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ABSTRACT

Motivation: Cell-biological processes are regulated through a
complex network of interactions between genes and their products.
The processes, their activating conditions and the associated tran-
scriptional responses are often unknown. Organism-wide modeling
of network activation can reveal unique and shared mechanisms
between tissues, and potentially as yet unknown processes. The
same method can also be applied to cell-biological conditions in
one or more tissues.
Results: We introduce a novel approach for organism-wide
discovery and analysis of transcriptional responses in interaction
networks. The method searches for local, connected regions in
a network that exhibit coordinated transcriptional response in a
subset of tissues. Known interactions between genes are used to
limit the search space and to guide the analysis. Validation on a
human pathway network reveals physiologically coherent responses,
functional relatedness between tissues and coordinated, context-
specific regulation of the genes.
Availability: Implementation is freely available in R and Matlab at
http://www.cis.hut.fi/projects/mi/software/NetResponse
Contact: leo.lahti@iki.fi; samuel.kaski@tkk.fi
Supplementary information : Supplementary data are available at
Bioinformatics online.

Received on February 5, 2010; revised on August 24, 2010; accepted
on August 26, 2010

1 INTRODUCTION
Coordinated activation and inactivation of genes through molecular
interactions determines cell function. Changes in cell-biological
conditions induce changes in the expression levels of co-regulated
genes in order to produce specific physiological responses.
A huge body of information concerning cell-biological processes
is available in public repositories, including gene ontologies
(Ashburner et al., 2000), pathway models (Schaefer, 2006),
regulatory information (Loots and Ovcharenko, 2007) and protein
interactions (Kerrien et al., 2007). Less is known about the contexts
in which these processes are activated (Rachlin et al., 2006),
and how individual processes are reflected in gene expression
(Montaner et al., 2009). Although gene expression measurements
provide only an indirect view to physiological processes, their wide
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availability provides a unique resource for investigating gene co-
regulation on a genome- and organism-wide scale. This allows the
detection of transcriptional responses that are shared by multiple
tissues, suggesting shared physiological mechanism with potential
biomedical implications, as demonstrated by the Connectivity map
(Lamb et al., 2006) where a number of chemical perturbations on a
cancer cell line were used to reveal shared transcriptional responses
between conditions to enhance screening of therapeutic targets. In
this work, we study transcriptional responses of different tissues but
the same methods can be directly used for modeling sets of cellular
conditions within a single or multiple tissues as well.

Transcriptional responses have been modeled using so-called
gene expression signatures (Hu et al., 2006). A signature describes
a co-expression state of the genes, associated with particular
physiological states. Well-characterized signatures have proven to be
accurate biomarkers in clinical trials, and hence reliable indicators
of cell’s physiological state. Disease-associated signatures are often
coherent across tissues (Dudley et al., 2009) or platforms (Hu
et al., 2006). Commercial signatures are available for routine clinical
practice (Nuyten and van de Vijver, 2008), and other applications
have been suggested recently (Dudley et al., 2009). The established
signatures are typically designed to provide optimal classification
performance between two particular conditions. The problem with
the classification-based signatures is that their associations to
the underlying physiological processes are not well understood
(Lucas et al., 2009). Our goal is to enhance the understanding by
deriving transcriptional signatures that are explicitly connected to
well-characterized processes through the network.

We introduce and validate a novel approach for organism-
wide discovery and analysis of transcriptional response patterns in
interaction networks. Our algorithm has been designed to detect and
model local regions in a network, each of which exhibits coordinated
transcriptional response in a subset of measurements. In this study,
the method is applied to investigate transcriptional responses of the
network across a versatile collection of tissues across normal human
body. The algorithm is independent of predefined classifications for
genes or tissues. Organism-wide analysis can reveal unique and
shared mechanisms between disparate tissues (Lage et al., 2008),
and potentially as yet unknown processes (Nacu et al., 2007). The
proposed NetResponse algorithm provides an efficient model-based
tool for simultaneous feature selection and class discovery that
utilizes known interactions between genes to guide the analysis.
Related approaches include cMonkey (Reiss et al., 2006) and a
modified version of SAMBA biclustering (Tanay et al., 2004).
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Fig. 1. Organism-wide analysis of transcriptional responses in a human pathway interaction network reveals physiologically coherent activation patterns and
tissue-specific regulation. One of the subnetworks and its tissue-specific responses, as detected by the NetResponse algorithm is shown. The expression of
each gene is visualized with respect to its mean level of expression across all samples.

