark after feature filtering. The features are

represented in a sparse binary format for each abstract, with a value

1 indicating that the given abstract contains this feature.

The binary features are then input into 10 classifiers [SVMs with

radial basis function (RBF) kernels] that label each abstract with a

binary label indicating its relevance for a particular hallmark.

2.2.2 Features and feature extraction

We experimented with seven feature types, chosen on the basis that

many had performed well in previous (biomedical) text classification

tasks.

1. Lemmatized bag of words (LBow): The simplest feature employs

all the words occurring in input texts. We lemmatize the words

to reduce feature sparsity.

2. Noun bigrams (N-Bigrams): Noun bigrams are used because

they can be useful in capturing two word -concepts in texts (e.g.

Gene silencing). No lemmatizing is employed to preserve the

meaning of such concepts.

3. Grammatical relations (GR): We use the Dobj (direct object),

ncsubj (non-clausal subject) and iobj (indirect object) relations

in parsed data, taking into account their head and dependent

words.

4. Verb classes (VC): Verb classes group semantically similar predi-

cates together, providing the means to abstract away from

individual verbs when faced with data sparsity. We used the

hierarchical classification of 399 verbs by Sun and Korhonen

(2009) which was automatically acquired from cancer risk as-

sessment literature using clustering. We use all three levels of ab-

straction by allocating three bits in our feature representation

for each concrete class (1 bit for each level of the abstraction

hierarchy).

5. Named entities (NE): Named entities capture domain-specific

concepts in texts, providing another way to group words into

meaningful categories. We use five named entity types which are

particularly relevant for cancer research: proteins, DNA, RNA,

cell line and cell type. We store in the feature a pair of the entity

type and the associated words or phrases.

6. Medical subject headings (MeSH): MeSH is a comprehensive

controlled vocabulary for indexing journal articles and books in

the life sciences. Most abstracts in our dataset contain an associ-

ated list of MeSH terms which we employ as features.

7. Chemical lists (Chem): Hallmark-related processes may involve

chemicals. Since most abstracts in our corpus also contain, as

metadata, a list of associated chemicals, we used these as fea-

tures (a total of 3021 chemicals).

2.2.3 Classifiers

Given a set of training examples, each marked as belonging to one

or more hallmark categories, an SVM training algorithm builds a

binary model that predicts whether or not a new example falls into a

particular category. An SVM model is a representation of the ex-

amples as points in space, mapped in a way such that the examples

of the separate categories are divided by a clear gap that is as wide

as possible. It constructs a hyperplane or a set of them in a high-

dimensional space which can be used for classification or regression.

The goal is to find the maximum-margin hyperplane which has the

largest distance to the nearest data points of any class (Gunn et al.,

1998; Hsu et al., 2003). SVMs have been applied widely in text clas-

sification over the past two decades (Joachims, 1998; Sebastiani,

2002) due to their relatively high performance in both cross-domain

(Basu et al., 2003; Sebastiani, 2002) and biomedical text classifica-

tion tasks (Cohen and Hersh, 2005; Shatkay et al., 2008).

We use the LIBSVM (Chang and Lin, 2011) in our experiments.

It implements the Sequential Minimal Optimization Algorithm for

kernelized SVMs. We have experimented using both a linear kernel

and non-linear kernel such as the RBF kernel. On average, non-

linear kernels such as the RBF performs around 5% higher in

F-score accuracy.

3 Results

3.1 Intrinsic evaluation
We evaluate the classifiers intrinsically using precision:

true positive
true positiveþfalse positive, recall: true positive

true positiveþfalse negative, accuracy:
true positiveþtrue negative

total and F score: 2�precision�recall
precisionþrecall against manual anno-

tations. The aforementioned measurements are typically expressed

as percentages. We use standard cross-validation to avoid sampling

bias. The data are divided into 4-folds, i.e. the model is trained with

75% of the data and tested with the remaining 25%, and this is

done four times for full coverage of the dataset. The size of folds

was selected based on the sparsity of the test data. Within the 75%

Fig. 2. Processing pipeline

Table 3. The final number of features for each hallmark after the

feature filtering stage

Hallmark LBoW N-Bigrams GR VC NE MeSH Chem Total

1. PS 1471 355 435 121 302 280 129 3093

2. GS 863 176 189 119 108 156 55 1666

3. CD 1403 289 380 119 215 262 114 2782

4. RI 506 59 53 105 54 80 26 883

5. A 590 93 96 105 82 97 28 1091

6. IM 1052 220 253 114 161 172 43 2015

7. GI 1215 188 235 126 100 216 77 2157

8. TPI 843 122 152 111 99 121 34 1482

9. CE 410 54 53 103 31 68 20 739

10. ID 498 48 59 99 55 68 14 841

Automatic semantic classification of scientific literature 435
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of the training data, we also perform another step of cross-valid-

