Gene Expression

Automated image alignment for 2-D gel electrophoresis in a high-throughput proteomics pipeline

Andrew W. Dowsey¹, Michael J. Dunn² and Guang-Zhong Yang¹,*
¹Institute of Biomedical Engineering, Imperial College London, United Kingdom.
²UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Ireland.

Associate Editor: Prof. David Rocke

ABSTRACT

Motivation: The quest for high-throughput proteomics has revealed a number of challenges in recent years. Whilst substantial improvements in automated protein separation with liquid chromatography and mass spectrometry (LC/MS), aka ‘shotgun’ proteomics, have been achieved, large-scale open initiatives such as the HUPO Brain Proteome Project have shown that maximal proteome coverage is only possible when LC/MS is complemented by 2-D gel electrophoresis (2-DE) studies. Moreover, both separation methods require automated alignment and differential analysis to relieve the bioinformatics bottleneck and so make high-throughput protein biomarker discovery a reality. The purpose of this paper is to describe a fully automatic image alignment framework for the integration of 2-DE into a high-throughput differential expression proteomics pipeline.

Results: The proposed method is based on robust automated image normalisation (RAIN) to circumvent the drawbacks of traditional approaches. These use symbolic representation at the very early stages of the analysis, which introduces persistent errors due to inaccuracies in modelling and alignment. In RAIN, a 3rd order volume-invariant B-spline model is incorporated into a multi-resolution schema to correct for geometric and expression inhomogeneity at multiple scales. The normalised images can then be compared directly in the image domain for quantitative differential analysis. Through evaluation against an existing state-of-the-art method on real and synthetically warped 2-D gels, the proposed analysis framework demonstrates substantial improvements in matching accuracy and differential sensitivity. High-throughput analysis is established through an accelerated GPGPU implementation.

Availability: Supplementary material, software and images used in the validation are available at http://www.proteomegrid.org/rain/.

Contact: g.z.yang@imperial.ac.uk

1 INTRODUCTION

Proteomics is playing a major role in elucidating the functional role of many novel genes and their products and in understanding their involvement in biologically relevant phenotypes, both in normal cellular processes and disease. Differential (discovery) proteomics has become an important tool in the development of protein biomarkers for earlier and more accurate screening and diagnostic tests for the detection and treatment of disease, as well as screening all human proteins to ascertain their structures and functions - the major biology driven challenges in proteomics today. It has become evident in recent years that these large-scale challenges are too great for the resources of a single laboratory, so open international collaborations are being championed by the Human Proteome Organisation (HUPO – http://www.hupo.org/).

Tissue samples are complex mixtures of up to thousands of different proteins, so adequate identification by mass spectrometry (MS) is reliant on their pre-separation, of which 2-D gel electrophoresis (2-DE) has been the de-facto standard (Görg, et al., 2004). However, limited automation and reproducibility have led to success in combining multi-dimensional liquid chromatography (MDLC) with MS ‘shotgun’ approaches (Wolters, et al., 2001) in which a tryptic digest is separated by one or more dimensions of LC and then automatically subjected to MS/MS. These two separation methods were employed by 9 participating laboratories in the HUPO Brain Proteome Project’s pilot studies, with the result that 57% of proteins were only detected by 2-DE, and 29% only by LC (Reidegeld, et al., 2006). They conclude that both techniques are vital to ensure maximal proteome coverage in future analyses. It is therefore an important research goal that 2-DE data can be automatically aligned, modelled and differentially quantified in a high-throughput pipeline, and integrated with shotgun proteomics data at a much earlier stage in the workflow.

In 2-DE, the 1st dimension separation is isoelectric focusing, during which proteins migrate in a pH gradient until each protein reaches its isoelectric point (pI) where its net charge is zero. In the 2nd dimension, the proteins are separated orthogonally according to their molecular mass by electrophoresis in the presence of sodium dodecyl sulphate. The proteins are then visualised by pre-labelling or post-staining so that the gels can be digitised for analysis. However, several experimental factors hinder the separation power (as illustrated in Supplementary Fig. 1). Important changes in protein expression may therefore be obscured by comparing only two gels, so in practice experiments are replicated multiple times. Between sample comparison is further facilitated by the DIGE (Difference In Gel Electrophoresis) protocol (Görg, et al., 2004), where two cyanine dyes fluorescently label different sample mixtures prior to simultaneous separation on the same gel. Two gel
images are then acquired using different emission filters. Neverthe-
less, this approach is still dependent on the accurate alignment and
comparison of large sets of 2-D gel images in order to generate
robust and sensitive data on differential protein expression.