However, these are application-oriented tools that rely on additional,
organism-specific information, and their implementation is currently
not available for most organisms, including human. We provide
a general-purpose algorithm whose applicability is not limited to
particular organisms.

NetResponse makes it possible to perform data-driven identi-
fication of functionally coherent network components and their
tissue-specific responses. This is useful since the commonly used
alternatives, predefined gene sets or pathways, are collections
of intertwined processes rather than coherent functional entities
(Nacu et al., 2007). This has complicated their use in gene
expression analysis, and methods have consequently been suggested
to identify the ‘key condition-responsive genes’ of predefined gene
sets (Lee et al., 2008), or to decompose predefined pathways
into smaller functional modules represented by gene expression
signatures (Chang et al., 2009). Our network-based search procedure
detects the coordinately regulated gene sets in a data-driven
manner. Gene expression provides functional information of the
network that is missing in purely graph-oriented approaches for
studying cell-biological networks (Aittokallio and Schwikowski,
2006). The network brings in prior information of gene function
and connects the responses more closely to known processes than
purely gene expression-based methods such as biclustering (Madeira
and Oliveira, 2004), subspace clustering or other feature selection
approaches (Law et al., 2004; Roth and Lange, 2004). A key
difference to previous network-based clustering methods, including
MATISSE (Ulitsky and Shamir, 2007) and related approaches
(Hanisch et al., 2002; Shiga et al., 2007) is that they assume a single
correlated response between all genes in a module. NetResponse
additionally models tissue-specific responses of the network. This
allows a more expressive definition of a functional module, or a
signature.

We validate the algorithm by modeling transcriptional responses
in a human pathway interaction network across an organism-wide
collection of tissues in normal human body. The results highlight
functional relatedness between tissues, providing a global view on
cell-biological network activation patterns.

2 METHODS

2.1 The NetResponse algorithm
We introduce a new approach for global detection and characteriza-
tion of transcriptional responses in genome-scale interaction networks.
NetResponse searches for local, connected subnetworks where joint
modeling of gene expression reveals coordinated transcriptional response
in particular tissues (Fig. 1). More generally, it is a new algorithm for
simultaneous feature selection (for genes) and class discovery (for tissues)
that utilizes known interactions between genes to limit the search space and
to guide the analysis.

2.1.1 Gene expression signatures Subnetworks are the functional units of
the interaction network in our model; transcriptional responses are described
in terms of subnetwork activation. Given a physiological state, the underlying
assumption is that gene expression in subnetwork n is regulated at particular
levels to ensure proper functioning of the relevant processes. This can involve
simultaneous activation and repression of the genes: sufficient amounts of
mRNA for key proteins has to be available while interfering genes may need
to be silenced. This regulation is reflected in a unique expression signature
s(n), a vector describing the associated expression levels of the subnetwork
genes. The level of regulation varies from gene to gene; expression of some
genes is regulated at precise levels whereas other genes fluctuate more freely.
Given the physiological state, we assume that the distribution of observed
gene expression is Gaussian, x(n) ∼N(s(n),�(n)).

2.1.2 Modeling tissue-specific transcriptional responses Each subnet-
work is potentially associated with alternative transcriptional states, activated
in different tissues and corresponding to unique combinations of processes.
Since individual processes and their transcriptional responses are in general
unknown (Lee et al., 2008), detection of tissue-specific responses provides
an efficient proxy for identifying functionally distinct states of the network.
Our task is to detect and characterize these signatures. We assume that in
a specific observation, the subnetwork n can be in any one of R(n) latent
physiological states indexed by r. Each state is associated with a unique
expression signature s(n)

r over the subnetwork genes. Associations between
the observations and the underlying physiological states are unknown, and
treated as latent variables. This leads to a mixture model for gene expression
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Fig. 2. The agglomerative subnetwork detection procedure. Initially, each
gene is assigned in its own singleton subnetwork. Agglomeration proceeds
by at each step merging the two neighboring subnetworks that benefit most
from joint modeling of their transcriptional responses. This continues until
no improvement is obtained by merging the subnetworks.

