Spidermonkey: rapid detection of co-evolving sites using Bayesian graphical models

Art F. Y. Poon 1,*, Fraser I. Lewis 2, Simon D. W. Frost 1, and Sergeí L. Kosakovsky Pond 1

1 Division of Comparative Pathology and Medicine, Department of Pathology, University of California, San Diego, CA, 92103, USA.
2 Epidemiology Research Unit, Scottish Agricultural College, Inverness, Scotland, IV2 4JZ, UK.

ABSTRACT
Spidermonkey is a new component of the Datamonkey suite of phylogenetic tools that provides methods for detecting co-evolving sites from a multiple alignment of homologous nucleotide or amino acid sequences. It reconstructs the substitution history of the alignment by maximum likelihood-based phylogenetic methods, and then analyzes the joint distribution of substitution events using Bayesian graphical models to identify significant associations among sites.

Availability:
Spidermonkey is publicly available both as a web application at http://www.datamonkey.org and as a stand-alone component of the phylogenetic software package HyPhy, which is freely distributed on the web (http://www.hyphy.org) as precompiled binaries and open source.

Contact: alpoon@ucsd.edu

1 INTRODUCTION
Detection of co-evolving residues in a protein by the comparative analysis of homologous gene sequences is an important source of evidence for the functional and/or structural characterization of proteins. Similarly, comparative analysis of non-coding nucleotide sequences can reveal secondary structure, e.g., stem-loops in ribosomal RNAs. By failing to address the evolutionary nature of sequence variation, however, such methods are susceptible to spurious associations between sites due to identity by descent (Felsenstein, 1985). Additionally, pairwise association tests cannot capture higher order interactions and do not provide a means for compiling the ‘big picture’ from a list of significant pairs. Spidermonkey provides an easy-to-use web interface to a framework for detecting coevolving sites from coding and non-coding nucleotide or protein sequences, which combines phylogenetic and machine learning techniques to address these issues (Poon et al., 2007).

2 METHODS
The history of substitution events is inferred from an alignment using standard phylogenetic methods. If a tree is not uploaded with the alignment, then one is estimated using the neighbor-joining method (Saitou and Nei, 1987). A substitution model corresponding to the user-defined data type (nucleotide/codon/protein) is fitted to these data by maximum likelihood and the inferred ancestral sequences are used to map substitution events to branches in the tree (Kosakovsky Pond and Frost, 2005c). For codon data, only non-synonymous substitutions are retained for further analysis. Invariant sites are automatically excluded in all cases. Correlated patterns of substitutions in the tree implies co-evolution among sites. The joint distribution of substitutions in the tree is encoded as a binary state matrix, in which each row corresponds to a unique branch and each column to a site in the alignment, and is analyzed using Bayesian graphical models (BGMs).

A BGM is a compact representation of a joint probability distribution in which each node represents a distinct random variable (Pearl, 1988). An edge originating from ‘parent’ node P and terminating in ‘child’ node C postulates a conditional dependence between the corresponding sites, i.e., that C is ‘influenced’ by P. We use the order-MCMC algorithm (Friedman and Koller, 2003) to infer the configuration of edges in the graph that best explains the data. Due to limited computing resources, we restrict BGM analyses on Spidermonkey to 150 sequences and 1,000 nodes if $k = 1$ or 75 nodes if $k = 2$, where k is the maximum number of parents per node. Spidermonkey executes a single MCMC run with a burn-in period of 10^4 steps followed by 10^5 steps, sampled at regular intervals of 10^2 steps. We have found these default settings to provide sufficient conditions for convergence and sampling.

3 IMPLEMENTATION
A web interface was constructed using custom Perl CGI and HyPhy batch language scripts (Kosakovsky Pond et al., 2005) and tested on the web browsers Safari, Firefox, Konqueror, and Internet Explorer; and the computing platforms Mac OS X, Red Hat Linux, Windows XP Professional for 32- and 64-bit architectures, and Windows 2003 Server. Presently, Spidermonkey is hosted on a Linux cluster comprising 20 quad-processor computing nodes. Its functionality is also available as a prepackaged analysis in HyPhy, which can be downloaded and run on local machines. Pre-processing of uploaded alignments (supporting NEXUS, PHYLIP, MEGA, and FASTA formats), estimation of tree topology, and MPI-enabled model selection and nucleotide and codon model fitting are handled using modified pre-existing scripts in the Datamonkey system (Kosakovsky Pond and Frost, 2005a; Figure 1). The alignment, tree, and analysis results are cached on our server for up to 96 hours and can be retrieved from a temporary webpage with a randomized identifier.

The inferred distribution of substitutions in the tree is transferred to the Spidermonkey BGM scripts (Figure 1). The subset of sites

*to whom correspondence should be addressed
to be analyzed as a BGM can be arbitrary or determined by a user-defined threshold in the following statistics on substitutions per site: (1) raw count; (2) percentage of branches affected, or; (3) information entropy. The analysis reports edges with marginal posterior probabilities exceeding a default cutoff of 0.5, which may be reset to a user-defined value. A visualization of the graph (Gansner and North, 2000) can be exported in PNG, Postscript, or PDF formats.

4 DISCUSSION
The availability of rapid algorithms using phylogenetic methods for detecting co-evolving sites from sequence data is a critical resource for the accurate exploratory analysis of biological variation. Spidermonkey is a key component update of our Datamonkey suite of bioinformatic tools providing intuitive web access to cutting-edge methods for detecting co-evolving sites.

ACKNOWLEDGEMENTS
We thank Selene Zarate and León Martínez-Castilla for their assistance in beta-testing. This work was supported by grants AI43638, AI47745, and AI57167 from the National Institutes of Health, and by University of California San Diego Centers for AIDS Research / National Institute of Allergy and Infectious Disease (NIAID) developmental awards AI36214 to SDWF and SLKP. FIL received financial support from the Wellcome Trust.

REFERENCES