1.1 Bioinformatics in 2-DE

A review of the bioinformatics for 2-DE is given in Dowsey et al.
(2003). Briefly, the traditional image processing pipeline for 2-DE
begins with pre-processing of the gel images to reduce noise and
subtract out background. A two-step approach then resolves each
protein spot individually. The gel is first segmented using the
watershed transform before each segment is fitted with a parametric
spot model to separate co-migrated spots. Two or more gels are
compared for differential expression by point-pattern matching
their spot lists annotated with metrics such as spot volume. The
final spot correspondence list is then subject to statistical testing
with significant manual validation using e.g. Student’s t-test and
ANOVA, in order to find outliers that represent up or down regu-
lated (differentially expressed) proteins. With this conventional
approach, symbolic representation of the spots is determined at a
very early stage of the pipeline. Once such a description is reached,
intrinsic errors dependent on the spot modelling and matching
persist throughout subsequent processing. Recent studies on the
accuracy of spot detection algorithms have shown marked differ-
ence in performance (Wheelock and Buckpitt, 2005), highlighting
major obstacles in realising the full potential of differential 2-DE.

If one focuses on the raw pixel values, features such as spot
shape, streaks, smears, spot tails and background are available
which are otherwise lost in the spot detection phase. This image
registration approach is an established field in medical imaging
(Mainitz and Viergever, 1998). The problem is a quadruple, where
the source image I_s is brought into alignment with the reference
image I_r, constrained by M, the space of allowable transformations
(mappings) on I_s and guided by optimisation of a similarity func-
tion which is at its maximum when the alignment is optimal:

$$\arg\max_{m \in M} \sim(I_s \circ m, I_r)$$

(1)

Z3 (Smilansky, 2001) was the first hybrid 2-D gel alignment algo-
rithm to incorporate pixel information, by comparing rectangular
image regions each containing a few detected spots. Veese et al.
(2001) then presented MIR, a direct algorithm with no recourse to
spot detection. They register the control points of a piecewise bi-
linear mapping with the BFGS quasi-Newton optimiser and closed
form derivatives of the normalised cross-correlation (NCC) simi-
arity measure. Convergence is robust since gels have smooth im-
age gradients and therefore the NCC with respect to the control
points is smooth and continuous. To avoid convergence to local
optima, a multi-resolution approach is used. In a comparative study
between MIR and Z3, MIR scored better 29 out of 30 times under
expert visual quantification. Subsequently, the concept was ex-
tended with a current leakage model (Gustafsson, et al., 2002),
which compared favourably with PDQuest (Bio-Rad Laboratories).
In recent years, multi-resolution with complex wavelets has been
proposed (Woodward, et al., 2004), as has a realistic deformation
model based on tensor-product B-splines (Sorzano, et al., 2008),
though no comparative validation was performed in either case.

Driven by the need for more sensitive differential expression
analysis, recent studies in gene microarray research have sought to
model and correct systematic bias between samples. Two threads
of data normalisation can be identified: (a) calibration of nonline-
arity between measured intensity and true expression, particularly
between different cyanine dyes and spatially within each slide
(bias-fields); (b) variance stabilisation to account for the predomi-
nantly multiplicative increase in variance with expression abun-
dance, and so allow principled differential expression analysis. For
proteomics data, the same requirements for cyanine dye calibration
(Karp, et al., 2004), bias-field correction (Gustafsson, et al., 2004)
and variance stabilisation (Kreil, et al., 2004) have been acknowl-
edged, and microarray normalisation methods successfully applied
in some cases. The issue of spatial inhomogeneity has also been
reported in the areas of magnetic resonance imaging (Velthuizen,
et al., 1998) and microscopy (Likar, et al., 2000). In each case, the
bias-field is assumed to be smoothly varying and therefore separa-
ble from: (a) the underlying signal which is locally uniform; (b)
differential expression which causes discontinuous changes in
intensity. In 2-D gel protein patterns, the assumption of a locally
uniform signal is violated, but bias-field estimation can still be
performed relative to a second gel, since their difference should be
locally uniform. We have previously demonstrated that a thin plate
spline model can be used (Dowsey, et al., 2003), whilst Kultima et al.
(2006) have similarly applied 2-D LOWESS (local polynomial
regression fitting). The disadvantage of these techniques is that
they use pre-matched spot list data and so require extensive manual
verification, which is incompatible with an automated high-
throughput pipeline. They must also cope with the substantial var-
iance and missing values induced by conventional techniques
(Wheelock and Buckpitt, 2005). The approach also precludes the
use of data normalisation in the gel alignment phase.

In response to many unanswered questions surrounding automa-
ted 2-D gel alignment, we describe the RAIN (Robust Auto-
mated Image Normalisation) algorithm. The purpose of RAIN is to
remove systematic geometric deformation and expression bias in
the image domain for objective and fully automated alignment of
2-DE datasets. By performing image-based alignment as the first
step of the pipeline, differential analysis and spot modelling can
subsequently be performed simultaneously on all gels by fusion of
the aligned images, thus leveraging strength across all images in
the set (Morris, et al., 2008; Sorzano, et al., 2008)

2 METHODS

The main steps of the RAIN algorithm can be summarised as follows:

1. A smooth tensor-product B-spline surface is used to warp the source
gel until all features are brought into correspondence with those in the
reference gel. Volume-invariance ensures that expression is not ampli-
fied under dilatation, nor attenuated under contraction.