in the subnetwork n:

x(n) ∼
R(n)∑

r=1

w(n)
r p(x(n)|s(n)

r ,�(n)
r ), (1)

where each component distribution p is assumed to be Gaussian. In practice,
we assume a diagonal covariance matrix �

(n)
r .

A particular transcriptional response is characterized by the triple
{s(n)

r ,�
(n)
r ,w(n)

r }. This defines the shape, fluctuations and frequency of the
associated gene expression signature in subnetwork n. The feasibility of the
Gaussian modeling assumption is supported by the previous observations
of Kong et al. (2006), where predefined gene sets were used to investigate
differences in gene expression between two predefined sample groups. In
our model, the subnetworks, transcriptional responses and the activating
tissues are learned from data. In one-channel data such as Affymetrix arrays
used in this study, the centroids s(n)

r describe absolute expression signals
of the preprocessed array data. Relative differences can be investigated by
comparing the detected responses. The model is applicable also on two-
channel expression data when a common reference sample is used for
all arrays since the relative differences are not altered by the choice of
comparison baseline when the same baseline is used for all samples.

Now the model has been specified assuming the subnetworks are given.
In practice, they are learned from the data. In order to do this, we
make two assumptions. First, we rely on the prior information in the
global interaction network, and assume that co-regulated gene groups
are connected components in this network. Second, we assume that the
subnetworks are independent. This allows a well-defined algorithm, and
the subnetworks are then interpretable as independent components of
transcriptional regulation. In practice the algorithm, described below, is
an agglomerative approximation for searching for locally independent
subnetworks.

2.2 Implementation
Efficient implementation is crucial for scalability. For fast computation,
we use an agglomerative procedure where interacting genes are gradually
merged into larger subnetworks (Fig. 2). Joint modeling of dependent genes
reveals coordinated responses and improves the likelihood of the data when
compared with independent models, giving the first criterion for merging the
subnetworks. However, increasing subnetwork size tends to increase model
complexity and the possibility of overfitting since the number of samples
remains constant while the dimensionality (subnetwork size) increases. To
compensate for this effect, we use a Bayesian information criterion (Gelman
et al., 2003) to penalize increasing model complexity and to determine
optimal subnetwork size.

The cost function for a subnetwork G is C(G)=−2L+qlog(N), where
L is the (marginal) log-likelihood of the data, given the mixture model in
Equation (1), q is the number of parameters, and N denotes sample size.
NetResponse searches for a joint model for the network genes that maximizes
the likelihood of observed gene expression, but avoids increasing model
complexity through penalizing an increasing number of model parameters.

An optimal model is searched for by at each step merging the subnetwork
pair that produces the maximal gain in the cost function. More formally, the
algorithm merges at each step the subnetwork pair Gi,Gj that minimizes the
cost �C=−2(Li,j −(Li +Lj))+(qi,j −(qi +qj))log(N). The agglomerative
scheme is as follows:

Initialize: learn univariate Gaussian mixture for the expression values of
each gene, and bivariate joint models for all potential gene pairs with a direct
link. Assign each gene into its own singleton subnetwork.

Merge: merge the neighboring subnetworks Gi, Gj that have a direct link
in the network and minimize the difference C. Compute new joint models
between the newly merged subnetwork and its neighbors.

Terminate: continue merging until no improvement is obtained by merging
the subnetworks (�C≥0).