ation for parameter tuning of the SVM kernels. Here, we do a 5-fold

cross-validation, where we train with 80% of the data (for a given

parameter configuration).

Table 4 lists the results for each of the 10 trained hallmark classi-

fiers. The accuracy is impressive (93.2% on average), ranging be-

tween 83.4% and 98.9%. The average F score is 76.9%, with three

categories scoring above 80% and from the remaining six categories

only two scoring lower than 70%. The best results achieved are for

the Cellular energetics (CE) category and the lowest for the Evading

growth suppressors (GS) and the Sustaining proliferative signaling

(PS) categories. The lower results are largely affected by recall (sen-

sitivity) rather than precision (positive predictive value). They are

not caused by data sparsity (as indicated by #Abstracts) but more

likely by intrinsic difficulty of the categories in question. For ex-

ample, the same underlying processes are relevant for both hall-

marks and the difference is mainly apparent in the sets of proteins

involved. A similar observation can be made with regards to

Avoiding immune destruction (ID) and the Tumor promoting in-

flammation (TPI) categories, as they both represent immune re-

sponse and inflammation, and involve overlapping processes.

Further feature development such as named entity clustering could

help and distinguish between such categories.

We compare the performance of our classifiers against two

baselines:

Baseline 1: Bag of Words (BoW): We use the standard BoW base-

line, where we count the occurrences of each word appearing in a

given abstract (instance) and use these word-count pairs as fea-

tures for the SVM classifier with an RBF kernel, fine-tuned across

five cross-folds akin to our classifiers.

Baseline 2: Keyword-based classification: We compare our

results to a simple keyword-match classification. We use the key-

words in Table 1; if any of the keyword strings appears in the

abstract text, it is classified under the corresponding hallmark(s).

The results presented in Table 5 show that our approach outper-

forms both baselines for all hallmarks, in most cases by a significant

margin.

We conducted a leave-one-out feature analysis to determine which

features contribute the most to the classification result. This involves

removing one feature type (out of those outlined in Section 2.2.2) at a

time and observing the change in results. The setup of this experiment

is exactly the same as that described previously, with the exception of

one feature type being left out. The cross validation and parameter

turning are repeated for each feature leave-out iteration.

The analysis, shown in Table 6, shows that the most important

feature type is the lemmatized bag of words (LBoW) which, when

left out, results in a decrease of 9.8% basis points and (as our only

feature type) decreases accuracy for all the 10 categories. The verb

clustering (VC) feature performs the worst in this analysis, showing

the smallest drop in F-score (0.2% on average). It is possible that the

clusters learned from cancer risk assessment literature were not the

best fit with our data and use of more relevant literature could im-

prove performance. From the 10 categories, five benefited from all

of the seven feature types.

3.2 Case studies
To evaluate the usefulness of the hallmark classification on unseen

data, we performed four case studies. In the first two, we apply our

approach to literature on selected tumor types and anticancer drugs.

For well-studied tumor types and drugs, the most relevant and fre-

quent hallmarks are known by experts. Whether the automatically

generated literature distribution profiles confirm this existing know-

ledge can be a good indicator of the reliability of the classification

and can complement intrinsic system evaluation. The results of these

case studies were tested for statistical significance using v2 homogen-

eity test for each hallmark (using a 2�2 contingency table) followed

by a Bonferroni correction for the entire profile’s P values.

In the last two case studies, we evaluate our approach in the con-

text of information retrieval. As described earlier, the hallmarks do

not normally appear explicitly as literal strings in text; rather, they are

latent in nature and retrieval of a comprehensive set of articles relating

to these hallmarks requires using a large number of keywords like the

ones presented in Table 1 and can result in a large number of false

positives. Therefore, our goal is to show that we can identify a higher

number of true instances than realistic using a standard keyword

search, while keeping the number of false positives lower.