2. Simultaneously, additive and multiplicative bias fields (modelled as
smooth B-spline surfaces) are fitted between the images to account
for systematic regional changes in background and staining. In this
way, the alignment is guided by the underlying expression pattern but
not influenced by expression bias and background variation.

3. To assess image correspondence, the sum of squared residuals (SSR)
is calculated - a pure pixel-based similarity measure. Since SSR as-
residual background variation and therefore provides a background correc-
tive additive bias-fields as single-valued third order B-spline surfaces.
approach provides an elegant framework for direct incorporation of bias-
ning. For this investigation, we have modelled smoothly varying multiplica-
for spot modelling. This ensures accurate quantification on warped gels.

duction can focus on the true underlying expression levels. In order to robustly model expression bias and background variation in 2-
B-splines are the shortest possible polynomial splines with global continu-
ity, and have been chosen for their efficiency in optimising geometrical transfor-
mation for image registration. They are smoothly connected piecewise polynomials where an additional smoothness constraint imposes continuity of the spline and its derivatives up to order (n+1), so that there is effectively only one degree of freedom per segment. A recursive definition beneficial for numerical computation is defined as (Cohen, et al., 1980):

$$\beta(t) = \sum_{i=0}^{n+1} P_i \cdot B_i(t) \text{ where } t_{\text{start}} \leq t < t_{\text{end}}, 2 \leq k \leq n + 1$$ \hspace{1cm} (2)

where position along the curve is given by t between t_{start} and end t_{end}, P_i are the position vectors of the $n + 1$ vertices, and $B_{i,k}$ are the normalised B-spline basis functions (see Supplementary Fig. 2(a)). B-splines are linearly separable and therefore have a simple tensor-product extension to 2-D, as illustrated in Supplementary Fig. 2(b).

The explanation and motivation for these components is detailed in the next five subsections. This section then concludes by presenting systematic tests to fix application-specific parameters and for algorithm validation.

2.1 Smooth volume-invariant B-spline warping

B-splines are the shortest possible polynomial splines with global continu-
ity, and have been chosen for their efficiency in optimising geometrical transfor-
mation for image registration. They are smoothly connected piecewise polynomials where an additional smoothness constraint imposes continuity of the spline and its derivatives up to order (n+1), so that there is effectively only one degree of freedom per segment. A recursive definition beneficial for numerical computation is defined as (Cohen, et al., 1980):

$$\beta(t) = \sum_{i=0}^{n+1} P_i \cdot B_i(t) \text{ where } t_{\text{start}} \leq t < t_{\text{end}}, 2 \leq k \leq n + 1$$ \hspace{1cm} (2)

where position along the curve is given by t between t_{start} and end t_{end}, P_i are the position vectors of the $n + 1$ vertices, and $B_{i,k}$ are the normalised B-spline basis functions (see Supplementary Fig. 2(a)). B-splines are linearly separable and therefore have a simple tensor-product extension to 2-D, as illustrated in Supplementary Fig. 2(b).

Standard warping techniques correct for optical distortion and therefore introduce protein over-expression after dilation and under-expression during contraction. Deformation in 2-DE is a physical manifestation, and so to preserve volume-invariance the intensity of each transformed pixel must be normalised, which can be achieved by considering the set of first order partial derivatives of the mapping with respect to its input coordinates. In RAIN, the B-spline warp is third order to ensure C2 continuity in the intensity normalisation as well as to provide a realistically smooth deformation for spot modelling. This ensures accurate quantification on warped gels.

2.2 Bias-field correction of intensity inhomogeneity

Image registration relies on a known deterministic mapping between the intensity values of the reference and source images. A global shift-invariant linear systematic bias can be accounted for by normalised cross-correlation, as used in MIR (Veeser, et al., 2001). If the systematic bias varies spatially over each image without correction, the image-based registration will be erroneously guided towards its elimination by geometric means. It is therefore necessary to model and correct for this disparity orthogonally so that the geometric alignment can focus on the true underlying expression levels.

In order to robustly model expression bias and background variation in 2-
DE, we present a novel shift-variant linear correction by bias-field mod-
ing. For this investigation, we have modelled smoothly varying multiplica-
tive and additive bias-fields as single-valued third order B-spline surfaces.

