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ABSTRACT
Motivation: Microarray experiments generate vast amounts of data.
The unknown or only partially known functional context of differ-
entially expressed genes may be assessed by querying the Gene
Ontology database via GOMiner. Resulting tree representations are
difficult to interpret and are not suited for visualization of this type of
data. Methods are needed to effectively visualize these complex set
relationships.
Results: We present a visualization approach for set relationships
based on Venn diagrams. The proposed extension enhances the usual
notion of Venn diagrams by incorporating set size information. The
cardinality of the sets and intersection sets is represented by their cor-
responding circle (polygon) sizes. To avoid local minima, solutions to
this problem are sought by evolutionary optimization. This generalized
Venn diagram approach has been implemented as an interactive Java
application (VennMaster) specifically designed for use with GOMiner
in the context of the Gene Ontology database.
Availability: VennMaster is platform-independent (Java 1.4.2) and
has been tested on Windows (XP, 2000), Mac OS X, and Linux.
Supplementary information and the software (free for non-commercial
use) are available at http://www.informatik.uni-ulm.de/ni/mitarbeiter/
HKestler/vennm together with a user documentation.
Contact: hans.kestler@medizin.uni-ulm.de

1 INTRODUCTION
Microarray technologies are increasingly being used in biological
and medical sciences for high throughput analyses of genetic inform-
ation on the genome, transcriptome and proteome levels. These
types of analysis generate vast amounts of data, often in the form
of large lists of genes differentially expressed between different
sample sets, leaving the researcher with the task of identifying the
functional relevance of the observed expression changes. Compre-
hensive functional annotation of gene products as provided by the
Gene Ontology (GO) database (http://www.geneontology.org) is an
invaluable resource for performing this task.
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should both be considered senior authors.
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Fig. 1. A generalized Venn diagram with three setsA, B andC and their inter-
sections. From this representation, the different set sizes are easily observed.
Furthermore, if individual elements (genes) are contained in more than one
set (functional category), the intersection sizes give a direct view on how
many genes are involved in possibly related functions. During optimization,
the localization of the circles is altered to satisfy the possibly contradictory
constraints of circle size and intersection size.

Gene lists can be queried for associated functional categories (GO
terms) which are significantly over-represented among the differen-
tially expressed genes using query tools such as GOMiner (Zeeberg
et al., 2003). However, due to the association of genes with multiple
GO terms and the resulting complex interdependencies of categories
sharing differentially expressed genes, the results of such an analysis
remain hard to interpret and are not easily visualized. Standard tree
representations, as e.g. provided with the GOMiner tool, are in many
cases an improper choice for this task, especially for representing
intersections. Venn diagrams can provide much more information
to the researcher. Full containment of one set in another, partial
intersections and disjunctness can be seen at a glance with Venn
diagrams (Fig. 1). Simple Venn diagrams are already being used in
microarray data analysis software packages such as GeneSpring®

and SilicoCyte® to visualize intersections of up to three different
lists of genes. In the present paper, we propose to extend the use of
Venn diagrams to the faithful visualization of the results of GO quer-
ies as performed e.g. with the GOMiner tool. We present a method to
represent GO terms which have been identified as significantly over-
represented among the differentially expressed genes in the form of
polygons with areas directly proportional to the true cardinalities of
the sets (i.e. the numbers of differentially expressed genes in the
categories) and intersections proportional to the numbers of genes
shared by two or more categories.
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2 METHODS
Unfortunately, this visualization problem is not easily solvable. Sometimes
no perfect solution exists, as the constraints of set size (polygon or circle size)
and intersection set size are in some cases contrary. As a consequence and
to avoid local minima, the visualization approach was implemented using an
evolutionary strategy for optimization. The goal is to find the best solution
possible and mark unavoidable non-intersections in gray.

Efficient algorithms are known for finding intersecting polygons and com-
puting their area: The intersection of two convex polygons withL andM

edges can be computed efficiently withinO(L+M) steps (O’Rourke, 2000)
and the area of a polygon withL edges can be determined inO(L) steps.

2.1 Area calculation
The polygon areas are computed by applying the Gaussian integration
theorem in the plane (Harris and Stocker, 1998)∫

B

(
∂P

∂x
− ∂Q

∂y

)
︸ ︷︷ ︸

:=F

d(x,y) =
∮

∂B
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It states that the value of an area integral of the above form (the left side
integrates over a scalar field) on a closed domainB ⊂ R

2 can be expressed
by a curve integral along the boundary∂B (right side). Let(x,y)Lk=1 ∈ R

2

be a polygon. After some conversions the area computes to

A =
L∑

k=1

xk(yk+1 − yk), yL+1 := y1

2.2 Evolutionary optimization
The problem is partitioned into independently solvable subproblems. It is
therefore assumed that all sets have at least one intersecting partner.