3.2.1 Case study 1

Basal cell carcinoma and melanoma are two types of human skin

cancers with different biology and consequently differing degrees of

malignancy. Melanoma is highly metastatic with high mortality,

while the more common basal cell carcinoma rarely or never meta-

stasizes and has lower mortality (Tomasetti and Vogelstein, 2015)

All PubMed abstracts available in December 2014, including

22 564 abstracts for basal cell carcinoma and 98 924 for melanoma

Table 4. Classification results using 10 independent SVM

classifiers

Hallmark No. abstracts Precision

(%)

Recall

(%)

Accuracy

(%)

F score

(%)

1. PS 462 77.0 61.7 83.4 68.5

2. GS 242 73.5 59.5 90.5 65.8

3. CD 430 86.6 75.3 90.1 80.6

4. RI 115 92.9 68.7 97.3 79.0

5. A 143 90.2 70.6 96.6 79.2

6. IM 291 86.4 71.8 92.7 78.4

7. GI 333 88.2 76.3 92.8 81.8

8. TPI 240 81.6 64.6 92.4 72.1

9. CE 105 96.8 85.7 98.9 90.9

10. ID 108 81.6 65.7 96.6 72.8

Average 85.5 70.0 93.2 76.9

Table 5. Comparison of our approach to the Bag of Words (BoW)

and keyword classification baselines

Hallmark Our

approach (%)

Baseline 1:

BoW (%)

Baseline 2:

keyword (%)

1. PS 68.5 63.2* 62.6**

2. GS 65.8 64.1* 64.5

3. CD 80.6 74.3 70.4**

4. RI 79.0 72.4 66.7**

5. A 79.2 75.2 74.1*

6. IM 78.4 71.2* 51.0*

7. GI 81.8 73.2 51.7*

8. TPI 72.1 67.4 58.6*

9. CE 90.9 78.4* 77.3**

10. ID 72.8 59.1** 44.7**

Average: 76.9 69.9 62.2

All numbers are F scores.

*Statistical significance level of P<0.05 according to the McNemar test.

**P< 0.001 according to the McNemar test.
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were used. The results of classification are shown in Figure 3. Out of

a total of 121 488 abstracts from the original literature search; only

46 727 abstracts (38%) were classified as relevant, highlighting the

time saving function of automatic classification.

Comparing the literature distribution for the hallmarks activat-

ing invasion and metastasis, a significant difference can be seen with

higher numbers of abstracts for melanoma, reflecting the existing

knowledge about the metastatic potential of melanoma (Akinci

et al., 2008; Fidler, 1995; Young et al., 2008). A significantly higher

number of abstracts for melanoma were also found for angiogenesis

and avoiding immune destruction. Also these two parameters reflect

malignancy. This classification pattern is in line with existing scien-

tific knowledge, demonstrating the reliable performance of our ap-

proach. Our methodology structures a large amount of textual

information (more than 121 000 abstracts for the two tumor types

in the original PubMed search) according to hallmarks—a task that

would be near impossible to conduct manually.

3.2.2 Case study 2

Sorafenib and taxol are two drugs that have been developed to treat

cancer via different mechanisms. Sorafenib acts by inhibiting devel-

opment of new blood vessels (anti-angiogenic) (Wilhelm et al.,

2006), while taxol inhibits cancer cell growth by inducing genomic

instability (Schiff and Horwitz, 1980)

We used for investigation all the PubMed abstracts available in

December 2014, including 3846 abstracts for sorafenib and 24 827

for taxol. The results of classification are illustrated in Figure 4. Out

of a total of 28 673 abstracts in the original literature retrievals, only

8993 abstracts were classified as relevant for cancer hallmarks

(31%), again highlighting the time-saving aspect of automatic

classification

Comparing the literature distribution for sorafenib and taxol,

there is a significant difference in the percentage of abstracts rele-

vant for the aforementioned hallmarks: a significantly higher num-

ber of abstracts for sorafenib were found for the hallmarks inducing

angiogenesis resisting cell death and sustaining proliferative signal-

ing. This is in line with the anti-angiogenic effect of sorafenib and its

effect in causing cell death (Wilhelm et al., 2006). The most frequent

hallmarks in taxol literature are ‘genomic instability and mutation’.