The multiplicative bias represents staining nonlinearities and is the ana-
logue of ‘normalisation’ in microarray studies. The additive bias models residual background variation and therefore provides a background correc-
tion between the gels. By ensuring that the bias-fields are smoothly vary-
ing, their correction remains a robust and well-posed problem. The B-spline approach provides an elegant framework for direct incorporation of bias-
field correction into the alignment process. Intuitively, bias-field correction should improve the result of image registration, and vice-versa. The com-
plete model for the transformed source gel I_t is therefore:

$$I_t = \left[\det\left(\beta'_X, \beta'_Y\right)\right] \cdot \left[\begin{array}{c}
I_t \left(\beta_X, \beta_Y\right) + \beta_X \cdot e^{\beta_Y}
\end{array}\right]$$ \hspace{1cm} (3)

where source image I_t is under determinant weighted volume-invariant geometric transformation by a tensor-product uniform B-spline surface (β_X, β_Y), multiplicative bias-field correction β_X and additive bias-field correction β_Y.

The total set of parameters for optimisation is $C = \{X, Y, U, V\}$.

In general, the inputs to $I_t(\beta_X, \beta_Y)$ are not integers, so a resampler must be applied to make I_t continuous. Lehmann et al. (2001) evaluated a number of interpolation schemes for medical imaging purposes. They concluded that B-spline interpolators gave the most favourable performance, spatial and Fourier properties when high accuracy is required. For this reason, RAIN outputs a third order B-spline interpolation of the transformed image. Inside the algorithm, we have chosen tri-linear interpolation, since it is a ‘cost free’ graphics card feature. Here, the two multi-resolution levels with resolu-
tions adjacent to the mapping’s Jacobian determinant are linearly interpo-
lated, with bilinear interpolation performed on the resulting values. This has the effect of adaptive Gaussian-filtering, implicitly using a larger inter-
polation kernel in areas where the sampling rate is reduced.

2.3 Similarity measure

Since we maximise intensity correspondence between images with explicit bias-field modelling, simple least-squares on the difference image can be used as the similarity measure. Without data transformation, however, the alignment will be biased towards high intensity expression. Rather, protein fold-change should be minimised between the images, which suggests comparison in the log domain. This, however, would lead to amplification of low intensity variance due to additive noise from the image capture process. Clearly, the assumption of normally distributed data with homoge-
nous variance is violated. Instead, we formulate the problem as variance stabilisation with additive and multiplicative components, equivalent to the arsinh model for microarray normalisation (Rocke and Durbin, 2001). In this study, the shifted-log model $\ln(p + a)$ (Gustafsson, et al., 2002) was employed, where a controls the amount of linearity and $p = (x, y)$ is the image location. Rocke and Durbin (2003) have shown this to closely ap-
proximate the arsinh model. The similarity measure is therefore the nega-
tion of the shifted-log sum of squared residuals, ‘ssr’, defined between each pixel in the reference image I_r and the transformed source image I_t:

$$\text{ssr}(I_r, I_t) = \sum_{p=1}^{P} \left[\ln\left(I_r(p) + \alpha\right) - \ln\left(I_t(p) + \alpha\right)\right]^2$$ \hspace{1cm} (4)

2.4 Multi-resolution optimisation

The objective of our image registration approach is to maximise the similarity measure with respect to the B-spline parameters of the warp and bias-
fields $C = \{X, Y, U, V\}$. The choice of optimisation technique for this purpose depends on the presence of local optima in the vicinity of the global optimum. Given that the disparity between 2-D gels scales from global changes to small imperfections, significant local optima are ex-
pected. Robust global optimisation algorithms such as simulated annealing can be used, but for image registration with this range of misalignment, local gradient descent coupled with a multi-resolution approach is similarly robust and less computationally demanding.

With a multi-resolution approach, coarse deformations are initially ac-
counted for by using heavily sub-sampled images, before finer and finer deformations are eliminated on progressively more detailed images. Choos-
ing the optimal image resolution for the order of deformation leads to sig-
nificant improvement in computational efficiency because, (a) no unneces-
sarily detail is processed for each warp, and (b) the B-Spline transformation has local support, so (i) the computation for each coefficient is limited to its area of influence, and (ii) areas of the gel free from finer distortions can be ignored whilst the rest are optimised. However, if the optimiser does not converge close enough to the optimum, there will be too much residual deformation to correct in the next level. In this framework, the Haar basis (Strang, 1993) was chosen for its low computational complexity.

In this approach, the B-spline transformation is also required to conform to a multi-resolution approach. As shown in Supplementary Fig. 2(c), the optimal B-spline surface found at each level is propagated as the starting estimate for the next level by re-parametrisation with the Oslo algorithm (Cohen, et al., 1980). This maintains the topography of the transformation whilst doubling the number of constituent patches along each dimension.