The number R(n) of distinct transcriptional responses of the subnetwork is
unknown, and is estimated with an infinite mixture model. Learning several
multivariate Gaussian mixtures between the neighboring subnetworks at
each step is a computationally demanding task, in particular when the
number of mixture components is unknown. The Gaussian mixtures,
including the number of mixture components, are learned with an efficient
variational Dirichlet process implementation (Kurihara et al., 2007). The
likelihood L in the model is approximated by the lower bound of the
variational approximation. The Gaussian mixture detects a particular type of
dependency between the genes. In contrast to MATISSE (Ulitsky and Shamir,
2007) and other studies that use correlation or other methods to measure
global co-variation, the mixture model detects coordinated responses that
can be activated only in a few tissues. Tissue-specific joint regulation
indicates functional dependency between the genes but it may have a minor
contribution to the overall correlation between gene expression profiles. In
principle, we could also model the dependencies in gene fluctuations within
each individual response with covariances of the Gaussian components.
However, this would heavily increase model complexity, and therefore
we leave dependencies in gene-specific fluctuations within each response
unmodeled, and focus on modeling differences between the responses.
NetResponse provides a full generative model for gene expression, where
each subnetwork is described with an independent joint mixture model.
The maximum subnetwork size is limited to 20 genes to avoid numerical
instabilities in computation. The infinite Gaussian mixture can automatically
adapt model complexity to the sample size. We model subnetworks of
1–20 genes across 353 samples; similar dimensionality per sample size has
previously been used with variational mixture models (Honkela et al., 2008).

2.3 Data
2.3.1 Pathway interaction network We investigate the pathway inter-
action network based on the KEGG database of metabolic pathways
(Kanehisa et al., 2008) provided by the signaling pathway impact
analysis (SPIA) package (Tarca et al., 2009) of BioConductor
(www.bioconductor.org). This implements the pathway impact analysis
method originally proposed in Draghici et al. (2007), which is currently the
only pathway analysis tool that considers pathway topology. SPIA provides
the data in a readily suitable form for our analysis. Other pathway datasets,
commonly provided in the BioPAX format, are not readily available in a
suitable pairwise interaction form. Directionality and types of the interactions
were not considered. Genes with no expression measurements were removed
from the analysis. We investigate the largest connected component of the
network with 1800 unique genes, identified by Entrez GeneIDs.

2.3.2 Gene expression data We analyzed a collection of normal human
tissue samples from 10 post-mortem donors (Roth et al., 2006), containing
gene expression measurements from 65 normal tissues. To ensure sample
quality, RNA degradation was minimized in the original study by flash
freezing all samples within 8.5 h post-mortem. Only the samples passing
Affymetrix quality measures were included. Each tissue has 3–9 biological
replicates measured on the Affymetrix HG-U133plus2.0 platform. The
reproducibility of our findings is investigated in an independent human
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gene expression atlas (Su et al., 2004), measured on the Affymetrix HG-
U133A platform, where two biological replicates are available for each
measured tissue. In the comparisons, we use the 25 tissues available in
both datasets (adrenal gland cortex, amygdala, bone marrow, cerebellum,
dorsal root ganglia, hypothalamus, liver, lung, lymph nodes, occipital lobe,
ovary, parietal lobe, pituitary gland, prostate gland, salivary gland, skeletal
muscle, spinal cord, subthalamic nucleus, temporal lobe, testes, thalamus,
thyroid gland, tonsil, trachea and trigeminal ganglia). Both datasets were
preprocessed with RMA (Irizarry et al., 2003). Certain genes have multiple
probesets, and a standard approach to summarize information across multiple
probesets is to use alternative probeset definitions based on probe-genome
remapping (Dai et al., 2005). This would provide a single expression measure
for each gene. However, since the HG-U133A array represents a subset
of probesets on the HG-U133Plus2.0 array, the redefined probesets are not
technically identical between the compared datasets. To minimize technical
bias in the comparisons, we use probesets that are available on both platforms.
Therefore, we rely on manufacturer annotations of the probesets and use
an alternative approach (used e.g. by Nymark et al., 2007), where one
of the available probesets is selected at random to represent each unique
gene. Random selection is used to avoid selection bias. When available, the
‘xxxxxx_at’ probesets were used because they are more specific by design
than the other probe set types (www.affymetrix.com).

