Use of multiple profiles corresponding to a sequence alignment enables effective detection of remote homologues

B. Anand1,2, V. S. Gowri1 & N. Srinivasan1*

1Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India.

Present address:
2Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208 016, India.

Running title: Multiple profiles with constant alignment

* To whom correspondence should be addressed

Phone: +91-80-2293 2837

Fax: +91-80-2360 0535

E-mail: ns@mbu.iisc.ernet.in
ABSTRACT:

Motivation:

Position Specific Scoring Matrices (PSSMs) corresponding to aligned sequences of homologous proteins are commonly used in homology detection. A PSSM is generated on the basis of one of the homologues as a reference sequence, which is the query in the case of PSI_BLAST searches. Reference sequence is chosen arbitrarily while generating PSSMs for reverse BLAST searches. In this work we demonstrate that use of multiple PSSMs corresponding to a given alignment and variable reference sequences is more effective than using traditional single PSSMs and Hidden Markov Models.

Results:

Searches for proteins with known 3-D structure have been made against three databases of protein family profiles corresponding to known structures: (1) One PSSM per family (2) Multiple PSSMs corresponding to an alignment and variable reference sequences for every family and (3) Hidden Markov Models. Comparative performance of these three approaches suggests that use of multiple PSSMs is most effective.

Contact: ns@mbu.iisc.ernet.in
Introduction

Searches in the sequence databases using Position Specific Scoring Matrices (PSSMs or Profiles), corresponding to multiple sequence alignment of protein domain families, are shown to be more effective in detecting distantly related homologues compared to searches involving pairwise sequence alignments (Gribskov, 1987; Altschul et.al, 1997; Park et.al, 1998). The PSI_BLAST procedure (Altschul et al, 1997) which iteratively builds PSSM of a family is commonly used. A reverse procedure with sequence as a query in a search against a database of PSSMs has also been proved to be effective in detecting distantly related protein sequences (Schaffer et.al, 1999). A PSSM is a weight matrix that, for each position in a group of aligned sequences, assigns a score for each of the 20 amino acid residues. A more sophisticated mathematical model of sequence alignments is the Hidden Markov Model (HMM) (Krogh et.al., 1994; Karplus et.al., 1998; Baldi et.al., 1994; Eddy, 1998; Lindahl & Elofsson, 2000). The quality of the multiple sequence alignment used and the divergence of sequences are of high importance for the effectiveness of HMMs and PSSMs in detecting distant homologues.

A benchmarking of PSI-BLAST suggests that it could successfully identify 40% of the remote homologues among distantly related protein domains of known three-dimensional (3-D) structure (Muller et.al., 1999). Another evaluation on the performance of profile-based search procedures such as PSI-BLAST, IMPALA and HMMER suggests that PSI-BLAST and IMPALA yield similar coverage. However, HMMER has a better coverage by a few percentage points (Schaffer et.al., 1999). A performance comparison of various search procedures suggests that multiple sequence information helps to detect related protein sequences at the family and superfamily level (Lindhal and Elofsson, 2000).

The reference sequence is chosen arbitrarily from the multiple sequence alignment in the case of search using RPS_BLAST or IMPALA (Schaffer et.al., 1999) on a database of PSSMs of various protein families. While we used longest of the homologues as reference sequence in our earlier studies (Gowri et al, 2003; Pandit et al, 2004), there are advantages and disadvantages in using either shortest or longest of the homologues as the
reference sequence. In the PSSM matching procedures such as PSI-BLAST the PSSM is generated, at the end of every iteration, with query as the reference sequence. However, query may be considered as an arbitrarily chosen sequence in the family as far as PSSM generation is concerned.

PSSM of a family encodes two distinct sets of information: (1) Extent of occurrence of each of the 20 amino acid types in every position in the multiple sequence alignment. (2) Extent of substitution of each one of the residues in the reference sequence by any of the 20 residue types. Hence, the PSSMs generated for a multiple sequence alignment with different homologues as reference sequences will be different. It is our contention that generation of multiple PSSMs for a given alignment using diverse homologues as reference sequences could increase the sensitivity and effectiveness of remote homology detection. Here we propose that RPS_BLAST searches against a database of PSSMs with multiple PSSMs representing every family improve the detection of remotely related protein sequences compared to a search made on a database of PSSMs with every family represented by only one PSSM.