This corresponds to existing knowledge about taxol as a drug that

interferes with microtubules and chromosomal segregation in a

dividing cell and may lead to genetic instability (Abal et al., 2003;

Pihan and Doxsey, 1999). This study, again, reflects the accuracy of

the literature distribution profiles and the reliability of the classifica-

tion results.

3.2.3 Case study 3

This case study investigates whether our classification approach can

identify a higher number of relevant abstracts and with fewer false

positives than a standard keyword search approach. We compare

the number of articles retrieved by PubMed keyword search to what

our classifiers can identify for a given search topic. For our test

topic, we use ‘Melanoma’. We combine the search query

‘Melanoma’ with a single search string according to expert’s best de-

scription of each hallmark name (see Table 7 for the search queries

used). We can estimate the percentage of its false positives by ascer-

taining the relevance of the top 20 PubMed-retrieved search results

for each hallmark using expert evaluation: an expert in cancer re-

search is asked whether each of the top 20 retrieved abstract is really

Table 6. Results for leave-one-out analysis

Hallmark All (%) GR (%) VC (%) NE (%) MeSH (%) Chem (%) LBoW (%) N-Bigram (%)

1. PS 68.5 66.1 67.1 64.4 66.5 66.2 66.3 65.8

2. GS 65.8 60.7 63.0 61.7 61.9 61.7 51.7 59.0

3. CD 80.6 78.6 80.5 80.2 78.3 80.4 70.4 80.5

4. RI 79.0 (80.2) (81.2) 79.0 78.4 79.0 69.9 79.0

5. A 79.2 (81.4) 79.1 (81.1) (79.4) (81.1) 70.7 (80.3)

6. IM 78.4 78.1 (79.4) 77.6 76.9 (78.9) 68.7 77.5

7. GI 81.8 (82.1) 81.8 (82.0) 79.2 (83.0) 74.2 (81.9)

8. TPI 72.1 69.7 (72.5) 71.1 68.0 (71.6) 60.5 70.5

9. CE 90.9 88.8 89.8 88.1 88.7 88.7 84.5 88.1

10. ID 72.8 70.4 72.4 72.4 69.0 72.7 54.0 71.7

Average 76.9 75.6 76.7 75.8 74.6 76.3 67.1 75.4

Figures in parentheses show an improvement in accuracy when the given feature is removed from classifications. All figures are F scores.

Fig. 3. Case study 1: the distribution of basal cell carcinoma and melanoma

literature over the relevant hallmarks. *Statistical significance level (P<0.05).
#P<0.001

Fig. 4. Case study 2: the distribution of Sorafenib and Taxol literature over the

relevant hallmarks. *Statistical significance level (P< 0.05). #P<0.001
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related to the given hallmark based on the abstract text. We can

compare our classifiers’ performance by retrieving articles from

PubMed for ‘Melanoma’ (98 924 abstracts in total) and then run

our classifiers over these articles to find which of the ‘Melanoma’

abstracts that are also associated with each of the hallmarks; there-

fore, we are identifying abstracts that are both relevant to the search

topic ‘Melanoma’ and each of the hallmarks, thereby directly com-

paring retrieval performance with that of the PubMed keyword

search queries (Table 7).

We then evaluate the output of our classifiers for the same list of

20 abstracts for each hallmark also against expert’s judgment and

compare the percentage of false positives of our classifiers, using the

PubMed keyword search as a benchmark.

Table 8 summarizes the results. Overall, our classifiers managed

to identify substantially more abstracts than the keyword-based ap-

proach in 7 of the 10 hallmarks, while having a much lower percent-

age of false positives for the sample of top 20 retrieved results for all

of the hallmarks.

3.2.4 Case study 4

In the previous case study, we constrained the keyword search string

to terms that best describe the 10 hallmarks. In this case study, we

replicate the experimental setting from the previous case study, ex-

cept that we do an unconstrained direct experiment, where an inde-

pendent expert in cancer research is asked to search for papers

about the topic (Melanoma) with a set of terms that they believe are

associated with each of the hallmarks. That is the search terms do

not need to be a description of the names of the hallmarks as in the

previous case study, instead it is left to the expert to openly decide

on any associated terms to search. Table 9 lists the resulting search

queries selected by our expert volunteer.

