Gene expression

Multi-dimensional correlations for gene coexpression and application to the large-scale data of Arabidopsis

Kengo Kinoshita¹,²,* and Takeshi Obayashi¹

1. Human Genome Center, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokane-dai, Minato-ku, Tokyo 108-8639, Japan.
2. Bioinformatics Research and Development, Japan Science and Technology Corporation, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.

ABSTRACT

Background: Recent improvements in DNA microarray techniques have made a large variety of gene expression data available in public databases. This data can be used to evaluate the strength of gene coexpression by calculating the correlation of expression patterns among different genes between many experiments. However, gene expression levels differ significantly across various tissues in higher organisms, as well as in different cellular location in eukaryotes in different cell stages. Thus the usual correlation measure can only evaluate the difference of tissues or cellular localizations, and cannot adequately elucidate the functional relationship from the coexpression of genes. Method: We propose a new measure of coexpression by expanding the generally used correlation into a multidimensional one. We used principal component analyses to identify the major factors of gene expression correlation, and then re-calculate the correlation by subtracting the major components in order to remove biases caused by few experiments. The repeated subtractions of the major components yielded a set of correlation values for each pair of genes. We observed the correlation changes when the first ten principal components were subtracted step-by-step in large scale Arabidopsis expression data. Results: We found two extreme patterns of correlation changes, corresponding to stable and fragile coexpression. Our new indexes provided a good means to determine the functional relationships of the genes, by examining a few examples, and higher performance of GO term prediction by using the support vector machine and the multidimensional correlation. Availability: The results are available from the expression detail pages in ATTED-II (http://atted.jp).

Contact: kinosita@hgc.jp

1 INTRODUCTION

Biological functions of genes are usually determined by the interactions of gene products or proteins, and thus genes in related biological processes are often expressed cooperatively. Therefore, gene coexpression can provide key information to understand complex biological systems (Eisen, et al., 1998; Lee, et al., 2004). Gene coexpression data has been used in the design of a wide variety of experiments, such as gene targeting, regulatory investigations, and identification of potential partners in protein-protein interactions (Aoki, et al., 2007; Shoemaker and Panchenko, 2007).

In principle, coexpressed gene sets can be determined by using two or more samples. When a small number of samples is used, the biological meaning of coexpression is straightforward and thus it is very useful for target-specific studies (Bulow, et al., 2007; Hughes, et al., 2000; Shapira, et al., 2004; Spellman, et al., 1998). On the other hand, although the biological meaning may be obscure, coexpression with a large number of samples may provide more reliable and general co-regulatory relationships among genes. As a result, many coexpression databases with large scale data have been constructed and are widely used (Manfield, et al., 2006; Obayashi, et al., 2009; Obayashi, et al., 2008; Obayashi, et al., 2007; Steinhauser, et al., 2004; Toufighi, et al., 2005; Zimmermann, et al., 2005).

As a consequence of the vast accumulation of high quality expression data in public databases (Barrett, et al., 2007; Craigon, et al., 2004; Ikeo, et al., 2003; Parkinson, et al., 2007; Swarbreck, et al., 2008; Shi, et al., 2006), coexpression databases with large scale data are gaining increasing importance, as they have the potential power to unravel complicated biological systems. In addition, coexpression data are very useful to reveal integrated networks in combination with protein-protein interaction data (Lee, et al., 2004; Lee, et al., 2008), to predict protein-protein interactions (Cui, et al., 2008), or the functions of gene products (Aoki, et al., 2007). However, a major drawback of using large scale coexpression data is that some frequently contributed data can determine almost all of the strength of coexpression. For example, a pair of genes encoding proteins in the same tissue, such as a subunit of light harvesting complex (LHCB) and a subunit of cytochrome b6f complex (PETC), can have high correlation values, even though they only have weak functional relations, but are located in the same organelle, such as the chloroplast thylakoid membrane.

