
Vol. 24 no. 3 2008, pages 450–451
BIOINFORMATICS APPLICATIONS NOTE doi:10.1093/bioinformatics/btm602

Databases and ontologies

Automated programming for bioinformatics algorithm

deployment
Gil Alterovitz1,2,3,*, Adnaan Jiwaji2 and Marco F. Ramoni1,3
1Children’s Hospital Informatics Program at the Division of Health Sciences and Technology, Harvard University and
Massachusetts Institute of Technology, 2Department of Electrical Engineering and Computer Science, Massachusetts
Institute of Technology and 3Harvard Partners Center for Genetics and Genomics, Harvard Medical School,
Boston, USA.

Received on July 28, 2007; revised and accepted on December 1, 2007

Advance Access publication January 3, 2008

Associate Editor: Chris Stoeckert

ABSTRACT

Summary: Many bioinformatics solutions suffer from the lack of

usable interface/platform from which results can be analyzed and

visualized. Overcoming this hurdle would allow for more widespread

dissemination of bioinformatics algorithms within the biological and

medical communities. The algorithms should be accessible without

extensive technical support or programming knowledge. Here, we

propose a dynamic wizard platform that provides users with a

Graphical User Interface (GUI) for most Java bioinformatics library

toolkits. The application interface is generated in real-time based on

the original source code. This platform lets developers focus on

designing algorithms and biologists/physicians on testing hypoth-

eses and analyzing results.

Availability: The open source code can be downloaded from:

http://bcl.med.harvard.edu/proteomics/proj/APBA/

Contact: gil@mit.edu

1 INTRODUCTION

Previous work has sought to reduce the process of bioinfor-

matics development through algorithm and data structure

template libraries (Pitt et al., 2001; Stajich and Lapp, 2006).

On SourceForge, about 1075 applications have been categor-

ized as ‘Bioinformatics’ and Bioinformatics.org has close to

275 bioinformatics projects. There are numerous other bio-

informatics libraries on such open source websites that are not

being used because they are not accessible to many biologists.

Out of the 1075 applications on SourceForge, only �30 have a

Graphical User Interface (GUI) associated with the applica-

tion. This means that about 97% of the bioinformatics algo-

rithms might not be utilized to their full potential due to a lack

of a graphical interface platform.
Using bioinformatics toolkits generally requires a series of

similar sequential steps including: loading data files, choosing

the analytical method, choosing analytical method options,

running the analysis, displaying results (with graphs and with

statistics) and saving the results. This pattern can be exploited to

form awizard application platform that can guide a user through

these steps regardless of the details of the particular toolkit.
Developers of bioinformatics algorithms spend little time

on developing interfaces for algorithms since GUI’s, in and of

themselves, are not strongly rewarded by the methods-based

journal peer-review process. However, if the interface could
automatically parse their code and make an appropriate GUI,

then developers are much more likely to adopt such a platform.

2 APPROACH AND APPLICATIONS

2.1 System architecture

The Automated Programming for Bioinformatics Algorithm
(APBA) deployment platform uses the Model-View-Controller

design concept to reduce dependencies on the source code. The
main entry point into the system is the parser that takes in

the source code and generates an internal representation of the

system. The wizard maker uses this internal representation to
form the appropriate components in the GUI. Changes in the

parser representation are reflected in the GUI through an
observer. Events in the GUI need to access either the internal

representation or the original source code itself. Access to the

source code is done via Adapters, (Fig. 1) that use the internal
representation to access the methods in the original source code.
Figure 1 shows, how the backend source code is decoupled

from the internal system surrounded in the dotted box.

PARSER 

BACKEND 

SOURCE 

OBSERVERS CONTROLLER

ADAPTER 

INTERNAL 

MODEL 

WIZARD 

VIEW 

Fig. 1. The object model of the dynamic wizard platform.*To whom correspondence should be addressed.