By treating our nonlinear least squares problem as a general unconstrained minimisation, quasi-Newtonian algorithms with super-linear convergence can be employed. The optimiser chosen for RAIN is the limited-memory BFGS method (Nocedal, 1980). The method requires first order partial derivatives to be supplied, whilst the Hessian is approximated by the sum of a diagonal matrix and a fixed number of rank-one matrices. B-spline locality can be easily exploited e.g. for a third order B-spline, only the 16 patches around each vertex (less near the borders) are taken into consideration when calculating its partial derivative. To apply the BFGS method, the closed-form partial derivatives of Equation (4) were calculated as:

$$\frac{\partial \text{SSR}(I_x, I_y)}{\partial \mathbf{C}} = \sum_{p \in L} \left[\frac{\partial t_x(l_{i+1})}{\partial t_y(l_{i+1})} \frac{\partial t_y(l_{i+1})}{\partial t_x(l_{i+1})} \right] \frac{\partial \mathbf{C}}{\partial I_x(l_{i+1})}$$

For $$\mathbf{X, Y, U, V} \in \mathbb{C}$$:

$$\frac{\partial \mathbf{X}}{\partial \mathbf{X}} = e^{\beta \mathbf{X}} \left[\frac{\partial \mathbf{X}}{\partial \mathbf{X}} \right] \left[\frac{\partial \mathbf{X}}{\partial \mathbf{X}} \right] \left[\frac{\partial \mathbf{X}}{\partial \mathbf{X}} \right]$$

$$\frac{\partial \mathbf{Y}}{\partial \mathbf{Y}} = e^{\beta \mathbf{Y}} \left[\frac{\partial \mathbf{Y}}{\partial \mathbf{Y}} \right] \left[\frac{\partial \mathbf{Y}}{\partial \mathbf{Y}} \right] \left[\frac{\partial \mathbf{Y}}{\partial \mathbf{Y}} \right]$$

$$\frac{\partial \mathbf{U}}{\partial \mathbf{U}} = e^{\beta \mathbf{U}} \left[\frac{\partial \mathbf{U}}{\partial \mathbf{U}} \right] \left[\frac{\partial \mathbf{U}}{\partial \mathbf{U}} \right] \left[\frac{\partial \mathbf{U}}{\partial \mathbf{U}} \right]$$

$$\frac{\partial \mathbf{V}}{\partial \mathbf{V}} = \frac{\partial \mathbf{V}}{\partial \mathbf{V}}$$

where $$\nabla J_a(x, y)$$ is the gradient image in direction $$a$$, and:

$$\frac{\partial \beta}{\partial \mathbf{Z}} (x, y) = \mathbf{Z} \otimes \mathbf{y}$$

$$\frac{\partial \beta}{\partial \mathbf{Z}} (x, y) = \mathbf{Z} \otimes \mathbf{y}$$

where $$\mathbf{Z} = \mathbf{X, Y, U}$$ or $$\mathbf{V, x}$$ and $$\mathbf{y}$$ are the 4×4 B-spline surface control points and $$\otimes$$ is the Kronecker product.

2.5 Computational details

Pseudocode for the RAIN algorithm is given in Supplementary Fig. 3. Briefly, multi-resolution pyramids are first constructed for the reference and source images. RAIN then commences with an initial registration to account for positional and contrast/brightness variation in gel scanning. The shifted-log SSR similarity measure is then optimised on the coarsest multi-resolution level with a reduced transformation of shifted-log SSR similarity measure is then optimised on the coarsest multi-resolution level, before being iteratively subdivided and re-optimised on the full multi-resolution pyramid from level 2 to the top level. The final B-spline surfaces consist of $$2^n \times 2^n$$ patches, where $$n$$ is the number of multi-resolution levels.

As shown in the pseudocode, rather than perform integrated optimisation of the warp and bias-fields at each multi-resolution level, RAIN optimises the bias-fields $$\{U, V\}$$ first, and then iterates through separate optimisation of the warp $$\{X, Y\}$$ and bias-fields $$\{U, V\}$$ until neither lead to an improvement in similarity. This approach was utilised because with simultaneous optimisation, the deformation field frequency diverged due to volatility in variable perturbation whilst the Hessian stabilised during the first few iterations. In other words, a simultaneous poor estimation of the warp and an opposing (and therefore nullifying) bias-field estimate would result in an erroneous increase in similarity.

For a substantial speedup, the B-spline transformation and similarity measure were implemented using GPGPU technology on Nvidia (http://www.nvidia.com/) consumer graphics card hardware with the Cg programming language, OpenGL and Nvidia-specific extensions. A schematic diagram is presented in Supplementary Fig. 4. In brief, once the resolution of the B-spline patches is chosen, the array of sampling coordinates does not change, nor does the Basis function. The vector-matrix is therefore pre-multiplied and stored as a texture. The B-spline transformation is linearly separable, so the $$y$$ dimension is implemented as a separate pass. The $$x$$ dimension is then calculated from the results of the $$y$$ dimension, and the warp is performed. The residuals and the partial derivatives are then calculated and summed, as in Supplementary Fig. 5. However, since graphics cards have no accumulator registers to combine results in parallel, the summation is performed by a 4 stage reduction, which is a multi-pass accumulation of an array of data by a local operator working up an image pyramid (see Supplementary Fig. 6). The final SSR value and derivatives are transferred back to the main processor for limited-memory BFGS optimisation using the VXL library (http://vxl.sourceforge.net/).