The results (Table 10) show that overall, our classifiers identify

substantially more abstracts than the keyword-based approach for

the majority of the hallmarks, while having a much lower percent-

age of false positives for the sample of top 20 retrieved results when

compared with the keyword-based search.

One should note the very high false-positives for Hallmarks 4

and 8 (RI and TPI) for the top 20 retrieved PubMed keyword search.

This highlights some of the weaknesses of a keyword only search ap-

proach, where even expert users may not find the optimal search

terms for each hallmark, it shows the need of carefully selecting the

correct hallmark-related terms to avoid false positives in standard

keyword search. In contrast, our classifiers can mitigate this risk

since they take into account thousands of linguistic features instead

of a small set of search terms.

Table 7. The search queries used to describe the 10 hallmarks while

searching for the topic: melanoma

Hallmark Search query

1. PS melanoma AND proliferation

2. GS melanoma AND ‘growth suppression’

3. CD melanoma AND ‘cell death’

4. RI melanoma AND immortalization

5. A melanoma AND angiogenesis

6. IM melanoma AND ‘invasion metastasis’

7. GI melanoma AND ‘genomic instability mutation’

8. TPI melanoma AND inflammation7

9. CE melanoma AND ‘warburg effect’

10. ID melanoma AND ‘immune destruction’

Table 8. Case study 3 results, comparing the number of abstracts

retrieved from PubMed using the search queries in Table 7 and the

number of classified abstracts out of a total of 98 924 abstracts

using our approach

Hallmark Keyword search Our approach

No.

retrieved

% False

positives

No.

classified

% False

positives

1. PS 6958 0 1808 0

2. GS 105 35 472 0

3. CD 1813 0 4972 0

4. RI 23 25 198 5

5. A 2155 0 1514 0

6. IM 1954 0 12 424 0

7. GI 101 10 6478 0

8. TPI 1395 15 313 0

9. CE 20 15 80 5

10. ID 35 0 2674 0

Average 1456 10 3093 1

The % false-positive numbers are only of the top 20 retrieved abstracts

using each of the search strings in Table 7 and not of the entire result set.

Table 9. Search queries used by an independent user to retrieve

documents about Melanoma, relating to each of the 10 hallmarks

Hallmark Search query

1. PS Melanoma AND ‘growth factor’

2. GS Melanoma AND ‘cell cycle’

3. CD Melanoma AND apoptosis

4. RI Melanoma AND telomerase

5. A Melanoma and ‘angiogenic factor’

6. IM Melanoma AND EMT

7. GI Melanoma AND ‘DNA damage’

8. TPI Melanoma AND ‘oxidative stress’

9. CE Melanoma AND glycolysis

10. ID Melanoma AND immunosuppression

Table 10. Case study 4 results, comparing the number of abstracts

retrieved from PubMed using the search queries in Table 9 and the

number of classified abstracts out of a total of 98 924 abstracts

using our approach

Hallmark Keyword search Our approach

No.

retrieved

% False

positives

No.

classified

% False

positives

1. PS 3079 30 1808 0

2. GS 2512 0 472 0

3. CD 4834 0 4972 0

4. RI 191 85 198 0

5. A 89 0 1514 0

6. IM 1812 0 12 424 0

7. GI 868 0 6478 0

8. TPI 395 70 313 0

9. CE 142 35 80 10

10. ID 1399 0 2674 0

Average 1532 20 3093 1

The % false-positive numbers are only of the top 20 retrieved abstracts

using each of the search strings in Table 9 and not of the entire result set.
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4 Discussion

The evaluation reported above demonstrates the accuracy and the

practical potential of hallmark-based text classification. We report

here further analysis to gain insight into the errors made by the clas-

sifier and how to improve our approach in the future. We first

looked into multi-labeling. As listed in Table 11, 40% of the ab-

stracts in our annotated corpus are multi-labeled. Figure 5 displays

the proportion of abstracts in the corpus according to the percentage

of matched hallmark labels for a given abstract in the classifier out-

put; 63.3% of abstracts have 100% of their labels correctly pre-

dicted by the classifier, while 14.8% have no matches (0% of their

labels). The high percentage of 100% matched and 0% matched can

be attributed to 60% of the abstracts having a single label.