Let A1, . . . ,Am ⊆ U be a sequence of intersecting subsets of the element
setU andGt

1, . . . ,Gt
m ⊆ R

2 the corresponding polygons at optimization
step t = 1, 2,. . .. For eachk-subsetI ⊆ {1, . . . ,m}(|I | = k ≥ 2) we
observe the cardinalityc of the intersection set

⋂
i∈I Ai and the area of

the corresponding polygonal intersectionA = η area
(⋂

i∈I Gτ
i

)
. The factor

η > 0 is a predefined constant describing the correspondence between area
and cardinality, so for all polygons|Ai | = η area(Gt

i ) holds (with these
assumptions all costs for|I | = 1 are equal to 0). We define the partial cost of
an observed intersection of orderk = |I | ≥ 2, cardinalityc and areaA:

f (k, c,A) =




αA2/(k − 1) if c = 0

βc2/(k − 1) if c > 0,A = 0

(A − c)2/(k − 1) otherwise.

The two parametersα,β ≥ 0 allow the weighting of the different cases. In
the current version they are set toα = 10 andβ = 20. So the unwanted (first
case) and missing overlaps (second cases) are weighted stronger than a small
area deviation (last case).

The overall cost is defined as the sum over all partial costs:

Et =
∑

I ⊆ {1, . . . ,m}
2 ≤ |I | ≤ K
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|I |,
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In the optimum, all areas multiplied byη should be equivalent to the car-
dinality of the corresponding intersection sets. The number of considered
set combinations sometimes needs to be restricted via an upper bound
2 ≤ K ≤ m, which may be necessary for largem due to memory and
time limitations. The problem grows exponentially with the number of sets
m: A single cost function evaluation requiresO(Lm2m−1) steps for all set

combinations; in the restricted case this reduces toO
(
L

∑K
k=2 k

(
m
k

))
steps,

with L being the number of polygon edges.
The aforementioned error function is optimized over the positions of the

polygon centers in the 2D plane. The shape and orientation of the poly-
gons remain fixed (the number of edges can be chosen in advance). An

evolutionary strategy (Bäck, 1996) was used to minimizeE (inverse of fit-
ness). In this strategy, only mutation was used to modify the population.
Following Bäck, we used the self-adaptation of the mutation variances to
achieve a better convergence and to eliminate the need for specifying mutation
variances.

A generation containsN individuals (this parameter defaults to 100) each
consisting of a parameter vectorvt

1, . . . , vt
m ∈ R

2 representing the polygon
centers and a mutation vectorσ t ∈ R

m+ describing the mutation rate for each
parameter. For the first population, all centersvt

i are set to random values
so that the polygons are contained within a bounding box, and the mutation
parameters are uniformly drawn from an pre-specified interval[τlower, τupper].
In the mutation step the mutation parameters itself are mutated:

σ
(t+1)
i = σ t

i e
N(0,τ), i = 1, . . . ,m

and restricted to the interval[τlower, τupper](τ defaults to 0.5). Then the
locations of the polygons are updated as follows:

v(t+1)
i = vt

i +
[
N(0,σ (t+1)

i )

N(0,σ (t+1)
i )

]
, i = 1, . . . ,m

whereN(0,σ) is a normal distributed variate with mean 0 and varianceσ .
The result of each partial mutation operation (mutation of a single polygon)
is restricted to match the following two conditions:

(1) In the case that a polygon is not in contact with at least one other poly-
gon, its position is reset in the direction of the nearest polygon whose
corresponding set has a non-empty intersection with the observed set
so that the distance of the centers will be the sum of both radii.

(2) The polygons are restricted to stay in the bounding box[0, 1]2.

Evolutionary selection and offspring generation is performed by assigning
each individual a rankr = 1, . . . ,N according to its fitness determined by
the value of its cost functional (the best individual with the lowest cost has
r = 1). Each individual is then duplicated reciprocal to its rank value. So
each individual with rankr will have at most�qN/r�(0 < q < 1) offsprings.
Starting with the individual with the highest rankr = 1 the new population
will be filled up until it has sizeN . The fittest individual is always included in
the new population. All but the fittest individual are mutated. The displayed
polygon arrangement always shows the fittest individual and will only change
if there is a better solution found.

The optimization process stops when a configurable upper number of steps
is exceeded or the cost functional has not changed over a certain number
of steps.

3 RESULTS AND DISCUSSION
The visualization approach described was implemented in a
small and easy-to-use, platform-independent Java application
(VennMaster). It allows an interactive exploration of the data sets
and was tested on Windows XP, Linux and Mac OS X using the
Java Runtime Environment 1.4.2 (http://www.java.sun.com). Ven-
nMaster supports the interactive exploration of sets and intersection
sets. When touching the polygons with the cursor, the region will
be highlighted and the involved group names and the cardinality of
the intersection set will be shown (Fig. 2). The edge number of the
polygons is user-configurable. Furthermore, a gene list of the selected
intersection set(s) is shown in an information field. Unresolved inter-
sections (for which no corresponding polygon intersection exists) are
listed in the field ‘Inconsistencies’. For each set or intersection set,
a text label can be attached. Labels and polygons can be moved by
drag-and-drop (the cost function will be updated immediately). So
the user can interactively modify the configuration and may restart the
evolutionary optimization process on the changed arrangement. Set
positions can be locked so that they will not be moved by the optim-
izer. The optimization process can be controlled via a parameter
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{ proteolysis and peptidolysis, macromolecule catabolism, protein catabolism } : 6

