Expression-based monitoring of transcription factor activity: The TELiS database.

Steve W. Colea,d,e,f, * Weihong Yanb, Zoran Galica,d, Jesusa Arevaloa, and Jerome A. Zacka,c,d,e,f

UCLA Departments of Medicinea, Chemistry and Biochemistryb, and Microbiology, Immunology, and Molecular Geneticsc, the UCLA AIDS Instituted, the Jonsson Comprehensive Cancer Centere, and the UCLA Molecular Biology Institutef

* To whom correspondence should be addressed:

11-394 Factor Building
David Geffen School of Medicine at UCLA
Los Angeles CA 90095-1678
coles@ucla.edu

Running Head: TELiS monitoring of transcription factors

Keywords: Transcription factor, signal transduction, DNA microarrays, gene expression
Abstract

Motivation: In microarray studies it is often of interest to identify upstream transcription control pathways mediating observed changes in gene expression. The Transcription Element Listening System (TELiS) combines sequence-based analysis of gene regulatory regions with statistical prevalence analyses to identify transcription-factor binding motifs (TFBMs) that are over-represented among the promoters of up- or down-regulated genes. Efficiency is maximized by decomposing the problem into two steps: 1) a priori compilation of prevalence matrices specifying the number of putative binding sites for a variety of transcription factors in promoters from all genes assayed by a given microarray, and 2) real-time statistical analysis of pre-compiled prevalence matrices to identify TFBMs that are over- or under-represented in promoters of an arbitrary set of differentially expressed genes. These interlocking JAVA applications PromoterScan and PromoterStats carry out these tasks, and together constitute the TELiS database for reverse inference of transcription factor activity.

Results: In two validation studies, TELiS accurately detected in vivo activation of NF-κB and the Type I interferon system by HIV-1 infection and pharmacologic activation of the glucocorticoid receptor in peripheral blood mononuclear cells. The population-based statistical inference underlying TELiS outperformed conventional statistical tests in analytic sensitivity, with parametric studies demonstrating accurate identification of transcription factor activity from as few as 20 differentially expressed genes. TELiS thus provides a simple, rapid, and sensitive tool for identifying transcription control pathways mediating observed gene expression dynamics.

Availability: http://www.telis.ucla.edu

Contact: coles@ucla.edu
Introduction

It is now possible to monitor the transcriptional activity of an entire genome using massively parallel measurement technologies such as DNA microarrays or Serial Analysis of Gene Expression (SAGE) (Schena, Shalon et al. 1995; Velculescu, Zhang et al. 1995; Lockhart, Dong et al. 1996). Once global changes in gene expression have been defined, it is often of interest to identify the transcription control pathways mediating those dynamics. This paper presents a sensitive and efficient computational strategy for monitoring the activity of multiple biological signaling pathways via their impact on the expression of genes bearing known transcription factor binding motifs (TFBMs) in upstream regulatory regions.

Biological signals are transduced through a variety of receptor-mediated signaling pathways that converge on a small set of biochemical reactions modulating gene expression (Carey and Smale 2000). Chief among these is a system of transcription factors that bind to DNA in a sequence-specific manner and recruit generic transcriptional machinery to a gene’s core promoter (Mitchell and Tjian 1989; Pabo and Sauer 1992; Smale 2001). Each transcription factor binds to a characteristic DNA motif such as GGGGCGGGG for Sp1 or TGACGTCA for CREB (Letovsky and Dynan 1989; Hill and Treisman 1995). This basic relationship between nucleotide sequence and transcription factor binding permits inferences about which signaling pathways are likely to modulate a gene’s expression based on the sequence of its promoter (Wingender, Dietze et al. 1996). The cascading relationships among extracellular events, receptor-mediated signal transduction, transcription factor activation, and genome regulation constitute a directed information flow by which cells adapt to environmental conditions. The advent of genome-wide expression monitoring provides an opportunity to reverse this causal sequence and infer upstream signaling dynamics from changes in global gene expression. At the most immediate level, it should be possible to identify the specific transcription factors mediating observed changes in gene expression based on the prevalence of their characteristic TFBMs in the promoters of co-regulated
genes. An extensive body of research linking transcription factor activation to upstream second
messenger systems and extracellular ligand/receptor networks (Hill and Treisman 1995) also provides an
opportunity for more distal inferences about the extracellular conditions modulating cellular activity (e.g.,
ambient proinflammatory cytokines activating NF-κB) (Ghosh, May et al. 1998). Both the proximal
inference of transcription factor activity and the distal inference of signal transduction depend on the
ability to detect TFBMs that are over- or under-represented in the promoters of co-regulated genes
relative to the genome as a whole. Genome-wide promoter analyses have recently been used to identify
novel TFBMs (Roth, Hughes et al. 1998; Spellman, Sherlock et al. 1998; van Helden, Andre et al. 1998;
Hertz and Stormo 1999; Wagner 1999; Wolfsberg, Gabrielian et al. 1999; Bussemaker, Li et al. 2000;
Holmes and Bruno 2000; Bussemaker, Li et al. 2001; Chiang, Brown et al. 2001; Liu, Brutlag et al. 2001;
Ohler and Niemann 2001). We focus on the distinct problem of surveying known TFBMs to identify the
specific factors driving observed changes in gene expression.