2.4 Validation
The NetResponse algorithm is validated with an application on the pathway
interaction network of 1800 genes (Tarca et al., 2009) across 353 gene
expression samples from 65 tissues in normal human body (Roth et al.,
2006). NetResponse is compared with alternative approaches in terms of
physiological coherence and reproducibility of the findings.

2.4.1 Comparison methods NetResponse is designed for organism-wide
modeling of transcriptional responses in genome-scale interaction networks.
Simultaneous detection of the subnetworks and their tissue-specific responses
is a key feature of the model. A straightforward alternative would be
a two-step approach where the subnetworks and their tissue-specific
responses are detected in separate steps, although this can be suboptimal
for detecting tissue-specific responses. Various methods are available for
detecting subnetworks based on network and gene expression data (Hanisch
et al., 2002; Shiga et al., 2007) in the two-step approach. We use
MATISSE, a state-of-the-art algorithm described in Ulitsky and Shamir
(2007). MATISSE finds connected subgraphs in the network such that
each subgraph consists of highly correlated genes. The output is a list
of genes for each detected subnetwork. Since MATISSE only clusters the
genes, we model transcriptional responses of the detected subnetworks in a
separate step by using a similar mixture model to the NetResponse algorithm.
This combination is also new, and called MATISSE+ in this article. The
second comparison method is the SAMBA biclustering algorithm (Tanay
et al., 2002). The output is a list of associated genes and tissues for each
identified bicluster. SAMBA detects gene sets with tissue-specific responses,
but, unlike NetResponse and MATISSE+, the algorithm does not utilize
the network. Influence of the prior network is additionally investigated by
randomly shuffling the gene expression vectors, while keeping the network
and the within-gene associations intact. Comparisons between the original
and shuffled data help to assess relative influence of the prior network on the
results. Comparisons to randomly shuffled genes in SAMBA are not included
since SAMBA does utilize network information.

2.4.2 Reproducibility in validation data Reproducibility of the findings is
investigated in an independent validation dataset in terms of significance and
correlation (for details, see Section 2.3). Each comparison method implies a
grouping for the tissues in each subnetwork, corresponding to the detected
responses. It is expected that physiologically relevant differences between
the groups are reproducible in other datasets. We tested this by estimating
differential expression between the corresponding tissues in the validation

data for each pairwise comparison of the predicted groups using a standard
test for gene set analysis (GlobalTest; Goeman et al., 2004). To ensure
that the responses are also qualitatively similar in the validation data, we
measured Pearson’s correlation between the detected responses and those
observed in the corresponding tissues in validation data. The responses
were characterized by the centroids provided by the model in NetResponse
and MATISSE+. For SAMBA, we used the mean expression level of each
gene within each group of tissues since SAMBA groups the tissues but
does not characterize the responses. In validation data, the mean expression
level of each gene is used to characterize the response within each group
of tissues. Probesets were available for 75% of the genes in the detected
subnetworks in the validation data; transcriptional responses with less than
three probesets in the validation data were not considered. Validation data
contained corresponding samples for >79%) of the predicted responses in
NetResponse, MATISSE+ and SAMBA (Supplementary Table 1).

3 RESULTS
The validation results reported below demonstrate that the
NetResponse algorithm is readily applicable for modeling tran-
scriptional responses in interaction networks on an organism-wide
scale. While biomedical implications of the findings require further
investigation, NetResponse detects a number of physiologically
coherent and reproducible transcriptional responses in the network,
and highlights functional relatedness between tissues. It also
outperformed the comparison methods in terms of reproducibility
of the findings.