{ extracellular space } : 19

{ extracellular } : 21
{ response to external stimulus } : 5

{ cell adhesion } : 6

{ extracellular matrix } : 8

Fig. 2. Result of a visualization (with polygons) by importing files from GOMiner. Here, differentially expressed gene sets between a specialized mesenchymal
cell type (stellate cells) and normal skin fibroblasts (minimum total: 100; maxp-value: 0.05) are shown. Although a total of nine GO categories were reported
to be significantly over-represented among the changed genes, the analysis revealed that these categories strongly overlap and form a single large cluster of cell
surface/extracellular matrix related categories.

{ energy derivation by oxidation of organic compounds } : 4 { ion transporter activity } : 5

{ electron transport } : 6

{ GTP binding, guanyl nucleotide binding } : 7

{ GTPase activity } : 8

{ regulation of cell cycle } : 6

{ response to wounding } : 4

{ lipid biosynthesis } : 4 { response to stimulus } : 10

{ signal transduction, defense response } : 1

{ nucleotide binding } : 10

{ purine nucleotide binding } : 10

{ alpha-type channel activity } : 6

{ ion transport } : 9

{ ATP binding } : 9
{ transporter activity } : 11

{ ion channel activity } : 6

{ plasma membrane } : 10

{ extracellular space } : 13

{ response to external stimulus } : 10

{ extracellular } : 15

{ cell communication } : 15

Fig. 3. Visualization showing different subprocesses (two for left panel and four for right panel): Genes over-expressed (left) or under-expressed (right) in
pancreatic ductal carcinoma as compared to normal pancreatic duct cells (minimum total: 50; maxp-value: 0.05): the analysis identifies distinct clusters of
biologically relevant GO categories over-represented among the over-expressed and under-expressed genes, respectively.

dialog (see Supplementary information). The Venn diagrams may
be saved as JPEG files. To analyze functional categories of differen-
tially expressed genes, we included the ability to import files from
GOMiner (Zeeberget al., 2003) in the program, in addition to a
simple tab-delimited file format with an element/group pair in each
line. For the GOMiner files, a pre-filtering of the genes/categories is
included.

To validate our approach, an experiment using microarrays with
23 000 features was processed by VennMaster, the tool that supports
the approach presented here. Differences between two types of cells
(stellate cells and fibroblasts) involved in diseases associated with
extensive fibrosis such as chronic pancreatitis or liver fibrosis were
investigated. The GOMiner tool was used to classify the differen-
tial genes into functional categories. Due to the fact that one gene
may belong to multiple functional categories, this analysis revealed
a complex pattern of 29 GO terms. To identify the major functional
categories differentiating the two cell types, the VennMaster program
was applied to the GOMiner list of 74 genes. The list of differen-
tially expressed genes was compared to the list of all genes exceeding
a minimal expression threshold (normalized expression value>0.5

in at least one of the sample sets) to identify GO terms significantly
over-represented among the differentially expressed genes. Since the
tree format provided by GOMiner to visualize the results of the ana-
lysis is not suited to display the overlap of genes in different GO
categories resulting from the association of genes with multiple GO
terms, we applied the described Venn diagram approach which facil-
itates visualization of associations between GO categories based on
the evaluation of genes mutually represented in different categories
(Fig. 2). The Venn diagram representation revealed that the principal
GO terms which were significantly over-represented among this set
of genes all fell within a single cluster of interconnected categories
relating to extracellular and cell surface genes, such as extracellular
matrix genes, secreted proteins and cell adhesion genes and their
associated functions. In a second experiment, expression profiles of
pancreatic ductal carcinoma and normal pancreatic duct cells were
compared (Fig. 3). Both analyses gave an instant overview of the
involved GO terms.

To evaluate the performance of the self-adapting evolution
strategy, a series of simulations were made with and without self-
adaptation of the mutation variances. For non-adaptive mutation
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rates, the mutation parameter is critical for the convergence of the
optimization process (see Supplementary Figures I and II). The
self-adapting procedure gave superior results in all but the lowest
mutation variances. For 17 different data sets, the overall maximal
fitness gained was evaluated on 100 simulations for each config-
uration, i.e. a total of 3400. For every data set, the self-adapting
algorithm resulted in smaller error values than the non-adaptive
algorithm. Each of thep-values of the one-sided Wilcoxon rank
sum test was below 6.28e-5 (Bonferroni correction requires ap-
value <0.0015 to be considered significant; see Supplementary
Figure V).

Clearly, the diagrams we used for visualization purposes are
not true Venn diagrams according to Grünbaum (1992) and others
(see http://www.combinatorics.org/Surveys/ds5/VennEJC.html for
an excellent survey) as they allow empty and not connected inter-
section sets. Apart from this more theoretical aspect, the proposed
generalized Venn diagrams proved nevertheless to be of great value

for practical purposes requiring the visualization of complex set
relationships.
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