Materials and Methods:

In the present study we are comparing the performances of three profile matching approaches.

(ii) RPS-BLAST (Schaffer et.al., 1999) search on a database of PSSMs with every family represented by only one PSSM. Here we have chosen the homologue with the longest length as the reference sequence for that family. This search process is henceforth referred to as "single PSSM approach" (SPA).

(iii) RPS-BLAST search on a database of PSSMs with more than one PSSM representing every family. PSSMs of every family have been generated with many homologues as the reference sequence. Identical multiple sequence alignment of a family has been used to generate different PSSMs with different
reference sequences. This search process is henceforth referred to as "multiple PSSMs approach" (MPA).

Database:

For the purposes of assessment and comparison of performance of different PSSM matching approaches we chose to search using protein domains of known 3-D structures as queries on a database of protein domain families of known 3-D structure. If the fold of a hit is same as that of the query then the hit is considered as correct, else incorrect. PALI database (Balaji et.al., 2001) comprises of families of proteins of known 3-D structures primarily derived from SCOP database (Murzin et.al., 1995). Structure-based sequence alignments are provided for all the multi-member families in PALI. An integrated sequence-structure (ISS) database (Gowri et.al., 2003) has been generated by integrating the structural family from PALI with homologous sequences from either the PFAM database (Sonnhammer et.al., 1999; Bateman et.al., 2002) or the non-redundant database (NRDB). The dataset used for the current analysis has been generated from ISS database by employing following conditions:

(i) In a family, alignment among the members sharing less than or equal to 60% sequence identity is only considered. This minimises the bias of the PSSMs generated towards closely related proteins of that family.

(ii) Multi-member families having at least 3 members are only considered. The final dataset used contains 286 multi-member families. There are 1325 protein domains of known 3-D structure in these families integrated to about 28000 sequences of homologues without experimentally derived 3-D structure.

HMM generation:

The HMMs are generated for the 286 families using the HMMER2 package (Eddy, 1998). The multiple sequence alignments of the ISS database derived from PALI (version 2.2) has been used for HMM profile generation. This database of HMM profiles will be referred hereafter as HMM_db.
PSSM generation:

The PSSMs for the 286 multi-member families are generated from the structure-based sequence alignments of homologues with known 3-D structure integrated with the sequence homologues. Two types of PSSMs are generated.

(1) Single Family PSSMs are generated using the protein sequence having the longest length as the reference sequence in the family for a given multiple sequence alignment. Hence, there are 286 single family profiles generated. This database of 286 single family PSSMs will be referred hereafter as SFP_db.

(2) Multiple Family PSSMs are generated using every protein sequence in the family with a known 3-D structure as the reference sequences. Hence, the number of PSSMs generated for a family is equal to the number of members of known structure in that family. This database of 1325 Multiple family PSSMs will be referred hereafter as MFP_db.

Having identified a reference sequence present in a multiple sequence alignment, the following procedure is used for the generation of PSSM:

The multiple sequence alignment and the reference sequence are given as inputs to PSI-BLAST to “iterate” against a database of sequences present in the input multiple sequence alignment. Since any “hit” in such a “search” corresponds to a sequence already fed as an entry in the input multiple sequence alignment, the multiple sequence alignment that results at the end of the PSI_BLAST run is same as the input multiple sequence alignment. The –C option in PSI-BLAST is then used to generate corresponding PSSM output.

Comparative Analysis:

Searches against the three databases of profiles (HMM_db, SFP_db and MFP_db) have been performed using HMMER2 and RPS-BLAST. The searches are made using every sequence of known 3-D structure as the query, selected from the database itself, against the database of profiles. These searches have been made using an E-value cut-off of 1 and the assessments have been performed at various E-value thresholds. In the RPS_BLAST searches those hits of PSSMs which have the reference sequence same as
the query sequence are ignored in further analysis as these are trivial hits. The performance of these three approaches HMMER (HMM approach), Single PSSM approach (SPA) and the Multiple PSSM approach (MPA) are evaluated using the following three parameters.

(i) Specificity = $\frac{TP}{TP+FP}$
(ii) Sensitivity = $\frac{TP}{TP+FN}$
(iii) Error rate = $\frac{(FP+FN)}{TP}$

Where TP is the number of true positive profiles, FP is the number of false positive profiles and FN is the number of false negative profiles.