Reverse-inference of transcription factor activity would seem to be a straightforward problem, but
several difficulties have hampered its widespread utilization. One obstacle is the intensive computation
required to retrieve and scan large numbers of promoters for sequence homology. This effectively
restricts reverse inference analyses to users with strong bioinformatic skills and computational resources.
A second difficulty is the lack of an efficient analytic framework for evaluating the statistical significance
of variations in TFBM prevalence. Development of a valid statistical approach has been complicated by
the combinatorial nature of gene regulation and the poor signal-to-noise characteristics of genome-wide
expression assays. Most genes are regulated through the coordinated actions of multiple transcription
factors, so the presence of a single TFBM in a gene’s promoter does not guarantee that it will be
expressed even if its cognate transcription factor is activated (Mitchell and Tjian 1989; Wagner 1999;
Carey and Smale 2000; Holmes and Bruno 2000; Chiang, Brown et al. 2001). Conversely, the absence
of a TFBM for a given factor does not ensure the absence of regulation because many transcriptional
dynamics are mediated indirectly by secondary waves of transcription factor activity (e.g., factor A
induces the expression of factor B, and B subsequently activates promoters bearing no consensus binding
site for factor A). As a result, the presence of a TFBM is only loosely linked to the array of genes
regulated by an active transcription factor. This problem is compounded by the fact that current
differential expression analyses can severely underestimate the number of genes showing true differential
expression (Cole, Galic et al. 2003). All these dynamics effectively contaminate the group of
“unregulated control” promoters with genes that should actually be assigned to the “differentially
expressed” subset, and vice versa. Such cross-contamination is known as the “errors in variables”
problem in the statistical literature, and it can profoundly degrade analytic accuracy (Miller 1986). As a
result, it is risky to rely on the results of reverse-inference analyses unless they can be shown to perform
accurately in validation studies.

We developed the Transcription Element Listening System (TELiS) as a database-driven solution
to the problems outlined above. This paper describes the analytic strategy underlying TELiS and reports
validation studies showing that it can accurately detect transcription factor activation under well-defined
experimental conditions and amidst noisy in vivo pathology. We also present data on the comparative
speed and accuracy of TELiS, with particular emphasis on alternative statistical strategies and methods
for optimizing analytic sensitivity. Results show that genome-wide assessment of TFBM prevalence can
be coupled with population-based statistical inference to provide accurate “reverse inference” of
transcription factor activity based on microarray differential expression data.

System and Methods

TELiS addresses the two major obstacles impeding reverse inference analyses. (1) To speed the
inference process and make it available to biologists with no bioinformatic background, the most
computationally intensive aspects of the problem are “pre-solved” by generating a set of TFBM prevalence matrices. Each matrix records the number of putative binding sites for an array of transcription factors in promoters from all genes represented on a commonly-used microarray (e.g., Affymetrix HuGene-FL, U95A, U133A, Mu11K, U74A, Mouse 430, U34A, and Rat 230 high density oligonucleotide arrays). Such prevalence matrices can take weeks to compile depending upon the size of a promoter (bases analyzed), the number of genes analyzed (~20,000-30,000), and the number of TFBMs analyzed. However, once a matrix is available, it takes only seconds for analytic procedures to identify TFBMs that are over- or under-represented in promoters of an arbitrary set of differentially expressed genes. (2) To avoid the inferential difficulties associated with “errors in variables,” the statistical analysis is approached as a single sample inference problem with known population parameters. In conventional statistical analyses such as the t-test, errors in variables lead to inaccurate estimates of the true sampling variability of TFBM prevalence in the population of all promoters (Miller 1986). This undermines the accuracy of p-values testing differential representation because the standard error of that difference is estimated as a function of the inferred population sampling variance (Miller 1986). However, a single-sample z-test does not require any sample-based inferences about TFBM variability because that parameter is already known at the population level (i.e., the mean and standard deviation of the number of TFBMs in each promoter is pre-compiled for all genes assayed by a given microarray). As a result, a population-based approach could potentially detect perturbations in TFBM prevalence with greater accuracy than conventional sample-based approaches such as the t-test.