In this study, we describe a new approach to reduce the unbalanced effects of the small number of experiments, by using principal component analyses (PCA) in samples space. Among the other available techniques, we tried to use biclustering algorithms, where

*To whom correspondence should be addressed.
the clusters with correlated genes and supported subsets of samples were found (Prelc, et al., 2006), but the algorithm could not be applied for the large number of genes and samples used in this study, mainly due to the large calculation costs. The other problems of biclustering algorithm for the large dataset is described in Hibbs et al (Hibbs, et al., 2007). Progressive iterative signature algorithm (PISA) is another interesting approach, where larger functional modules are iteratively identified and removed to find more subtle functional modules (Kloster, et al., 2005). But, as in the case of biclusters, PISA algorithm is focused on the finding of the functional modules rather than the refinements of the pair relations. These techniques are designed to obtain the good functional groups, but we would like to focus on the improvement of the gene-to-gene relationship to construct better networks. When the number of “primary variables” that affect the expression level is limited, surrogate variable analysis (SVA) will give fruitful information (Leek and Storey, 2007), but it may be difficult to apply SVA to the dataset including many possible sources for expression variations. PCA is a popular technique used to find the major component of multivariate data, in DNA microarray analyses, it is used to find the gene groups that cooperatively change expressions over several experiments (Brunet, et al., 2004), where PCA is done in gene space. We used a similar technique to identify the groups of similar samples in this study, to reveal the samples with large contributions. We applied the method to analyze the large-scale expression data in Arabidopsis thaliana taken from TAIR (Swarbreek, et al., 2008), where 1,388 samples and 22,746 probes were available for the analyses. Our results revealed two extreme patterns of coexpression changes, when we subtracted the effects of samples with large contributions one-by-one. We also show that the change of expression patterns is a good indicator of the functional relationships between genes.

2 RESULTS AND DISCUSSION

2.1 Dataset

All of the microarray data were obtained from TAIR (Swarbreek, et al., 2008) as of the end of 2007, and we selected the Affymetrix GeneChip 25k ATH1 data with raw values, so we could perform the normalization ourselves. All of the expression levels were normalized by the MAS5 algorithm with R. After the normalization, the average expression value for each probe set over all samples was calculated, and then subtracted from each expression value to remove the difference of the basal expression level of each probe set. On the Affymetrix GeneChip 25k, we used the entire probe set (22,746 probe sets) for the calculation of PCA, and finally, we used 20,628 probe sets that can be mapped onto single genes.

2.2 PCA in sample space

By applying PCA in sample space, we obtained 1,388 principal components (PCs), which correspond to the number of samples. As shown in supplementary Fig. S1, 23.8% (330) of the PCs are necessary to describe 80% of the variation of the 1,388 samples, and the contribution of the first ten PCs is 28.9% (Fig. S1). We observed the correlation changes on subtracting the contribution from the first ten PCs, which is comparable to the number of informative experiments proposed by Fukushima et al. (Fukushima, et al., 2008). They argued that a small number of samples (approx. 20) is enough to reproduce the Pearson’s correlation values by all experiments, and they tried to find the core experiments. However, we would like to remove the unbalancing effects from the core experiments in order to observe more weak correlations and to understand the gene functions. In short, we consider 11 correlations for a pair of probe sets; the correlation with all expression data, the correlation without the first PC, that without the first two PCs, … and that without the first 10 PCs, respectively. See section 3.2 for the calculation details.