An estimate of difference between two PSSMs corresponding to an alignment:

We have estimated the difference between two PSSMs corresponding to two different reference sequences present in the corresponding multiple sequence alignment. The extent of dissimilarity between any two profiles, corresponding to proteins A and B in the multiple sequence alignment, is calculated using the following formula:

$$\Delta D_{A,B} = \sqrt{\frac{(D_A^2 + D_B^2 + D_{A,B}^2)/3}{}}$$

where,

$D_A = 100 – \text{mean of the percent sequence identities of A with the other homologous sequences.}$

$D_B = 100 – \text{mean of the percent sequence identities of B with the other homologous sequences.}$

$D_{A,B} = 100 – \text{percentage sequence identity between A and B.}$

Results and Discussion:

All the sequences with known structure from the database are queried against the three profile databases HMM_db, SFP_db and MFP_db using HMMER2 (in the case of HMM_db) and RPS-BLAST (for searching against SFP_db and MFP_db). The hits were analyzed at various E-value thresholds ranging from 10^{-5} to 1 with an interval of 10^{-1}. A hit will be considered as true positive if the query sequence and the protein domains in
the hit profile share the same fold. In these searches, if a query sequence identifies even one of the family profiles as related, the protein sequence is associated with the family and the suggested relationship is evaluated for correctness. An analysis of the family and superfamily detection using various approaches is presented here. i.e., it is evaluated if the query identifies its own family profile with another member of the family as the reference sequence. It is also evaluated if the query identifies profiles of other families within the superfamily and the fold.

Specificity:

Specificity is a measure of the ability of the profile matching approaches to identify the true hits among all the hits. The plot of specificity (%) Vs log (E) for the HMM approach, SPA and MPA are shown (Figure 1a). The Specificity values in all the three approaches perform comparably well at the E-values between 10^{-5} to 10^{-2}. With E-values higher than 10^{-2} the specificity of the HMM approach and SPA drops drastically to ~70% and ~55% respectively. However, the % specificity in MPA drops smoothly to ~80%. This suggests that at stringent E-value ranges of 10^{-5} to 10^{-2} the three approaches could be used reliably. However, at very relaxed E-value ranges of 10^{-2} to 1 MPA would be the approach of choice for effective identification of distantly related sequences.

Sensitivity:

Sensitivity is a measure of ability of the profile matching approaches to identify the true hits among all the correct hits. The plot of sensitivity (%) Vs log(E) for all the three approaches are shown (Figure 1b). The Sensitivity of HMM approach increases gently from about 78% to ~83% and for SPA it increases from about 85% to ~90%. However, the sensitivity of MPA remains at about ~98% for the E-value between 10^{-5} to 1. This suggests that MPA is powerful in identifying most of the correct family profiles even at stringent E-values.

Error rate:

Error rate is a measure of accuracy of the profile matching approaches to identify the bonafide members over the number of false hits identified and the number of profiles of
true homologues missed. The Error rate (%) Vs log(E) is plotted for all the three approaches (Figure 1c). The Error rate drops drastically in case of SPA from about 90% to ~28% as the E-value threshold varies from 1 to 10^{-1}. There is a gradual decrease in the Error rate to about 20% when the E-value goes from 10^{-1} to 10^{-2} and the error rate stays as 20% when the E-value becomes more stringent. In case of HMM approach, the error rate decreases drastically from about 68% to about 24% as the E-value threshold varies from 1 to 10^{-1}. Further, the error rate gently increases to about 26% as the E-value becomes more and more stringent. Error rate decreases gradually from about 20% to about 3% as the E-value threshold becomes stringent in case of MPA compared to SPA and HMM approaches. The error rate curves for the three approaches suggest that the searches by MPA approach are most effective even at relaxed E-values.

Comparison of SPA and MPA for remote homology detection:

The ability of the two profile matching approaches (SPA and MPA) to identify the closely related protein sequences (family level) and the distantly related protein sequences showing probable evolutionary origin (superfamily level) has been compared.