Validation studies.

To evaluate the performance of TELiS, we analyzed two data sets in which specific signaling pathways were known to be activated. The first test involved focal stimulation of the glucocorticoid receptor by exogenous hydrocortisone (cortisol). 2×10^7 peripheral blood mononuclear cells were
isolated by Ficoll density gradient centrifugation and cultured overnight in 10 mL of RPMI supplemented with 100 U/ml penicillin, 100 µg/ml streptomycin, 10% autologous donor serum, and either 1 µM hydrocortisone (Sigma) or an equivalent volume of medium. 12 hrs later, total RNA was harvested (Qiagen RNEasy, Valencia CA), treated with DNase (Qiagen), converted to fluorescent cRNA, and hybridized to Affymetrix U133A high-density oligonucleotide arrays in the UCLA Gene Expression Core according to the manufacturer’s protocol (Affymetrix, Santa Clara CA). Scanned images were analyzed for up-regulated genes using Affymetrix Microarray Suite v5 software with default analysis parameters (paired comparison of each donor’s hydrocortisone-treated cells with parallel untreated cells). This experiment was repeated for three independent donors, and genes significantly up-regulated in all three replicates were subject to reverse inference analysis by TELiS. Controlled pharmacologic stimulation ensured that a single transcription factor was initially activated.

In addition to the highly controlled glucocorticoid model, we also examined the capacity of TELiS to detect inflammatory signaling in a noisy *in vivo* pathology model. HIV-1 infection activates multiple pro-inflammatory transcription factors in lymphoid cells, including interferon response factors and NF-κB (Roulston, Lin et al. 1995; Corbeil, Sheeter et al. 2001; Keir, Stoddart et al. 2002; Miller, Smith et al. 2003; Yonezawa, Morita et al. 2003). To determine whether TELiS could identify such activation *in vivo*, we assessed differential gene expression in human fetal thymocytes after they had been stably engrafted in a SCID mouse host for 6 weeks and infected for 3 more weeks with the NL4-3 strain of HIV-1 or a mock vehicle control (Aldrovandi, Feuer et al. 1993; Cole, Galic et al. 2003). Differentially expressed genes were identified as described above using Affymetrix HuGene-FL high-density oligonucleotide arrays and Microarray Suite v5 paired analysis of HIV- vs. mock-infected cells from the same thymic tissue donor (default analysis parameters). Genes identified as significantly increased in each of two replicate experiments were subject to reverse-inference analysis by TELiS.
Algorithm and Implementation

TELiS consists of four interacting components outlined in Figure 1. A JAVA application called PromoterScan assesses the incidence of TFBMs in promoters for all genes in a genome and stores the resulting “population prevalence matrix” in the TELiS database. Users interact with a World Wide Web interface (http://www.telis.ucla.edu) to supply a list of differentially expressed genes and specify the sampling frame in which they were identified (e.g., the microarray used). Based on that input, a JAVA servlet called PromoterStats retrieves TFBM prevalence data from the TELiS database and computes statistical summaries of over- or under-representation in regulated promoters relative to the basal prevalence of TFBMs across the entire sampling frame. Results are ranked according to statistical significance and returned to the user in real time. The web page also has a utility for downloading raw data on TFBM prevalence in promoters of specified genes. Details are provided below.

PromoterScan and the TELiS database. PromoterScan retrieves promoter sequences for all transcripts in a specified genome, scans each promoter for a fixed array of TFBMs, and stores the number of sites identified in the TELiS database. Nucleotide sequences come from the NCBI RefSeq database (Pruitt and Maglott 2001) (human transcripts as of September 2003, and mouse and rat transcripts as of December 2003), and promoters are defined as nucleotide sequences spanning positions –300 to +0, -600 to +0, or –1000 to +200 relative to the RefSeq transcription start site (TSS). Each promoter is scanned with 192 nucleotide position matrices representing all vertebrate TFBMs in the anonymous FTP release of TRANSFAC v3.2 (V$ matrices) (Wingender, Dietze et al. 1996). Scans utilize the TRANSFAC MatInspector algorithm (Quandt, Frech et al. 1995) at mat_sim stringencies of .80, .90, and .95. Prevalence values for transcripts with multiple putative start sites are averaged to provide a single value for each gene. Results are stored in MySQL 4.0 as separate prevalence tables for each combination of species (Human, Mouse, Rat), promoter size (300, 600, 1200 bases), and scan stringency (.80, .90, .95),
with HGNC Gene Symbols serving as unique keys. The database also contains parallel tables from PromoterScan analyses treating TFBM incidence as a binary variable (present vs. not in each promoter).