We next examined the actual hallmark pair co-occurrences (i) in

the annotated corpus (Table 12 where the diagonal line shows the

number of occurrences for a given hallmark in the corpus independ-

ent of other co-occurring hallmarks) and (ii) as predicted by the clas-

sifier (Table 13). Looking at Table 12, hallmarks that most often

co-occur with each other include ‘sustaining proliferative signaling

(PS)’, ‘resisting cell death (CD)’ and ‘evading growth suppressors

(GS)’, with 165 abstracts labeled as PS and CD and 120 abstracts

labeled as PS and GS. These co-occurrences could be explained by

the fact that they are all related to cell cycle regulation. For example,

in the sentence: ‘Moreover, harmine not only induced endothelial

cell cycle arrest and apoptosis, but also suppressed endothelial cell

migration and tube formation as well as induction of neovascularity

in a mouse corneal micropocket assay’, the phrase: ‘cell cycle arrest’

is a good indicator of PS and GS, and the word ‘apoptosis’ is a good

indicator of CD. This might be explained by overlapping capabilities

(e.g. cell growth) and is likely to be the main reason for the lower

classifier performance figures for these three hallmarks in Table 4.

Looking at Table 13, for many hallmarks, the predicted co-occur-

rences are well-correlated with those in the annotated corpus. For

example, PS and CD are co-classified 154 times which is relatively

comparable to their 165 co-occurrences in the corpus. Similar obser-

vations can be made with regard to PS and GS. Our current ap-

proach is based on training 10 independent, binary classifiers to

predict whether an abstract belongs to a given hallmark category.

We could also experiment with models that allow the classifiers to

work together, e.g. models based on joint inference (Poon and

Vanderwende, 2010) or joint learning (Zang et al., 2013). This type

of methodology, which has been successfully applied to similar NLP

tasks, is likely to improve performance as it provides the means to

capture dependencies and interactions between co-occurring

hallmarks.

The first two case studies provide additional evidence that our

system correctly classifies literature over the hallmarks of cancer.

The automatic system rapidly generated profiles that would have

been difficult and very time-consuming to produce manually, which

would facilitate overviews of scientific literature. In the future, the

approach may be further developed to support the detection of novel

patterns and research hypotheses in literature.

The last two case studies show that our approach can support in-

formation retrieval in comparison with a search string intersection

query where the goal is to identify documents for a given topic, as

well as articles that relate specifically to certain hallmarks. Our ap-

proach generally identifies more documents and has a smaller per-

centage of false positives than standard keyword-based search. This

can perhaps be explained by the latent nature of the hallmarks in

texts—the fact that they are rarely stated explicitly but rather via in-

direct correlation of terms that describe relevant biological proc-

esses, and therefore are not easily found by basic keyword search.

Our case studies also demonstrate that experts selecting the wrong

set of search terms may result in a high number of false positives and

that our classifiers are not susceptible to this problem since they are

trained on a large number of features and not on the occurrence of a

single search term.

Our analysis also suggests that many hallmarks could be sub-

divided, e.g. according to the established pathways involved in

Table 11. The number of hallmark labels per abstract in our corpus

Hallmarks per abstract Frequency Proportion (%)

1 951 60.2

2 450 28.5

3 141 8.9

4 31 2.0

5 5 0.3

Fig. 5. The distribution of all abstracts according to the percentage of their

correctly predicted hallmarks

Table 12. Hallmark co-occurrence distribution in the annotated

corpus

PS GS CD RI A IM GI PI CE ID

PS 462 120 165 19 38 79 31 25 9 5

GS 120 242 86 15 10 28 31 9 2 0

CD 165 86 430 23 28 48 44 37 16 14

RI 19 15 23 115 2 6 28 4 3 2

A 38 10 28 2 143 42 0 14 2 3

IM 79 28 48 6 42 291 14 24 9 13

GI 31 31 44 28 0 14 333 27 7 6

PI 25 9 37 4 14 24 27 194 7 14

CE 9 2 16 3 2 9 7 7 105 0

ID 5 0 14 2 3 13 6 14 0 108

Table 13. Hallmark co-occurrence distribution as predicted by the

classifier

PS GS CD RI A IM GI PI CE ID

PS 285 110 154 14 32 64 23 14 9 8

GS 113 142 82 6 8 24 27 3 2 0

CD 138 78 327 14 21 37 38 29 13 12

RI 13 16 21 80 1 7 26 4 3 1

A 31 8 19 1 105 32 1 10 2 2

IM 69 26 35 2 33 211 12 15 7 11

GI 23 26 40 24 0 12 258 19 6 5

PI 16 8 28 1 10 18 23 125 6 16

CE 8 6 18 1 0 7 1 4 86 0

ID 8 2 10 1 3 12 7 14 0 72
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tumor development. During cancer development, aberrantly regu-