2.3 Correlation change overview and measurement of stability

A correlation change for each pair of probe sets was visualized by using a line plot with 11 data points, as in Fig. 1, where the 11 data points correspond to the number of correlations considered in this study. Thus, we obtained 237,548 lines (22,746 = the number of probe sets). To focus on the modestly coexpressed gene pairs, we chose the pairs of probe sets with a correlation value of 0.5 in at least one of the 11 correlations, yielding 563,585 pairs, which corresponded to 0.22 % of all possible pairs of probe sets. Since the number is still too large to grasp the general tendency, we carried out single linkage clustering by using root mean square deviations (rmsd) between two pairs of lines as a distance of correlation changes, and found 167 clusters with < 0.1 rmsd threshold and 3,470 clusters with < 0.05 rmsd threshold. The latter clusters were used for the following analyses, and some of the former clusters are displayed in Fig. 1A to show the general trends of correlation changes. The number of pairs in the cluster, or the cluster size, has approximate power law distribution as shown in Supplementary Fig. S2. In other words, there are very few popular clusters, while there are many rare clusters. The first 20 clusters actually contain 551,851 pairs, corresponding to 97.9% of all gene pairs. The top 20 clusters for the 3,470 clusters are also shown in the Supplementary Fig. S3. Please note that denote the cluster number starting with c for the cluster with < 0.1 rmsd threshold and c’ for that with < 0.05.

Fig. 1A shows the 20 most frequently observed clusters among the above 167 clusters. Each line corresponds to one cluster, and the correlation values for each cluster were taken from an arbitrary probe pairs in the cluster. The thicknesses of the lines indicates the number of pairs in each cluster, where a thicker line means a larger cluster. As shown in the figure, the most frequently observed patterns (red and orange lines) were just what we expected, where the correlation values gradually decreased with the increase in the number of PCs to be subtracted. However, there are also two extreme patterns, such as the three lines at the upper right (slow decrease) and the four cases at the lower left (rapid decrease).

To evaluate these changes more quantitatively, we defined a measure of stability of correlation change (S) by

\[
S = \frac{\sum_{i=0}^{N} \max(\{cor, 0\})}{(N + 1) \times cor_{\text{max}}} \quad (\text{eq. 1})
\]
where cor$_i$ is the correlation without the first i PCs, cor$_{\text{max}}$ is their maximum value ($i = 0 \ldots N$), and $N = 10$ was used in this study. The numerator and denominator correspond to the area under the curve and that between cor$_{\text{max}}$ and 0.0, which is the ratio of the yellow area to the total of the blue and yellow areas in Fig. 1B. Therefore, the S values will change from 0.0 to 1.0, and the larger S values indicate stable correlations or small changes of correlations, while smaller S values mean fragile coexpression, or imply that the cor$_0$ was determined from a small number of experiments. The distribution of the S values for all modestly coexpressed gene pairs (black line) is shown in Fig. 1C. The mean and standard deviation of S are 0.536 and 1.169, respectively. It may be noteworthy that only 6.89% (38,708) pairs of probe sets have stability values of 0.8 or more. The relationship between stability and cor$_0$ is shown in Fig. 1D, where we can see that the gene pairs with < 0.7 are often fragile. To obtain the biological meaning of the correlation changes, we observed the coexpression changes of the Arabidopsis genes involved in photosystem II (PS-II) and in glycerolipid metabolism. The former genes were selected as the genes with the Gene Ontology (GO) term of GO:0009523 as of Apr. 11, 2008 (Ashburner, et al., 2000) and the latter ones were chosen from their KEGG annotations (Kanehisa, et al., 2008).

2.4 Correlation change for a specific case: Photosystem II
In our dataset, 19 genes and 135 pairs of corresponding probe sets were found to be related with the GO term of PS-II (GO:0009523) and have correlation values of 0.5 in at least one of the 11 correlations. Fig. 2A shows the correlation changes of the clusters with more than five pairs of the probe sets from PS-II, where the clusters obtained by $rmsd < 0.05$ were used. As seen in the figure, all of the genes involved in PS-II have relatively high correlation values when no PC contributions are subtracted. This is probably because all of the genes in PS-II are expressed in chloroplast thylakoid membranes. When the genes in the chloroplast are not expressed simultaneously under a few specific conditions, such as in root cells, all of the genes in the chloroplast can be seen as acting cooperatively or they are regarded as being coexpressed to some extent, even though their functional relationship is not very tight. If the genes are tightly coupled, then their coexpression will be very robust, but if not, then their coexpressions will be fragile. This actually happens for the genes in PS-II (Fig. 2A). As seen in the figure, two extreme patterns are observed in PS-II. According to the above discussions, the stable gene pairs (the gene pairs in clusters c'189, c'69, c'44 and c'78 and involved in PS-II in Fig. 2A) have strong functional relations, and the others do not. It should be noted that rapid decrease such as c'7 is one of the most frequently observed patterns, since the c'7 is one of the largest clusters. In other words, the usual correlation values should be carefully used for function speculation, as pointed out by Yanai et al. (Yanai, et al., 2006), since they are too sensitive to the tissues differences.