PromoterStats and the TELiS website. The TELiS website and its associated servlets are housed on an Apache Tomcat 4.0 server with JDBC connections to the TELiS database. For reverse inference analyses, the website collects a list of D differentially expressed genes and an indication of the sampling frame in which those changes were measured (the specific microarray used). This information is passed to PromoterStats, which then generates two data matrices; a “population prevalence matrix” specifying the number of binding sites for each TFBM in promoters of all P genes in the sampling frame, and a “sample prevalence matrix” indicating the number of TFBMs in promoters of the D differentially expressed genes. The mean prevalence of each TFBM in the sample prevalence matrix is computed and tested for over- or under-representation relative to the population mean prevalence using a single sample z-test (Kanji 1999). For TFBM t, the test statistic z_t is defined as:

\[
 z_t = \frac{(\bar{x}_t - \mu_t)}{\sigma_t D^{1/2}},
\]

where \bar{x}_t is the mean number of detected binding sites for transcription factor t among the D promoters in the sample prevalence matrix, μ_t is the mean number of sites for factor t among the P promoters in the population prevalence matrix, and σ_t is the standard deviation of the number of sites for factor t in the population prevalence matrix. Positive values of z indicate over-representation of TFBM t in promoters of differentially expressed genes and negative values indicate under-representation (a possible inhibitory effect). Each z value generates a two-tailed p-value gauging statistical significance. Binary (present/not) data are analyzed in a standard binomial test, with p-values derived from the probability of observing S_t or more positive promoters in a sample of D Bernoulli trials, each of which has a probability of positive outcome equal to the prevalence of TFBM t in the sampling frame as a whole (Kanji 1999). Statistically
significant under-representation is assessed by the probability of observing S_i or fewer positive promoters, with S indicating the number of promoters in the differentially expressing subset that contain at least one instance of TFBM t. Population1 prevalence matrices are derived from genes listed in microarray manufacturers’ annotation files (e.g., HG-U133A_annot.csv at http://www.affymetrix.com/analysis/download_center.affx). It could be argued that the most appropriate reference population for analysis is the set of genes found to be expressed in the experimental samples, rather than the entire population of transcripts assayed by the microarray. The web interface includes a form for submitting both a list of genes constituting the sampling frame and a differentially expressed subset: http://www.med.ucla.edu:8080/telis/TELiSDifferentialExpressionCustomSamplingFrame.htm. A servlet is also provided to analyze TFBM frequencies relative to a Poisson-distributed population with intensity parameter $= D\mu$: http://www.med.ucla.edu:8080/telis/TELiSDifferentialExpressionPoisson.htm. However, the z-test is recommended instead because population TFBM frequencies do not generally follow a Poisson distribution (detailed below in Performance relative to alternative approaches).

In addition to individual statistical results for each TFBM, PromoterStats also estimates the False Discovery Rate (FDR) (Benjamini and Hochberg 1995) across the entire set of significant results. The FDR gives the fraction of significant results likely due to chance and is estimated as,

$$ FDR_p = \frac{T \Phi_p}{n_p}, $$

where T is the number of TFBMs surveyed, Φ_p is the expected proportion of false positive errors at a specified significance level (e.g., $p < .01$) and n_p is the number of observed tests significant at that level. Φ_p is estimated by Monte Carlo analysis of significant results in 100,000 randomly sampled gene lists of size D drawn from the same sampling frame. In addition to FDR estimates for the default significance threshold of $p < .01$, p-value thresholds that control the FDR at 10%, 20%, 30%, and 40% are derived.
from regression analysis of the relationship between estimated FDR and range of \(p \)-values between .03 and .0001.

Validation.

To assess the accuracy of reverse inference by TELiS, we analyzed data from a controlled experimental system involving pharmacologic stimulation of the glucocorticoid receptor in peripheral blood mononuclear cells. Cells were cultured for 12 hours in the presence of 1 \(\mu \)M hydrocortisone or vehicle control and mRNA expression was surveyed by Affymetrix U133A high-density oligonucleotide arrays. Among 22,215 assayed transcripts, 304 showed consistent up-regulation across three replicate experiments. TELiS revealed significant over-representation of glucocorticoid response elements among promoters of up-regulated genes (V$GRE_C: 6.7-fold increase relative to unregulated genes, \(z = 3.12, p = 0.0018 \)). 10 other TFBMs were also identified as over-represented, and 8 of those corresponded to transcription factors known to interact with or be regulated by glucocorticoid receptors (Oct family members, AP1 family members, SRE, Elk1, CDP, and E2F) (Karagianni and Tsawdaroglou 1994; Rhee, Ma et al. 1994; Pearce, Matsui et al. 1998; Prefontaine, Lemieux et al. 1998; Miyazaki, Tsukazaki et al. 2000; Zhu and Dudley 2002). In the context of the total 192 TFBMs surveyed, these results give a specificity > 90% and a positive predictive value of 82%. Thus, TELiS can accurately detect focal transcription factor activation under carefully controlled conditions, even in a background of low basal gene expression (cells were not stimulated by any mitogens).