(a) Superfamily level, inter family connections:

The 286 protein families in the database belong to 40 multi-member superfamilies. For each superfamily, the sequences belonging to different families within the superfamily are searched against SFP_db and MFP_db databases. Two protein families can be related by these database searches, if any one of the query protein sequences from one family picks up, as a hit, another family profile within the superfamily. Using the information from the structural classification of proteins database (SCOP), on the relationships among the protein sequences across the families, as standard, we assess the correctness of identification of superfamilies using sequence-profile matches. We have compared the efficiency of establishing such relationships by SPA and MPA approaches.

The percentage of number of across family connections (within a superfamily) as a function of logarithm of E-values has been plotted (Figure 2a). The plot clearly shows that MPA is capable of identifying more across family connections, within a
superfamily, compared to SPA even at very stringent E-values. This has been exemplified by the FAD/NAD binding domain superfamily as an example. The protein sequence 1f8ra1 from the family of FAD/NAD-linked reductases is searched against the database of multiple family profiles (MPA_db). This search identified as hits the PSSMs of the query family, Succinate dehydrogenase/fumarate reductase flavoprotein family (E-value = 2x10⁻⁹) with 1qlaa2 as the reference sequence and the C-terminal domain of adrenodoxin reductase-like family (E-value = 7x10⁻⁹) with 1gtea3 and 1o94a2 as reference sequences. All these families are in the same superfamily as that of the query. However when the same query is searched against the database of single profiles the profile corresponding to C-terminal domain of adrenodoxin reductase-like family with 1cjca1 as the reference sequence was not identified as a hit. The distance between the family profiles of 1gtea3 and 1cjca1 is ΔD = 18.5 and the distance between the PSSMs with reference sequences 1o94a2 and 1cjca1 is ΔD = 17.6.

(b) Fold level, inter superfamily connections:

The database of the 286 families has 57 folds having at least two superfamilies in each fold. Within a fold, sequences belonging to various superfamilies are searched against the profiles of other superfamilies. In these searches, if a query sequence from a superfamily identifies another sequence profile, belonging to a different superfamily within the same fold, then these two superfamilies, are identified as related to each other by the profile matching methods. We present below a comparison between the SPA and MPA approaches in identifying the distantly related protein sequences in different superfamilies within a fold.

The number of across superfamily connections identified, within a fold using SPA and MPA is plotted as a function of logarithm of E-values (Figure 2b). At most significant E-values, the number of across superfamily connections remains constant for both SPA and MPA. However, there is a marginal better performance of MPA compared to SPA. This marginal increase in the identification of distantly related protein sequence families could become important when such searches are made.
against genome databases. There is a slight increase in the performance of SPA over MPA at log (E) value close to zero. However, the error rate plot suggests that at log (E) close to zero, MPA identifies the closely related and distantly related homologues more reliably compared SPA.

This can be exemplified by taking the example of Triose Phosphate Isomerase (TIM) fold. When searches were made using a sequence (1gox__) belonging to FMN-linked oxidoreductase family in MPA it identified the PSSMs of the family of tryptophan biosynthesis enzymes (E-value = \(2 \times 10^{-34}\)) with 1a53__, 1pii__ as reference sequences. These two families belong to different superfamilies in the TIM fold. When the same query was searched in the SPA database the family of tryptophan biosynthesis enzymes PSSM with a reference sequence (1ttqa__) was not identified as a hit. The distance between the PSSMs with 1a53__ and 1ttqa__ as reference sequences is \(D = 19.8\) and that of 1pii__ and 1ttqa__ as reference sequences is \(D = 20.3\).

(c) **False positive connections:**

If the searches against the databases of profiles relate query protein sequence with a profile belonging to different folds then such connections are labeled as false positives. Of the 1325 searches made, there are 72 such false positive connections identified using these profile-based searches. A plot of the alignment length (%) as a function of logarithm of the E-value suggests that most of the false positive connections occur at low alignment lengths usually below 70% of the query length (Figure 3a). Out of the 72 false positive connections identified within various E-value thresholds, 65 of them do not have greater than 70% alignment length. The true positives identified were also examined for query coverage. A plot of Log (E) Vs alignment length (%) for the true positive hits (Figure 3b) suggests that the query coverage for the true positives is almost always above 70%. Hence, if we include a suitable alignment length condition to filter the hits, we can minimize the number of false positive connections. Further analysis of the region of alignments of false positives suggest that there are structural similarities in many of those short regions
which has brought about the across fold and across class relationships. This could be explained by an example of the connection between the DNA/RNA binding 3-helical bundle fold and RNA polymerase sigma subunit fold. The alignment of the protein sequences (Figure 4a) with structural feature represented, suggest that there are 3 helices that align very well. This is further supported by the structural superposition of a segment from these two proteins (Figure 4b).