Table 1 shows all of the genes in PS-II involved in each cluster, where the first four clusters are stable ones, and the latter three are fragile ones. By checking this table, we noticed that there were five genes that were only involved in the fragile clusters, and these are underlined in Table 1, that is, HCF136 (At5g23120), PPL1 (At5g55330), PPL2 (At2g39470), PsbQ3.1 (At1g14150), PsbQ3.2 (At3g01440), where the code in parentheses is the AGI (Arabidopsis Genome Initiative) code for each gene. HCF136 is known as an assembly factor of PS-II (Plucken, et al., 2002), which is required for the maturation of the PS-II complex, but the mature PS-II does not contain any HCF136. In other words, the interactions factor of PS-II, and thus the interaction between PPL1 and PS-II is probably transient. PPL2 is an accumulation factor of the NAD(P)H dehydrogenase (Ndh), complex as discussed later, and thus it will not interact with PS-II directly. PsbQ3.1 and PsbQ3.2 are PsbQ paralogs, and they show weak sequence similarity to PsbQ1 and PsbQ2 with 25-28% identities. The functions of PsbQ1 and PsbQ2 were inferred as oxygen evolving enhancers, from double knock-out experiments by RNAi (Yi, et al., 2006). The functions of PsbQ3.1 and PsbQ3.2 were also inferred to be related to PS-II only from their interactions between HCF136 and the other components in PS-II are transient. PPL1 and PPL2 are known as PsbP1-like proteins, and have about 25% sequence identities. According to the mutant analyses (Ishihara, et al., 2007), PPL1 is an efficient photo-damage repair factor of PS-II, and thus the interaction between PPL1 and PS-II is probably transient. PPL2 is an accumulation factor of the NAD(P)H dehydrogenase (Ndh), complex as discussed later, and thus it will not interact with PS-II directly. PsbQ3.1 and PsbQ3.2 are PsbQ paralogs, and they show weak sequence similarity to PsbQ1 and PsbQ2 with 25-28% identities. The functions of PsbQ1 and PsbQ2 were inferred as oxygen evolving enhancers, from double knock-out experiments by RNAi (Yi, et al., 2006). The functions of PsbQ3.1 and PsbQ3.2 were also inferred to be related to PS-II only from their interactions between HCF136 and the other components in PS-II are transient.
sequence similarities to PsbQ, but there is no experimental support for their functions. According to the fragile coexpression of PsbQ3.1 and PsbQ3.2 and their weak homologies, we think that their functional relationships to PS-II will be subtle. In summary, the functional relatedness of all of the genes in the fragile clusters is either weak or transient.