To evaluate performance in a noisier in vivo environment, we tested the ability of TELiS to detect activation of pro-inflammatory transcription factors during HIV-1 infection of human thymocytes in a thy/liv SCID-hu mouse model. Three weeks following inoculation of implanted human thymic tissue with HIV-1 or a vehicle control, viral pathology was documented by PCR detection of HIV-1 provirus and depletion of CD4+/CD8+ thymocytes relative to mock-infected cells (data not shown). mRNA was
harvested in parallel and assayed using Affymetrix HuGene-FL high-density oligonucleotide arrays. 105 of the 7,070 assayed transcripts showed significant up-regulation in each of two replicates. Among the promoters of those genes, TELiS identified a substantial over-representation of binding sites for interferon response factor 1 (V$IRF1_01: 8.4$-fold increase, $z = 6.44, p < 10^{-10}$) and interferon response factor 2 (V$IRF2_01: 5.5$-fold increase, $z = 3.21, p = 0.0013$), as well as the consensus interferon-stimulated response element (V$ISRE_01: 18.2$-fold increase, $z = 10.07, p < 10^{-10}$) and two matrices defining consensus NF-κB response elements (V$NFKAPPAB_01: 2.3$-fold increase, $z = 2.73, p = 0.0064$; V$NFKB_Q6: 4.5$-fold increase, $z = 4.35, p = 0.000134$). Previous experimental studies have shown that each of these signaling pathways is in fact activated during HIV-1 infection (Roulston, Lin et al. 1995; Corbeil, Sheeter et al. 2001; Keir, Stoddart et al. 2002; Miller, Smith et al. 2003; Yonezawa, Morita et al. 2003), and these motifs constituted 4 of the top 5 hits identified in the over-representation analysis. In contrast, TELiS failed to indicate significant over-representation of TFBMs for transcription factors known not to be induced by HIV-1 infection (e.g., Oct1, V$OCT1_Q6: 0.930$-fold change, $z = -0.11, p = 0.918$; Sp1, V$SP1_Q6: 0.776$-fold change, $z = -1.33, p = 0.185$). Among 192 TFBMs surveyed, 184 were found not to be significantly over-represented, for a specificity exceeding 90%. Thus, even amidst noisy in vivo pathology, TELiS can accurately detect physiologically relevant transcription factor activity.

Performance relative to alternative approaches.

To evaluate the statistical approach underlying TELiS, we compared results of its population-based z-test (Equation 1), with the findings that would have been produced by a single-sample or two-sample t-test (the latter equivalent to a one-way analysis of variance) (Miller 1986). The single-sample t-test is similar to the z-test in comparing the prevalence of TFBMs in up-regulated promoters with its mean value in the sampling frame as a whole, but the t-test treats the population sampling variance as an unknown quantity that must be inferred from the sample data (i.e., from the D differentially expressing
promoters rather than the entire sampling frame of P promoters). As shown in Table 1, the single sample t-test yielded considerably larger p-values than the z-test, and was therefore unable to identify glucocorticoid signaling in the glucocorticoid stimulation study or IRF and NF-kB activation in the HIV study. A two-sample t-test comparing TFBM prevalence in up-regulated vs. unregulated promoters also failed to detect each of those signals. The t-test’s poor sensitivity stemmed from the fact that the sampling variability of TFBM prevalence in the D differentially expressing promoters was not representative of that in the population as a whole (in Table 1, compare SD and SE values for 1- and 2-sample t-tests with the corresponding value for the z-test). Sample standard deviations over-estimated their population values by 2- to 4-fold, leading to inflated standard errors and loss of sensitivity (i.e., increased p-values).