3.1 Application to human pathway network
In total, NetResponse identified 106 subnetworks with 3–20 genes
(Supplementary Material). For each subnetwork, typically (median)
three distinct transcriptional responses were detected across the
65 tissues (Supplementary Fig. 1). One of the subnetworks with
four distinct responses is illustrated in Figure 1. Each response
is associated with a subset of tissues. Statistically significant
differences between the corresponding tissues were observed also
in the independent validation data (P<0.01; GlobalTest). Three
of the four responses were also qualitatively similar (correlation
>0.8; Supplementary Fig. 2). The first response is associated with
immune system-related tissues such as spleen and tonsil. Responses
2–3 are associated with neuronal tissues such as subthalamic
or nodose nucleus, or with central nervous system, for example
accumbens and cerebellum. The fourth group manifests a ‘baseline’
signature that fluctuates around the mean expression level of the
genes. Testis and pituitary gland are examples of tissues in this
group. While most tissues are strongly associated with a particular
response, samples from amygdala, bone marrow, cerebral cortex,
heart atrium and temporal lobe manifested multiple responses. While
alternative responses reveal tissue-specific regulation, detection of
physiologically coherent and reproducible responses may indicate
shared mechanisms between tissues. Although the responses may
reflect previously unknown processes, it is likely that some of
them reflect the activation patterns of known pathways. Overlapping
pathways can provide a starting point for interpretation. The
subnetwork in Figure 1 overlaps with various known pathways, most
remarkably with the MAPK pathway with 10 genes (detailed gene–
pathway associations are provided in the Supplementary Material;
see Subnetwork 12). MAPK is a general signal transduction system
that participates in a complex, cross-regulated signaling network
that is sensitive to cellular stimuli (Wilkinson and Millar, 2000).
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Transcriptional responses

Fig. 3. Associations between 65 tissues (rows) and the detected transcript-
ional responses of the pathway interaction network of Figure 1. The shade
indicates the probability of a particular transcriptional response in each tissue
(black: P=0; white: P=1). Hierarchical clustering based on the signature
co-occurrence probabilities between each pair of tissues highlights their
relatedness.

Six subnetwork genes participate in the p53 pathway, which is a
known regulator of the MAPK signaling pathway. In addition, p53
is known to interact with a number of other pathways, both as
an upstream regulator and a downstream target (Wu, 2004). Both
MAPK and p53 are associated with processes including cell growth,
differentiation and apoptosis, and exhibit diverse cellular responses.
Tissue-specific regulation can potentially explain the detection of
alternative transcriptional states of the subnetwork.

The detected responses characterize absolute expression
signals in our preprocessed one-channel array data. Systematic
differences in the expression levels of the individual genes are
normalized out in the visualization by showing the relative
expression of each gene with respect to its mean expression level
across all samples. Note that the choice of a common baseline does
not affect the relative differences between the samples.

3.1.1 Tissue-selective network activation Associations between
the tissues and the detected transcriptional responses are shown in
Figure 3. Some responses are shared by many tissues, while others
are more specific to particular contexts such as immune system,
muscle or the brain. Related tissues often exhibit similar network
activation patterns, which is seen by grouping the tissues according
to co-occurrence probabilities of shared transcriptional response.
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Fig. 4. Comparison between the alternative approaches. Detected responses:
fraction of genes participating in the detected transcriptional responses.
Reproducibility (significance): fraction of responses that are reproducible
in the validation data in terms of differential expression between the
associated tissues (P<0.05; GlobalTest). Reproducibility (correlation):
median correlation between the gene expression levels of the detected
responses and the corresponding tissues in the validation data.

This is known as tissue selectivity of gene expression (Liang et al.,
2006).

3.1.2 Probabilistic tissue connectome Tissue relatedness can be
measured in terms of shared transcriptional responses (Supplement-
ary Fig. 3). This is an alternative formulation of the tissue
connectome map suggested by Greco et al. (2008) to highlight
functional connectivity between tissues based on the number of
shared differentially expressed genes at different thresholds. We
use shared network responses instead of shared gene count. The
use of co-regulated gene groups is expected to be more robust to
noise than the use of individual genes. As the overall measure of
connectivity between tissues, we use the mean of signature co-
occurrence probabilities over the subnetworks, given the model in
Equation (1). The analysis reveals functional relatedness between
the tissues. In particular, two subcategories of the central nervous
system appear distinct from the other tissues. Closer investigation
of the observed responses would reveal how the tissues are related
at transcriptional level (Supplementary Material).

3.2 Comparison to alternative approaches
NetResponse was compared with the alternative approaches in
terms of physiological coherence and reproducibility of the findings
(Fig. 4; Supplementary Table 1). NetResponse detected the largest
amount of responses; 68% of the network genes were associated with
a response, compared with 45% in MATISSE+ and SAMBA. At the
same time, NetResponse outperformed the comparison methods in
terms of reproducibility of the findings.