In general, the extent of occurrence of false positive connections is as low as 3% in the case of MPA as compared to 20% in the case of SPA.

Conclusions:

The Hidden Markov Models and PSSMs have been generated for various protein families. Both single (SPA) and multiple family profiles (MPA) have been generated in the case of PSSMs. The multiple PSSMs corresponding to a family arise out of identical sequence alignment, but by using different homologues as reference sequences. The distance between two PSSMs corresponding to a multiple sequence alignment ranges from $\Delta D = 8$ to $\Delta D = 50$. These family profiles have been compared for their efficiency in identifying the closely related and remotely related protein sequences. The performance of HMMER is compared with SPA and MPA. In the case of HMM profiles, there is no notion of a reference sequence. The sensitivity, specificity and error rate values for the three approaches suggest that MPA approaches are performing better than SPA as well as HMM approaches. The bias of sequence profiles towards the reference sequence has been completely removed in the case of MPA approach. All the runs have been carried out in Intel P4 1500MHz processor with 256MB RAM. The CPU time taken for these 1325 searches using the three approaches suggest that MPA approach is computationally economical compared to HMM approach (Table 1). This difference in the computational times is even more significant while handling large databases such as genome databases. Hence, the searches using multiple family profiles are economical in terms of computational run time as well as efficiency in the identification of distantly related protein sequences.
Acknowledgements:

We thank Ms. Natasha Mhatre for her early analysis on the profile matching methods and Dr. Cyrus Chothia for useful comments on the multiple PSSM approach. This research is supported by the award of Senior Fellowship in Biomedical Sciences to NS by the Wellcome Trust, UK as well as by the computational genomics project supported by the Department of Biotechnology, Government of India.
References:

Figure Legends:

Figure 1
Percentage (a) specificity (b) sensitivity and (c) error rate plotted as functions of logarithm of E-values for searches involving HMMs (dotted line), single profile approach (SPA – solid line) and multiple profile approach (MPA – dashed line).

Figure 2
Percentage of (a) inter-family connections within a superfamily and (b) inter-superfamily connections with a fold, identified using SPA (solid line) and MPA (dotted line) at various E-value thresholds.

Figure 3
Plot of logarithm of E-value as a function of the alignment length (in %) for (a) false positive and (b) true positive connections.

Figure 4
(a) Pairwise alignment of sequences of DNA/RNA binding 3-helical bundle and RNA polymerase sigma subunit which adopt different gross folds. The residues in alpha helical regions are highlighted in the blue color. The blue bars indicate the “equivalent” helical regions in the two sequences. The colors are visible only in the on-line version of this paper.

(b) Structural superposition of the Cα trace for the regions of suggested similarity between protein domains from DNA/RNA binding 3-helical bundle (1fsea_) and RNA polymerase sigma subunit (1iw7f) folds. In the on-line version of this paper, the segments of 1fsea and 1iw7f are shown in brown and blue respectively. The RMSD for this superposition is 1.48Å for 36 topologically equivalent Cα atoms. This figure has been generated using SETOR (Evans, 1993).
Table 1
Comparison of CPU time for various approaches

<table>
<thead>
<tr>
<th>Methods</th>
<th>Computational time<sup>c</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>HMM<sup>a</sup></td>
<td>3.24 hrs</td>
</tr>
<tr>
<td>Single PSSM<sup>b</sup></td>
<td>17.34 mins</td>
</tr>
<tr>
<td>Multiple PSSM<sup>b</sup></td>
<td>1.48 hrs</td>
</tr>
</tbody>
</table>

^a Computational time involves building the HMMs, calibration and search.

^b Computational time includes generation of PSSMs using PSI-BLAST and searching the PSSMs using RPS-BLAST.

^c All runs were carried out in INTEL P4 1500 MHz processor with 256MB RAM running in Linux operating system.
4a)
1fsea_ (5) LTKREREVFELLVQDKKTKEIASLFISEKTVRNHNISAMQKL
1iw7f_ (288) LSEREAMVLKLRKGLIDGEEVGAFFGVTREIQRQIENKALRKL

4b)