Frequency data are often analyzed under the assumption of a Poisson distribution (Santner and Duffy 1989), so we compared the performance of a single-sample Poisson analysis with that of the z-test. In both the glucocorticoid and HIV studies, single-sample Poisson tests identified more TFBMs as being significantly over-represented. This difference appears to stem from increased false positive error by the Poisson analysis rather than increased sensitivity. In Monte Carlo studies carried out to estimate FDR Φ_p values, Poisson analyses consistently yielded Type I error rates exceeding the nominal p-value (e.g., Table 2). These errors stemmed from the fact that observed TFBM frequency distributions showed greater variance than assumed by the Poisson distribution (variance $= \mu$), leading Poisson analyses to underestimate the true sampling variability. For example, in the frequency data analyzed in Table 2, 98% of TFBMs showed a population variance greater than μ, with 96% showing significant overdispersion at $p < .01$ (Fisher’s X^2 test of Poisson fit (Santner and Duffy 1989)). Similar results emerged for all combinations of sample size, promoter length, and scan stringency. In contrast, the z-test accurately controlled Type I errors in all Monte Carlo studies (Table 2) because it utilizes the empirically correct variance. The z-test is therefore recommended as the primary test of TFBM differential representation.
However, for those who wish to use a Poisson-based analysis, the statistical output includes a comparison of the empirical and assumed variance to users can assess the Poisson approach for a particular TFBM.

Optimizing analytic sensitivity.

The analyses reported above were based on default settings for TELiS: analysis of 300 bases upstream of the TSS using a MatInspector stringency of .90. These defaults were derived from a set of parametric studies examining the effects of alternative stringencies (.80, .90, .95) and promoter lengths (300, 600, or 1200 bases adjacent to the transcription start site). As summarized in Figure 2 (A), analyses of short promoter sequences (300 bases) with moderate stringency (.90) generally provided optimal signal detection. Analyses using longer sequences or lower stringency produced poorer signal-to-noise ratios due to increased non-specific detection events. High-stringency analyses (.95) produced enhanced signal-to-noise ratios, but sometimes yielded no results at all with short promoter sequences (e.g., IRF1 Figure 2 B). These results suggest that long promoter sequences (1200 bases) should be utilized when high-stringency analyses are required. Power analyses (Figure 2 C) showed that sample sizes of \(D > 20 \) differentially expressed genes were generally sufficient to yield statistically significant results.

Discussion

TELiS combines real-time data on transcriptional dynamics with a stored database of genomic promoter characteristics to identify transcription factors driving global changes in gene expression. The validation studies reported above show that this approach can successfully detect transcription factor activation in both well-defined experimental systems and complex *in vivo* pathology. The core bioinformatic resource supporting these inferences is the TELiS database – a collection of sampling frames that store information on the prevalence of each TFBM in the promoters of all genes assayed by a given microarray. These sampling frames reduce solution times by pre-solving the most computationally intensive aspect of the reverse inference problem – scanning large nucleotide sequences for multiple
TFBMs. They also establish the conceptual population required for the most sensitive statistical analysis – a z-test. The only input required from the user is a list of differentially expressed genes and the microarray platform used to find them. Given this combination of simple input, rapid results, and sensitive detection, the TELiS database search tool should considerably increase the use of reverse-inference analyses to define the transcription control pathways driving gene expression dynamics.

A key conceptual advance for reverse inference is the development of an efficient statistical framework for detecting TFBMs that are over-represented among co-regulated genes. Conventional inferential statistics such as the t-test fail in this task because they attempt to estimate the sampling variability in the population of all genes from the sampling variability in the subset of differentially expressed genes. However, the prevalence of TFBMs varies by 2- to 4-fold more among activated promoters than it does in the population as a whole, resulting in inflated p-values and failure to detect over-represented motifs even when they are known to exist. Population-based z-tests are generally more sensitive, but typically not feasible because the population mean and standard deviation are unknown (Miller 1986). Fortunately, the TELiS database provides exactly the population parameters required to support a z-test because it is based on an exhaustive census of promoters. As a result, this key data resource fundamentally transforms the analytic approach to yield qualitative improvements in signal detection.

In object-oriented programming, a “listener” passively monitors an ongoing process and activates itself in response to a pre-defined condition. TELiS represents each transcription factor as a listener that scans induced promoters for variations in the incidence of its signature TFBM. Listeners “call out” their statistical confidence in their own differential representation, and a system-level referee aggregates those calls into a set of inferences about signaling pathways driving observed changes in gene expression. The validation studies reported here show that this approach can detect transcription factor activation in cases
where other statistical approaches fail. However, the statistical component of the analysis depends crucially on access to a full census of promoter sequences. TELiS is currently implemented for human, mouse, and rat genomes assayed by Affymetrix GeneChips, and it can easily be extended to other genomes and assay systems such as SAGE or proteomic arrays by development of appropriate sampling frames. Some difficult problems remain to be addressed, including combinatorial effects of multiple transcription factors (Wagner 1999; Carey and Smale 2000; Holmes and Bruno 2000; Chiang, Brown et al. 2001; Michelson 2002) and more refined mapping of promoter elements. However, the development of a simple, fast, and sensitive system for monitoring up-stream transcription control pathways will help advance gene expression analysis beyond a descriptive mode to provide a causal understanding of genome dynamics.
Acknowledgements