3.2.1 Physiological coherence The association between the
responses and tissues was measured by normalized mutual
information (NMI; Bush et al., 2008) between the sample-response
assignments and sample class labels within each subnetwork. The
NMI varies from 0 (no association) to 1 (deterministic association).
The transcriptional responses detected by NetResponse, MATISSE+
and SAMBA show statistically significant associations to particular
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tissues with a significantly higher average NMI (0.46–0.50)
than expected based on randomly labeled data (0.26–0.32;
P<10−4; Wilcoxon test; Supplementary Table 1). The highest
average NMI (0.50) was obtained by NetResponse but differences
between NetResponse, MATISSE+ and SAMBA are not significant.
NetResponse is significantly physiologically more coherent also
when compared with results obtained with shuffled gene expression
(NMI 0.22; P<10−12). The observations confirm the potential
physiological relevance of the findings in NetResponse, MATISSE+
and SAMBA.

3.2.2 Reproducibility The majority of the detected responses
were reproducible both in terms of significance and correlation
(Supplementary Fig. 4) as described in Section 2.4. Of the predicted
differences between groups of tissues, 80% were significant in
validation data with P<0.05 (GlobalTest), compared with 72 and
63% in MATISSE+ and SAMBA, respectively, or 43% obtained for
randomly shuffled data with NetResponse (Fig. 4). The changes were
also qualitatively similar; in NetResponse the median correlation
between the detected responses and corresponding tissues in the
validation data is 0.76, which is significantly higher (P<0.01;
Wilcoxon test) than in the comparison methods (MATISSE+: 0.64;
SAMBA: 0.68), or in randomly shuffled NetResponse data (0.14).
NetResponse detected responses for a larger fraction of the genes
(68%) than the other methods. This seems an intrinsic property of
the algorithm since it detected responses for a similar fraction of
the genes also in the network with randomly shuffled genes (72%).
However, only the findings from the real data were reproducible.

4 DISCUSSION
Cell-biological networks may cover thousands of genes, but any
change in the physiological context typically affects only a small
part of the network. While gene function and interactions are often
subject to context-specific regulation (Liang et al., 2006), they
are typically studied only in particular experimental conditions.
Organism-wide analysis could reveal highly specialized functions
that are activated only in one or a few tissues. Detection of
shared responses between the tissues can reveal previously unknown
functional connections and help to formulate novel hypotheses of
gene function in previously unexplored contexts. We provide a
well-defined algorithm for such analysis.

The results support the validity of the model. NetResponse
detected the largest number of responses without compromising
physiological coherence or reproducibility of the findings compared
with the alternatives. The most highly reproducible results were
obtained by NetResponse. Further analysis is needed to establish
the physiological role of the findings.

NetResponse is readily applicable for modeling tissue-specific
responses in cell-biological networks, including pathways, protein
interactions and regulatory networks. The network connects the
responses to well-characterized processes, and provides readily
interpretable results that are less biased toward known biological
phenomena than methods based on predefined gene sets that
are routinely used in gene expression studies to bring in prior
information of gene function and to increase statistical power.
However, these are often collections of intertwined processes
rather than coherent functional entities. For example, pathways
from KEGG may contain hundreds of genes, while only a small

part of a pathway may be affected by changes in physiological
conditions (Nacu et al., 2007). This has complicated the use of
predefined gene sets in gene expression studies. Draghici et al.
(2007) demonstrated that taking into account aspects of pathway
topology, such as gene and interaction types can improve the
estimation of pathway activity. While their SPIA algorithm measures
the activity of known pathways between two predefined conditions,
our algorithm searches for potentially unknown functional modules,
and detects their association to multiple conditions, or tissues,
simultaneously. This is useful since biomedical pathways are
human-made descriptions of cellular processes, often consisting
of smaller, partially independent modules (Chang et al., 2009;
Hartwell et al., 1999). Our data-driven search procedure can
rigorously identify functionally coherent network modules where
the interacting genes show coordinated responses. Joint modeling
increases statistical power that is useful since gene expression, and
many interaction data types such as protein–protein interactions,
have high noise levels. The probabilistic formulation accounts for
biological and measurement noise in a principled manner. Certain
types of interaction data such as transcription factor binding or
protein interactions are directly based on measurements. This can
potentially help to discover as yet unknown processes that are
not described in the pathway databases (Nacu et al., 2007). False
negative interactions form a limitation for the current model because
joint responses of co-regulated genes can be modeled only when they
form a connected subnetwork.