450 � The Author 2008. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/24/3/450/253885 by guest on 24 April 2024

http://bcl.med.harvard.edu/proteomics/proj/APBA/


2.2 Dynamically generating the wizard

The APBA platform allows a graphical interface framework
to be used with any Java bioinformatics toolbox. If the source
code is not tagged, then all the functions are shown in one

screen in a hierarchical tree view. However, functions can be
separated into more than one screen by their purpose. This is
done by tagging the source code with tags in the JavaDoc

comment section of each class or method using an Xdoclet type
tag. Some examples of tags that are used include:

(i) Tagging the class with the main() method as@MainClass.

Optionally, tags such as@Picture and@Introduction can
also be placed this class. The values of these tags are used to
get the picture and introduction message for the welcome
screen as shown in the results section of the article.

(ii) Tagging functions that are used for loading data,
analyzing data and saving data with the @Load,
@Analysis and @Save tags, respectively in the comment

area of the method. These can also be used to guide the
user through a sequence of functions that help answer a
specific biological question.

Qdox (http://qdox.codehaus.org) is used at runtime to parse
the code for tags and form the internal representation. This is
used internally to form the GUI, register GUI event and

determine appropriate screens in the wizard to expose the
method for the user. The source code is accessed through the
Adapter which is made using the Java reflection library.

2.3 Functionality and features

The APBA platform provides basic functionalities commonly
required for bioinformatics toolkit-based analyses (Fig. 2).

The first basic feature is the ability to load input data files from
directories or online. To perform any analysis, the user has to
load these files to build the background information. If desired,

the user can initially select from several biologically motivated
questions in order to constrain the function space. The next
step is to perform the desired calculations. The analysis screen

shows the available functions based on class structure. The user
can then set variables for the parameters of the analysis func-
tions and run the functions using a drop down menu to assign

parameter values for each run.
All the variables that are created by the user and the results of

analysis functions are stored in a tree structure in the workspace.
The variables in the workspace can be manipulated by drag-and-

drop. Once the analysis functions are run, the user can visualize

the results. An interface allows various types of 2D or 3D graphs

with the option of choosing which variables are plotted in each
axis. The user can also save variables and plots. Variables from
the workspace can also be saved in Excel readable form or in

data files for future use in the wizard platform.
The actions that the users take during a session are saved in

Java code form. This enables users to see the underlying toolkit
program structure, allows them to easily return to where they
had stopped in their previous session, and lets them edit and the

code that calls the toolkits libraries.

3 DISCUSSION AND CONCLUSION

The APBA platform presented here was tested on a number of
bioinformatics toolkits. Two of these are included online (see

availability) with and without the platform for comparison (see
availability): Open Biomedical Ontology-Based Exploration and

Search (OBOES)(Alterovitz et al., 2007) and ReadSeq (http://
sourceforge.net/projects/readseq/). ReadSeq is a program for
conversion of biosequence data. ReadSeq was run without

tagging the source code to validate that the platform can be used
without any changes to the source code. This showed that

program is generic because it worked for a variety of toolkit
types: OBOES is an ontology analysis-based bioinformatics

application and ReadSeq is sequence analysis-type application.
Programming and debugging for experimental bioinformatics

applications can be especially tiring because the people doing the

work are not primarily programmers; they are primarily bio-
logical researchers. This platform, not only increases efficiency,

but also reduces programming errors because the underlying
platform is already pre-written and extensively tested for

accuracy. Built in open source java, the platform can also
be integrated with commonly used packages such asWeka andR.
Biology students have also found the platform useful for getting

quick results while learning about the underlying programming.

Conflict of Interest: none declared.

REFERENCES

Alterovitz,G. et al. (2007) An information theoretic framework for ontology-

based bioinformatics. In Proceedings of the Information Theory Applications

Workshop, San Diego, CA.

Pitt,W.R. et al. (2001) The bioinformatics template library–generic components

for biocomputing. Bioinformatics, 17, 729–737.

Stajich,J. and Lapp,H. (2006) Open source tool and toolkits for bioinformatics:

significance and where are we? Brief. Bioinform., 7, 287–296.

2.2: An example of a 3D plot generated from the program.
2.1: The user can choose what functions to run (see above). The user
can set variables for analysis and storage in the workspace (not shown). 

Fig. 2. Screenshots of the wizard.

Automated programming for bioinformatics

451

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/24/3/450/253885 by guest on 24 April 2024

http://qdox.codehaus.org
http://