This research was supported by the University of California Universitywide AIDS Research Program (K99-LA-030, CC02-LA-001), the Norman Cousins Center at UCLA, the James L. Pendelton Charitable Trust, and the National Institute of Allergy and Infectious Diseases (AI 33259, AI 49135, AI 52737). We gratefully acknowledge the assistance of Greg Baran and Boris Sorkin in web deployment.
Footnotes

1. The appropriate population is not the set of all human genes, but the set of all transcripts that could possibly be observed to change in a given experiment (e.g., all genes on the microarray used). This is a significant distinction because genes in the sampling frame are not necessarily representative of the genome as a whole in terms of TFBM prevalence. For example, the genes represented on the Affymetrix U133A GeneChip have approximately half as many glucocorticoid response elements in their promoters (mean = 0.083 per promoter, standard deviation = 2.88) as do the entire set of sequenced human genes (mean = 0.151, standard deviation = 3.88; difference $p = .019$ by a single sample z-test). Inappropriate use of the genome-wide sampling frame could thus prevent detection of glucocorticoid signaling in a GeneChip experiment even if glucocorticoid response elements were 2-fold over-represented among promoters of differentially expressed genes.

It could be argued that the most appropriate population is the subset of assayed transcripts that are expressed in one or more of the experimental samples. However, the use of an “expressed gene” sampling frame consistently weakened the detection of known signal transduction activity in both the glucocorticoid and HIV validation studies. All target TFBMs were still detected at statistically significant levels, but the over-representation ratios and p-values were noticeably attenuated. The sensitivity loss stemmed mainly from inaccuracies in the definition of the expressed population resulting from negative biases in transcript “present” calls by Affymetrix Microarray Suite v5. It is unclear whether similar problems might exist for other low-level expression analyses, but conservatism suggests using “microarray population” sampling frames to avoid such biases. However, the option of restricting the sampling frame remains available at:

References

Table 1. Performance of alternative statistical analyses in detecting over-representation of TFBMs

<table>
<thead>
<tr>
<th>Experiment (TFBM matrix)</th>
<th>Parameter</th>
<th>2-sample t-test</th>
<th>1-sample t-test</th>
<th>z-test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glucocorticoid (V$GRE_C)</td>
<td>mean difference</td>
<td>.0045</td>
<td>.0044</td>
<td>.0044</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>.0736 / .0301</td>
<td>.0736</td>
<td>.0320</td>
</tr>
<tr>
<td></td>
<td>SE of difference</td>
<td>.0038</td>
<td>.0038</td>
<td>.0017</td>
</tr>
<tr>
<td></td>
<td>test statistic</td>
<td>1.18</td>
<td>1.15</td>
<td>2.65</td>
</tr>
<tr>
<td></td>
<td>p-value</td>
<td>.240</td>
<td>.251</td>
<td>.008</td>
</tr>
<tr>
<td>HIV (V$NFKB_C)</td>
<td>mean difference</td>
<td>.0257</td>
<td>.0252</td>
<td>.0252</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>.1909 / .1082</td>
<td>.1909</td>
<td>.1108</td>
</tr>
<tr>
<td></td>
<td>SE of difference</td>
<td>.0166</td>
<td>.0166</td>
<td>.0196</td>
</tr>
<tr>
<td></td>
<td>test statistic</td>
<td>1.55</td>
<td>1.52</td>
<td>2.62</td>
</tr>
<tr>
<td></td>
<td>p-value</td>
<td>.124</td>
<td>.131</td>
<td>.009</td>
</tr>
<tr>
<td>HIV (V$IRF2_01)</td>
<td>mean difference</td>
<td>.0177</td>
<td>.0173</td>
<td>.0173</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>.1490 / .0718</td>
<td>.1490</td>
<td>.0743</td>
</tr>
<tr>
<td></td>
<td>SE of difference</td>
<td>.0130</td>
<td>.0129</td>
<td>.0064</td>
</tr>
<tr>
<td></td>
<td>test statistic</td>
<td>1.36</td>
<td>1.34</td>
<td>2.69</td>
</tr>
<tr>
<td></td>
<td>p-value</td>
<td>.173</td>
<td>.182</td>
<td>.007</td>
</tr>
</tbody>
</table>

1. mean difference = mean number of TFBMs in promoters of up-regulated genes – unregulated genes (2-sample test) or – population mean valence (1-sample tests), SD = estimated population standard deviation in number of TFBMs per promoter, SE of difference = estimated standard error of mean difference, test statistic = *z* value or *t* value, *p*-value = 2-tailed *p*-value associated with test statistic.