2.6 Parameter tuning and validation

Three application-specific parameters require tuning through comprehensive testing on large 2-D gel sets. These are: the linearity in the shift-log transformation, $$\alpha$$; the resolution of the lowest multi-resolution level (single B-spline patch resolution); and the total number of multi-resolution levels.

To determine the optimal values of $$\alpha$$ and the B-spline patch resolution, several experiments were conducted to investigate the likelihood of local optima and curvature of the similarity measure. $$\beta_X, \beta_Y, \beta_U$$ and $$\beta_V$$ were set to single B-spline patches (4×4 degrees of freedom each). A ‘ground truth’ alignment was attained by a conservative multi-resolution BFGS optimisation with resolution levels from 4×4 to 2048×2048 and no shifted-log, which was verified manually. The experiment was then repeated with image resolutions of 4×4, 8×8, 16×16 and 32×32, and log-shifts from $$\alpha = 10^{-9}$$ to total linearity. Currently, an automated solution for $$\alpha$$ was not sought, since there is evidence it does not vary significantly for a particular 2-DE protocol, and therefore can be determined once per workflow.

To determine the number of multi-resolution levels required, the point at which the modelling became unconstrained and unrealistic was observed. At a particular multi-resolution level, the transformation deforms individual spots and not spot patterns, so no further improvement in spot alignment is seen. However, so that the warp will only deform in directions with sufficient evidence, regularisation should be added at this level and the algorithm then terminate. Since the registration did not require regularisation to converge to an accurate spot alignment, in this study we simply threshold the derivatives of the similarity measure at the final level.

Once the final multi-resolution level was determined, RAIN’s operating bounds were investigated through back-registration of synthetically warped gels. The hierarchical B-spline coefficients of the geometric warp and bias-fields were perturbed by a normally distributed random process, from a single B-spline patch to 32×32 patches, thus simulating deformation at all scales. The normal distribution was set to zero mean, whilst the standard deviation was varied. A set of warps was therefore created for each input gel, each one slightly more severe than the last. For real-world validation of the complete algorithm, an expert was given the task of quantifying spot mismatches between gels processed by RAIN and MIR double-blind. In line with the MRI vs Z3 comparison (Veeseer, et al., 2001), the threshold criterion used was that 75% of the spot shape must overlap. The ‘score’
devised by Veeser et al. was also computed, which takes into account the spatial distribution of mismatches (see Supplementary Table 1). Both intra- and inter-sample gel sets were examined, to assess each algorithm’s robustness to differential expression. Large sets of 2-D gels were provided through proteomics research carried out at Imperial College London and University College Dublin (UCD). The 4 sets under study were: (a) UCD Silver Stain: A large gel study of human brain proteins to differentiate between two mental disorders and controls; (b) UCD DIGE: Brain proteins of 30 female mice at three growth stages; (c) Imperial: ImperialTM stained human osteosarcoma cell proteins after exposure to hormone PTH for 1, 4, 8, 16 and 32 hours; (d) Veeser et al.: 2 silver stained experiments published (http://www.doc.ic.ac.uk/vip/2d-gel) for evaluation of future gel alignment algorithms. Complementing the results presented here, an extensive investigation of RAIN on HUPO Brain Proteome Project datasets for 9 participating laboratories is presented in Dowsey et al. (2006).

3 RESULTS

3.1 Parameter tuning

Parameter tuning was conducted on a representative gel from each of the four validation sets. In Fig. 1 and Supplementary Fig. 7, representative coefficients of X and Y in the minimisation of ‘ssr’ are presented for a Veeser et al. silver stained gel. These illustrate: the most local minima near the global minimum; the broadest valley; and the greatest change between resolutions. Bias-field graphs are not shown since they are significantly more stable. From these experiments, it can be concluded that: (a) The most favourable values for variance stabilisation were $\alpha = 0.1$ for silver and ImperialTM stained gels (large additive element) and $\alpha = 0.0005$ for DIGE (small linear element in line with their increased dynamic range); (b) As shown in Supplementary Fig. 8, if the resolution is too low (4×4), the minima are too far from the real minimum. At high resolution (32×32), local minima nearer the global minimum confuse the optimiser; (c) Similar overall alignment accuracy was reached with resolutions of 8×8 and 16×16, but the computed minimum with 16×16 was less approximate and so led to a smoother transformation, and was therefore deemed the optimal resolution.

![Fig. 1. The objective function for row 3, column 2 of X and row 3, column 4 of Y of a single B-spline patch (X & Y are 4×4 matrices; see Supplementary Fig. 2 for a visual representation). Offset 0 represents the global optimum. (left) 16×16 resolution with no log-shift and log-shift of 0.001, 0.01, 0.1. (right) resolutions of 4×4, 8×8, 16×16 and 32×32 with no log-shift.](image)

![Fig. 2. Multiplicative (top) and additive (bottom) bias-fields from 1×1 to 32×32 patches. The multiplicative bias-field shows $I \times e = I$, where $|e| \leq 2$. The weaker additive bias-field shows $I + x = I$, where $|x| \leq 1/4$.](image)

Table 1. Cumulative execution time in seconds for 0 to 8 levels of RAIN.