lated intracellular signaling pathways tend to rearrange networks

regulating cancer cells and the networks themselves can be divided

into sub-circuits which regulate certain capabilities of cancer cells,

e.g. viability circuit. We are currently developing such an enriched

classification of hallmarks, so as to help cancer researchers navigate

more easily to the literature of their specific interest. However,

whether the more subtle differences between subcategories of hall-

marks can be captured by machine learning is yet to be known, and

we plan to investigate that in due time.

5 Conclusions

We have introduced a TM technique capable of large-scale semantic

classification of PubMed literature according to the evidence they

provide for the hallmarks of cancer (Hanahan and Weinberg, 2011).

Our evaluation demonstrates both the accuracy of the approach and

its usefulness in supporting cancer research. In the future, we plan to

improve and refine our classification approach as discussed in the

previous section. Given the prominence of hallmarks in recent and

current cancer research, we expect that the resulting methodology

will offer a highly useful literature analysis tool for cancer re-

searchers. The ability to organize literature semantically according

to the hallmarks of cancer can help researchers summarize known

and find novel information in literature faster. It can support both

basic and applied research into cancer, including cancer drug devel-

opment, prevention strategies, biomarker discovery and identifica-

tion of previously unknown associations between genes, proteins,

signaling networks, tumor types, drug, chemicals and other entities.

Funding

This work was supported by the Commonwealth Scholarship Commission

and the Cambridge Trust (to S.B.), by Vinnova (to I.S.) and by MRC grant

MR/M013049/1.

Conflict of Interest: none declared.

References

Abal,M. et al. (2003) Taxanes: microtubule and centrosome targets, and cell cycle

dependent mechanisms of action. Curr. Cancer Drug Targets, 3, 193–203.

Akinci,M. et al. (2008) Metastatic basal cell carcinoma. Acta Chirurgica

Belgica, 108, 269.

Basu,A. et al. (2003) Support vector machines for text categorization. In:

Proceedings of the 36th Annual Hawaii International Conference on System

Sciences, 2003. IEEE, pp. 7.

Chang,C.-C. and Lin,C.-J. (2011) LIBSVM: a library for support vector ma-

chines. ACM Trans. Intell. Syst. Technol., 2, 27.

Clark,S. (2002) Supertagging for combinatory categorial grammar. In:

Proceedings of the 6th International Workshop on Tree Adjoining

Grammars and Related Frameworks (TAGþ6), pp. 19–24.

Cohen,A.M. and Hersh,W.R. (2005) A survey of current work in biomedical

text mining. Brief. Bioinform., 6, 57–71.

Doland,M.E. (2014) Capturing cancer initiating events in OncoCL, a cancer

cell ontology. In: AMIA Joint Summits on Translational Science.

Fidler,I.J. (1995) Melanoma metastasis. Cancer Control, 2, 398–404.

Gunn,S.R. et al. (1998) Support vector machines for classification and regres-

sion, Vol. 14. ISIS Technical report, University Of Southampton.

Guo,Y. et al. (2012) CRAB reader: a tool for analysis and visualization of

argumentative zones in scientific literature. In: Proceedings of COLING

2012: Demonstration Papers, pp. 183–190.

Hanahan,D. and Weinberg,R.A. (2000) The hallmarks of cancer. Cell, 100,

57–70.

Hanahan,D. and Weinberg,R.A. (2011) Hallmarks of cancer: the next gener-

ation. Cell, 144, 646–674.

Hsu,C.-W. (2003) A practical guide to support vector classification. National

Taiwan University, Taipei, Taiwan., www.csie.ntu.edu.tw/cjlin/papers/

guide/guide.pdf.

Joachims,T. (1998) Text Categorization with Support Vector Machines:

Learning with Many Relevant Features. Springer, Berlin Heidelberg.

Korhonen,A. et al. (2012) Text mining for literature review and knowledge

discovery in cancer risk assessment and research. PLoS One, 7, e33427.