2. Standard deviation of TFBM prevalence in regulated promoters significantly exceeded that of
unregulated promoters in all cases (p < .001 by Levene’s test (Miller 1986)). All two-sample t-tests therefore use the Welch formula for unequal variances (Miller 1986).

3. SD of TFBM prevalence in the group of regulated and unregulated promoters, respectively. SE of difference for 2-sample t-test is a sample-size weighted function of both SDs (Miller 1986).
Table 2. False positive error rates for single sample z test and Poisson test

<table>
<thead>
<tr>
<th>Sample size</th>
<th>Nominal p-value</th>
<th>0.01</th>
<th>0.001</th>
<th>0.0001</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>z-test</td>
<td>Poisson</td>
<td>z-test</td>
<td>Poisson</td>
</tr>
<tr>
<td>10</td>
<td>.0145</td>
<td>.0450</td>
<td>.0041</td>
<td>.0210</td>
</tr>
<tr>
<td>30</td>
<td>.0130</td>
<td>.0488</td>
<td>.0030</td>
<td>.0221</td>
</tr>
<tr>
<td>100</td>
<td>.0111</td>
<td>.0510</td>
<td>.0022</td>
<td>.0229</td>
</tr>
<tr>
<td>300</td>
<td>.0099</td>
<td>.0514</td>
<td>.0015</td>
<td>.0224</td>
</tr>
<tr>
<td>1000</td>
<td>.0072</td>
<td>.0469</td>
<td>.0007</td>
<td>.0201</td>
</tr>
<tr>
<td>3000</td>
<td>.0029</td>
<td>.0333</td>
<td>.0001</td>
<td>.0134</td>
</tr>
</tbody>
</table>

1. Table entries give the fraction of 192 TFBMs identified as significantly over- or under-represented at each nominal p-value, averaged over 100,000 random samples (without replacement) of the size indicated in column 1. Displayed results are based on data from low stringency (.80) scanning of 1200-base human promoter sequences. Similar results emerged in analyses of data from other species, scan stringencies, and promoter lengths.
Figure Captions

1. Structure of the Transcription Element Listening System. Four interlocking components provide rapid identification of transcription factor binding motifs (TFBMs) that are over- or under-represented in promoters of differentially expressed genes. PromoterScan establishes a set of sampling frames corresponding to specific microarray platforms. Promoters for each represented gene are scanned for an array of TFBMs from the TRANSFAC database, and the resulting number of sites in each promoter is stored in the TELiS database as a population prevalence matrix (P promoters x T TFBMs). In response to a user request, the TELiS website passes a list of differentially expressed genes and the microarray platform used to detect them to the JAVA servlet PromoterStats. PromoterStats retrieves the appropriate population prevalence matrix and generates a sample prevalence matrix containing TFBM frequencies for the subset of differentially expressed genes. For each TFBM, representation in the differentially expressing promoters is compared to the sampling frame as a whole by z-test (or a binomial test for binary present/absent data). Test statistics, p-values, and prevalence information are returned to the user via the web interface to identify transcription factors that may drive observed expression dynamics.

2. Optimizing detection sensitivity. Promoter size and scan stringency were parametrically varied to identify optimal settings for detection of interferon responsive elements in promoters of 105 genes upregulated in HIV-infected thymocytes. (A) For the low-stringency ISRE motif (matrix V$ISRE_01$), signal-to-noise ratios consistently increased as stringency was elevated and promoter size decreased. (B) For the high stringency IRF1 matrix (V$IRF1_01$), signal-to-noise ratios also increased as promoter sizes were reduced in low- and intermediate-stringency analyses (mat_sim = .80 and .90). However, high stringency analyses (.95) failed to identify any IRF1 motifs in all but the longest promoter sequences (1200 bases). Similar results emerged from analyses of glucocorticoid response (VGRE_C).
in hydrocortisone-stimulated leukocytes (data not shown). (C) To define the number of genes required to detect over-represented TFBMs, random samples of varying size were drawn from the set of all genes over-expressed in the HIV study and analyzed using default parameters (300 bases, stringency .90). The resulting empirical power curve (defined by the mean ± standard error of resulting \(z \)-test statistics) indicated that at least 20 genes were required to yield consistently significant results. Similar results emerged from analyses of other inflammation-related motifs in the HIV study and glucocorticoid response elements in the hydrocortisone study (data not shown).