As described above, PPL2 was recently identified as an accumulation factor of Ndh (Ishihara, et al., 2007). Thus, we checked the coexpression changes of PPL2 and the genes in the Ndh complex. In higher organisms, all of the components of Ndh have not been fully elucidated, and they are known to be very diverse among species (Rumeau, et al., 2005). But we could identify the following four Ndh-related genes in our dataset according to the annotations in TAIR, NdhL (At1g70760), NdhO (At1g74880), CRR7 (At5g39210), and NdhN (At5g58260). According to the annotations and the references in TAIR, NdhL is thought to be a factor involved in the Ndh complex formation, and NDH-O appeared to be a factor involved in Ndh complex assembly (Rumeau, et al., 2005). In our analyses (Fig. 2B), three pairs(NdhL-PPL2, NdhN-PPL2 and NdhN-NdhL) have relatively high stability (S = 0.62-0.69), while four pairs (NdhO-NdhL, NdhO-PPL2, CCR7-NdhL, and CCR7-NdhO) have low stabilities (S = 0.41-0.45). In the former three pairs, PPL2 is always involved, and in the latter four pairs, NdhO and CCR7 are involved. Therefore, these data suggested that PPL2 is very likely to be involved in the Ndh complex, but the involvement of NdhO and CCR7 is unlikely or only transient with the Ndh complex. Therefore, these results suggested that PPL2 is very likely to be involved in the Ndh complex, but NdhO and CCR7 are unlikely to be or only transiently related with the Ndh complex.

2.5 Correlation change of a specific case: Metabolic pathway

In the glycerolipid metabolism pathway (ath00561), seven genes were included in the four modestly co-expressed gene pairs, MGDC (At2g11810), MGD2 (At5g20410), SQD2 (At5g01220), GAUT9 (At3g02350), QUA1 (At3g25140), BGAL2, (At3g52840), and ATS2 (At4g30580).

As shown in Fig. 3A, the coexpression levels with all PCs were relatively lower than those of the gene pairs in PS-II. There may be a general trend that the coexpression caused by a metabolic pathway is weaker than that due to the same cellular localization, and two extreme patterns were observed again. The three pairs with stable coexpression are GAUT9-QUA1 (S = 0.887), SQD2-MGDC (S = 0.953), and MGD2-MGDC (S = 0.981), and the fragile pair is BGAL2-ATS2 (S = 0.354). The location of the pairs of genes in the KEGG pathway is shown in Fig. 3B by the boxes with the same color as the coexpression change lines. The stable pairs clearly show a functional relationship: the MGDC-MGDC pair and the GAUT-QUA pair are the subunits of an enzyme complex, which is stable, and SQD2-MGDC catalyzed the successive reactions. The other hand, the genes in the fragile pair are very far apart from each other, and it is hard to imagine their functional relationships.

2.6 GO prediction using multidimensional correlations and Support Vector Machine

To evaluate the average effectiveness of the multi-dimensional correlations or 11 correlations, we carried out GO term predictions based on the multidimensional correlations. We assigned GO terms for each gene, as described in the Materials and Methods, and then we tested whether the pair of genes has common GO terms or not. If the pair has at least one common term, we regarded the pair as having a functional relationship. The performance of the prediction result was estimated by the area under the ROC curve (Zweig and Campbell, 1993), which is a plot of sensitivity against specificity and can evaluate the trade-off between sensitivity and specificity of the prediction. An area under the ROC curve (AUC) = 1.0 indicates a perfect prediction, while an AUC = 0.5 means a random prediction. We evaluated the performance for each GO category, that is, cellular component (CC), biological process (BP), and molecular function (MF), respectively.

Table 2 shows the AUC values of the predictions using a support vector machine (SVM) for a single Pearson’s correlation (PCC), for a multidimensional correlation (SVMsclerosis) and for Spearman Correlation Coefficient (SCC), in each GO category. For PCC and SCC, their values were used as inputs for SVM, and for multidimensional correlations, the first n correlations (n = 2.11) were used as input vectors. The genes sharing the same GO term was judged to have a functional relationship, and the best AUC values for the prediction results were shown (see the Materials and method section for details.). The performance with other number of correlations was also shown in Supplementary Fig. S4. As in the supplementary figure, the significant performance improvements were observed for a few specific numbers of correlations. In other words, more correlations did not always raise the prediction performance, and the best numbers of correlation were different in each GO category. It may be noteworthy that good performance was obtained both in BP and CC when we used the first six correlations.
out of the eleven correlations, but the six correlations resulted in bad performance in MF.
In general, SVM_mcol outperformed the PCC-based predictions, and the improvements in the MF categories were especially impressive, because we thought that our multidimensional correlations might be suitable to describe the hierarchy of tissues. The performance in the CC category is better than the others, which could imply that common cellular components are the best target for prediction by coexpression. But it should be noted that the higher true positive rate of CC (1.85%) than those of BP (0.63%) and MF (0.51%) can also contribute to the higher performance in CC.