<table>
<thead>
<tr>
<th>Level</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>20.9</td>
<td>43.1</td>
<td>68.8</td>
<td>98.1</td>
<td>162</td>
<td>230</td>
<td>392</td>
<td>671</td>
<td>1306</td>
</tr>
<tr>
<td>Stdev</td>
<td>1.95</td>
<td>1.57</td>
<td>1.41</td>
<td>4.01</td>
<td>8.03</td>
<td>16.2</td>
<td>33.1</td>
<td>80.2</td>
<td></td>
</tr>
</tbody>
</table>

Multi-resolution performance was then determined, from 0 levels (translation only) to 8. Table 1 illustrates that each level increases run time by ~65%. At multi-resolution level 8, unconstrained warping and bias-fields at the scale of individual spots led to mismatches in regions of co-migrated differential expression. Since there are no discontinuities to constrain the bias-fields, the differential expression is propagated to co-migrated spots. This in turn causes the warping to deform towards these spots, eventually leading to a false positive match for the unexpressed protein. For this reason, and since no additional spot matches were observed at level 7, a multi-resolution pyramid of 6 levels was chosen for this study. Fig. 2 shows the result of multiplicative and additive bias-field correction during alignment for these 6 multi-resolution levels.

3.2 Validation

Subjective validation was performed between technical replicates (intra-set assessment) and between control and sample gels (inter-set assessment). Intra-set assessment was performed between 36 pairs of UCD Silver, UCD DIGE and Imperial. Technical replicates are not present in Veeser et al.. In Table 2 and Supplementary Table 2, mean and standard deviation is shown for spot mismatch scores per gel and score respectively, excluding outlier results such as total failures and problem regions which would skew the distribution. The results show RAIN matches substantially more spots without introducing a greater number of false-positives. In the DIGE experiment, MIR failed to converge at all in 6 gel pairs due to the significantly higher background bias in DIGE.

Inter-assessment was performed between the three sets of UCD Silver (24 pairs), the five time-points of Imperial (24 pairs), and the 10 pairs in the Veeser et al. easy and medium groups. Inter-assessment was not applicable to DIGE gels since the matching is always performed against the pooled sample. Both MIR and RAIN’s matching performance decreased under differential
expression, but RAIN is more robust as the images become less and less similar: the Imperial gels exhibit large disparities, especially at the latter time-points. MIR proved unsatisfactory on these gels, diverging 3 times and mismatching many spots in the other gels. This notably occurred in heavily smeared regions, whereas RAIN’s additive bias-field equalised the disparity. The UCD Silver gels showed less dissimilarity but differences between the schizophrenia and control gels were still significant. Two of the medium difficulty Veeser et al. gels exhibit problem regions due to issues in the 1st dimension IPG strip. Ignoring these areas, RAIN only mismatched 2 spots over the 10 pairs and MIR did an acceptable job, mismatching a mean 4.8 spots per gel. Fig. 3 shows two of the gel pairs picked for their difficulty: (a) shows a 1st dimension protein migration problem that causes a void in one of the gels. RAIN is able to match more spots around the problem region, as well as in more sparse regions; (b) illustrates a match between Imperial control osteoblast gels, subject to saline (control) and hormone PTH (sample) for 32 hours. A large pattern of proteins is missing from the sample gel, which RAIN’s additive bias field recreates in the later stages of the algorithm so nearby matching is not affected.

The results of the synthetic warping investigation are shown in Fig. 4(a). One representative gel was chosen from the UCD DIGE, UCD Silver and Imperial sets, and two from the Veeser et al. set (one ‘easy’ and one ‘medium’). Five random processes were generated and, for each one applied to each gel, warps were output by varying the standard deviation from 0.100 to 0.350 at 0.025 intervals. In total, $5 \times 3 \times 11 = 275$ pairs were matched with RAIN and analysed for spot mismatches and the Warping Index (Thevenaz and Unser, 2000), which computes the mean distance error in the vector field resulting from the composition of the synthetic transformation with the back-registered transformation. We found good agreement between the Warping Index and spot mismatches. RAIN was generally able to reconstruct the original images well (spot mismatches < 10 and Warping Index $< 0.5\%$ of image size) when the warp had a standard deviation of $\sigma \leq 0.250$. Fig. 4(b) illustrates an example with $\sigma = 0.225$. Until $\sigma = 0.325$, major regions of the gel were matched, but at $\sigma = 0.350$ RAIN generally diverged completely (a series of increasing synthetic warps is given in Supplementary Fig. 9). In the four gel sets used for validation, gels exhibiting misalignment similar to a synthetic warp with $\sigma \geq 0.250$ were not evident, and can in general be considered poor quality.