Lee,H.-J. (2014) Oncosearch: cancer gene search engine with literature evi-

dence. Nucleic Acids Res, 2(Web Server issue), W416–W421. doi: 10.1093/

nar/gku368.

Leitner,F. et al. (2010) An overview of biocreative ii. 5. IEEE/ACM Trans.

Comput. Biol. Bioinform., 7, 385–399.

Liu,H. et al. (2012) Biolemmatizer: a lemmatization tool for morphological

processing of biomedical text. J. Biomed. Semantics, 3, 3.

Marusyk,A. et al. (2012) Intra-tumour heterogeneity: a looking glass for can-

cer? Nat. Rev. Cancer, 12, 323–334.

McDonald,D. et al. (2012) Value and benefits of text mining. JISC Digital

Infrastructure.

Pihan,G.A. and Doxsey,S.J. (1999) The mitotic machinery as a source of gen-

etic instability in cancer. In: Seminars in Cancer Biology, Vol. 9. Elsevier,

pp. 289–302.

Poon,H. and Vanderwende,L. (2010) Joint inference for knowledge extraction

from biomedical literature. In: Human Language Technologies: The 2010

Annual Conference of the North American Chapter of the Association for

Computational Linguistics. Association for Computational Linguistics, pp.

813–821.

Pyysalo,S. et al. (2013) Overview of the cancer genetics (cg) task of bionlp

shared task 2013. In: BioNLP Shared Task 2013 Workshop.

Rimell,L. and Clark,S. (2009) Porting a lexicalized-grammar parser to the bio-

medical domain. J. Biomed. Inform., 42, 852–865.

Schiff,P. and Horwitz,S.B. (1980) Taxol stabilizes microtubules in mouse

fibroblast cells. Proc. Natl. Acad. Sci. USA, 77, 1561–1565.

Sebastiani,F. (2002) Machine learning in automated text categorization. ACM

Comput. Surv., 34, 1–47.

Settles,B. (2005) ABNER: an open source tool for automatically tagging genes,

proteins and other entity names in text. Bioinformatics, 21, 3191–3192.

Shatkay,H. et al. (2008) Multi-dimensional classification of biomedical text:

toward automated, practical provision of high-utility text to diverse users.

Bioinformatics, 24, 2086–2093.

Simpson,M.S. and Demner-Fushman,D. (2012) Biomedical text mining: a sur-

vey of recent progress. In: Mining Text Data, pp. 465–517. Springer.

Spasic,I. et al. (2014) Text mining of cancer-related information: review of

current status and future directions. Int. J. Med. Inform., 83, 605–623.

Stewart,B. and Wild,C.P. (2014) World Cancer Report 2014. IARC, Lyon,

France.

Sun,L. and Korhonen,A. (2009) Improving verb clustering with automatically

acquired selectional preferences. In: Proceedings of the 2009 Conference

on Empirical Methods in Natural Language Processing: Volume 2, pp.

638–647. Association for Computational Linguistics.

Tomasetti,C. and Vogelstein,B. (2015) Variation in cancer risk among tis-

sues can be explained by the number of stem cell divisions. Science, 347,

78–81.

Wilhelm,S. et al. (2006) Discovery and development of sorafenib: a

multikinase inhibitor for treating cancer. Nat. Rev Drug Discov., 5, 835–

844.

Young,L. et al. (2008) Evidence that dysregulated DNA mismatch repair char-

acterizes human nonmelanoma skin cancer. Br. J. Dermatol., 158, 59–69.

Zang,Z. et al. (2013) Learning classifier system with average reward reinforce-

ment learning. Knowl. Based Syst., 40, 58–71.

Zhua,F. et al. (2011) Biomedical text mining and its applications in cancer re-

search. J. Biomed. Inform., 46, 200–211.

440 S.Baker et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/32/3/432/1743783 by guest on 13 M
arch 2024

Deleted Text:  
Deleted Text: 
Deleted Text: s
Deleted Text: s
Deleted Text: ,
Deleted Text: . 
www.csie.ntu.edu.tw/cjlin/papers/guide/guide.pdf
www.csie.ntu.edu.tw/cjlin/papers/guide/guide.pdf

	btv585-TF1
	btv585-TF2
	btv585-TF3
	btv585-TF4
	btv585-TF5
	btv585-TF6