SCC did not improve the performance in CC and MF categories compared with PCC, but in BP category it showed large improvement.

Table 2. GO prediction performance by AUC

<table>
<thead>
<tr>
<th></th>
<th>CC</th>
<th>BP</th>
<th>MF</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCC</td>
<td>0.694±0.0086</td>
<td>0.609±0.015</td>
<td>0.603±0.018</td>
</tr>
<tr>
<td>SCC</td>
<td>0.688±0.0009</td>
<td>0.628±0.0001</td>
<td>0.607±0.0002</td>
</tr>
<tr>
<td>SVM_mcol</td>
<td>0.733±0.014 (6)</td>
<td>0.645±0.029 (6)</td>
<td>0.641±0.024 (3)</td>
</tr>
</tbody>
</table>

PCC: Prediction performance based on Pearson’s correlation (PCC), Spearman’s correlation (SCC), and SVM_mcol: SVM prediction by using multidimensional correlations. The number in the parenthesis is the number of used correlations for multidimensional correlations. See the method for details.

2.7 Interpretation of the major PCs

We carried out a PCA to observe the main contributors to each PC by calculating the factor loading of each sample, which can be obtained as a correlation coefficient between each PC and a sample. The background colors in the plots correspond to the rough contribution level, or those with factor loadings > 0.5. The details of the samples with the sample index are provided in Supplementary Table 1, and here we focused on the samples with the sample index are provided in Supplementary Table 1, and here we focused on the mostly contributed samples. The 1,388 samples can roughly be divided into three main categories: developmental stage, time course, and others (772-1388). As shown in Fig. 4, the first two PCs entirely consist of the developmental stages, while the 3rd PC is composed of the time course samples. Furthermore, the main contributors to the 1st PC are samples 175-202, which are related to the shoot or flower stages. On the other hand, the main samples that contributed to the 2nd PC are 40-42, 52-57, 85-87, 121-123, 133-141, 163-265, and 175-202, which are related to the shoot or flower stages. On the other hand, the main samples that contributed to the 2nd PC are 40-42, 52-57, 85-87, 121-123, 133-141, 163-265, and 175-202, which are related to the shoot or flower stages. On the other hand, the main samples that contributed to the 2nd PC are 43-48, 52-54, 61-81, 88-105, 109-120, which are young rosetta leaves (see Supplementary Table 1 for sample descriptions by sample index). In other words, the 2nd PC is mainly derived from the samples of different strains, but the 3rd PC is distributed in the middle region of samples, which corresponds to the time course samples with various stresses. We could not get clear interpretations of the PCs after the 4th components (data not shown).

3 MATERIALS AND METHODS

3.1 Expression Data

Raw data were obtained from AtGenExpress at TAIR as of the end of 2007. We selected the data from the Affy 22k GeneChip, which is one of the most frequently used platforms in Arabidopsis. All of the expression levels were treated in logarithmic scale with the base of 2, and were normalized by subtracting the average expression levels for each gene after MAS5 summarization by R/BioConductor. The numbers of samples and probes of the GeneChip were 1,388 and 22,746, respectively.

3.2 Principal Component Analyses (PCA)

PCA was performed in the sample space. The expression level of each probe was treated as a 1,388 dimensional vector \(\mathbf{E}_p \), and PCA was performed in the 1,388 dimensional spaces by using R. As a result, the number of principal components (PCs) with the orthogonal basis vector \(\mathbf{r}^PC \) was obtained.