4 DISCUSSION AND CONCLUSIONS

We have shown that RAIN is a substantial improvement over a previous state-of-art algorithm MIR, due to incorporation of realistically smooth volume-invariant warping, bias-field correction, shifted-log variance stabilisation, DIGE gel compatibility and a
Automated image alignment for 2-D gel electrophoresis in a high-throughput proteomics pipeline

GPGPU implementation. RAIN handles both artefacts and intensity inhomogeneities, and remains robust as deformation severity increases. MIR alignment takes ~3 seconds, so it can be performed interactively. It is fast because the transformation is simple and the number of optimizable parameters is low. Whilst RAIN is relatively slow (~7 minutes), the higher sensitivity suits it to pipeline processing, where gels are processed in batch and computational complexity is alleviated with the aid of the proTurbo distributed cluster-image-computing framework (Dowsey, et al., 2004).

A question is left as to whether the aligned image output by RAIN could be left bias-corrected. In RAIN, an implicit Euclidian constraint is defined, so that regulated expression without local support from unregulated expression (e.g. in sparse gel areas) will invariably be normalised out. Whilst this behaviour is suppressing all inhomogeneities for image alignment, to ensure correct quantification of differential expression the bias-field would need to be more constrained in sparse areas to account for the consequent reduction in support. One example of this technique is LOWESS (Kultima, et al., 2006), where the n nearest neighbour proteins are used to smooth the data, regardless of their proximity.

We believe that a holistic ‘statistical expression analysis’ (SEA) approach to differential expression analysis, where group-wise analysis is performed simultaneously on whole sets of gels, is required to unlock the information trapped in 2-DE and LC/MS data. Small insignificant expression changes over two datasets could become significant when reinforced by the same consistent changes in the others. With SEA, the richness in information and its associated uncertainties are fully captured in a model consistent manner. Our ProteomeGRID (http://www.proteomegrid.org/) project is an initiative to interface RAIN and proTurbo with SEA and a proteomics repository. This will realise our main goal of providing a centralised and automated bioinformatics resource for proteomics experiments. Gels and LC/MS data annotated with standardised metadata (http://www.psdev.info/) will be submitted via a web services interface for direct comparison with RAIN. The normalised data will then be automatically mined for differential expression with SEA, drawing on the statistical norms for that tissue type, protocol and laboratory from the integrated proteomics database. The statistical norms will also be updated with the results, whilst the differential proteins will be identified by integrated and automated online MS informatics.

To conclude, it is clear that a solution for the full automation of the bioinformatics pipeline will be required to realise large-scale proteomics for drug discovery and proteome mapping. In this paper, we have presented RAIN as one component in this system. Further challenges include: integration of LC/MS data into the RAIN/SEA pipeline; and automatic image-based variance stabilisation and constrained bias-field correction, which will pave the way for sensitive and robust SEA-based differential analysis.

FUNDING

Engineering and Physical Sciences Research Council UK (EP/E03988X/1 to A.W.D., GR/T06735/01 to G.-Z.Y.); Science Foundation Ireland (04/RPI/B499 to M.J.D.)

ACKNOWLEDGEMENTS

This work was supported by the Engineering and Physical Sciences Research Council UK (GR/T06735/01 and EP/E03988X/1). Research in M.J.D.’s laboratory is funded by Science Foundation Ireland (04/RPI/B499). We thank members of M.J.D.’s and David Cotter’s (Royal College of Surgeons in Ireland) research groups (Paul Boersema, Jane English, Melanie Foecking, Kyla Pennington) and Judit Nagy and Nikolay Zhukovsky (Imperial College London) for providing the gel images for this study.

REFERENCES

Dowsey, A.W., et al. (2006) Examination of 2-DE in the Human Proteome Organisa-
tion Brain Proteome Project pilot studies with the new RAIN gel matching tech-
nique, Proteomics, 6, 5030-5047.

Görg, A., et al. (2004) Current two-dimensional electrophoresis technology for pro-
teomics, Proteomics, 4, 3665-3685.

Gustafsson, J.S., et al. (2004) Statistical exploration of variation in quantitative two-
dimensional gel electrophoresis data, Proteomics, 4, 3791-3799.

Liker, B., et al. (2000) Retrospective shading correction based on entropy minimiza-

matics, in press.

Roecke, D.M. and Durbin, B. (2001) A model for measurement error for gene expres-
sion arrays, J. Comp. Biol., 8, 557-569.

ican Mathematical Society, 28, 288-305.

Thevenaz, P. and Unser, M. (2000) Optimization of mutual information for multiresolu-

Velthuizen, R.P., et al. (1998) Review and evaluation of MRI nonuniformity correc-

Wheelock, A.M. and Buckpitt, A.R. (2005) Software-induced variance in two-
dimensional gel electrophoresis image analysis, Electrophoresis, 26, 4508-4520.