3.3 GO term assignment to each gene

Due to the hierarchical topology of the GO terms and the different importance of the terms, we had to select appropriate GO terms to
represent the gene functions. The selection was conducted based on the information content of the GO terms. All annotations were first mapped to all upper GO terms, up to the root terms. Since the terms associated with too many genes are less informative, and thus could not be used to design new experiments. We fixed the lower limit to 5 and checked the upper limits of 10, 20, 50, 100, and 500, and observed the true positive rate, or the ratio of the gene pairs sharing the same GO term. As a result, the ratios were not much different in 20-all upper limits, but increased for the upper limit 10. Although we would like to use specific term as possible, we should avoid the artifact caused by this upper limit, and thus we used GO terms associated with from 5 to 20 genes. As a result, 376 Biological Process (BP) terms, 79 Cellular Component (CC) terms and 268 Molecular Function (MF) terms were selected, which resulted in 2280, 648 and 2035 genes in each category with the GO terms. Although we chose this gene number range based on the characteristics of the randomized coexpressed gene lists, our results are not affected by selection of other ranges.

3.4 GO prediction by SVM with multidimensional correlation

GO predictions by Support Vector Machine (SVM) were performed for each GO category with libsvm version 2.86, with the radial basis function kernel (Fan, et al., 2005). For each GO category, 20,000 pairs of probe sets were selected randomly and 5,000 pairs of them were used for training of a SVM and the remaining pairs were used to evaluate the performance by using the trained SVM. For each pair of the probe set, we have 11 correlations as described, and the first 9 correlations were used as the input vectors of the SVM. For example, in the case of $n = 3$, the three dimensional vector $(\text{cor}_{1}, \text{cor}_{2}, \text{cor}_{3})$ was an input. Note that one-dimensional vector was used for the prediction based on the PCC and SCC. We judged a probe pair to be functionally related, if the GO terms of the corresponding genes of the probe sets share one or more common GO terms. Optimum value of kernel parameter gamma and cost parameter C for object functions were searched by considering all the combination of 2^k for gamma and 2^M or $C (L = -15..3, M = -5..15)$ according to the recommended protocol of libsvm (Fan, et al., 2005). For each combination, we repeated the training and test for 100 times and calculated the mean and standard deviation of the area under the Receiver Operating Characteristic (ROC) curve, and the gamma and C values for the best mean value were selected. SVM is a binary classifier, and thus to obtain the ROC curves, we calculated the distance from the decision plane and used it as the prediction score (Ishida and Kinoshita, 2007). The numbers of correlations used to obtain the best performance are shown in parentheses of Table 2. The Gamma and C values for the best performance were $(2^{15}, 2^{15})$ for CC with six correlations, $(2^4, 2^9)$ for BP with six correlations, $(2^2, 2^{14})$ for MF with three correlations, respectively.

4 CONCLUSION

In this study, we observed the correlation change by removing the effects of large contribution bias to the variety of gene expression, and found that the large fraction of gene pairs with high correlation can have the weak functional relationship, or fragile coexpression. Our interpretation about the fragility of coexpression may be biased by the data used in this study, but, in general, gene pairs coexpressed in the specific condition such as the protein-protein interaction in signal cascade will be fragile due to their limited interactions. As described in the examples shown in this paper, a correlation by using expression values from all experiments is too sensitive to the cellular components, and the improvement in the GO prediction in MF suggests that our approach successfully reduced the unbalanced effect of the tissue difference to provide more information from large-scale expression data.

ACKNOWLEDGEMENTS

We would like to thank Dr. Ashwini Patil for her careful reading of the manuscript and constructive comments. This work was supported by a grant-in-aid from the Institute for Scientific Research on Priority Areas from the Ministry of Education, Culture, Sports, Science and Technology of Japan to KK, and by the Global COE Program (Center of Education and Research for Advanced Genome-Based Medicine), MEXT, Japan to TO.

REFERENCES

K. Kinoshita and T. Obayashi.