The need for principled methods for analyzing large-scale
collections of gene expression data is increasing with their
availability. Versatile gene expression atlases contain valuable
information about shared and unique mechanisms between disparate
tissues which is not available in smaller and more specific
experiments (Lage et al., 2008; Scherf et al., 2000). For example,
Lamb et al. (2006) demonstrated that large-scale screening of cell
lines under diverse conditions can enhance the finding of therapeutic
targets. Our model is directly applicable in similar exploratory
tasks, providing tools for organism-wide analysis of transcriptional
activity in normal human tissues (Roth et al., 2006; Su et al.,
2004), cancer and other diseases (Kilpinen et al., 2008; Lukk et al.,
2010) in a genome- and organism-wide scale. Similar collections
are available for several model organisms including mouse (Su
et al., 2004), yeast (Granovskaia et al., 2010) and plants (Schmid
et al., 2005). A key advantage of our approach compared with
methods that perform targeted comparisons between predefined
conditions (Ideker et al., 2002; Sanguinetti et al., 2008) is that it
allows systematic organism-wide investigation when the responses
and the associated tissues are unknown. The motivation is similar
to SAMBA and other biclustering approaches that detect groups
of genes that show coordinated response in a subset of tissues
(Madeira and Oliveira, 2004), but the network ties the findings more
tightly to cell-biological processes in our model. This can focus
the analysis and improve interpretability. Since the non-parametric
mixture model adjusts model complexity with sample size, our
algorithm is potentially applicable also in smaller and more targeted
datasets. For example, it could potentially advance disease subtype
discovery by revealing differential network activation in subsets of
patients.

Many large-scale collections are continuously updated with new
measurements. Our algorithm provides no integration technique
for new experiments yet; on-line extensions that could directly
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integrate data from new experiments provide an interesting topic for
further study. Another potential extension would be a fully Bayesian
treatment that would provide confidence intervals, removing the
need to assess significance of the results in a separate step. While
our model provides a model-based criterion for detecting the
responses without prior knowledge of the activating tissues, the
statistical significance of the findings has to be verified in further
experiments. The majority of the responses in our experiments could
be verified in an independent dataset. Other potential extensions
include adding more structure to address the directionality, relevance
and probabilities of the interactions. Not all cell-biological processes
have clear manifestations at transcriptome level. Hence, information
of transcript and interaction types, as in SPIA, could potentially help
to improve the sensitivity of our approach. We could also seek to
loosen the constraints imposed by the prior network. However, such
extensions would come with an increased computational cost. The
simple and efficient implementation is a key advantage.

NetResponse is closely related to subspace clustering methods
such as agglomerative independent variable component analysis
(AIVGA; Honkela et al., 2008). However, AIVGA and other
model-based feature selection techniques (Law et al., 2004; Roth
and Lange, 2004) consider all potential connections between the
features, which leads to more limited scalability. Finding a global
optimum in our model would require exhaustive combinatorial
search over all potential subnetworks. Since the complexity depends
on the topology of the network, finding a general formulation for the
model complexity is problematic. The number of potential solutions
grows faster than exponentially with the number of features (genes)
and links between them, making exhaustive search in genome-scale
interaction networks infeasible.Approximative solutions are needed,
and are often sufficient in practice. A combination of techniques
is used to achieve an efficient algorithm compared with the model
complexity. First, we focus the analysis on those parts of the data that
are supported by known interactions. This increases modeling power
and considerably limits the search space. Second, the agglomerative
scheme finds an approximative solution where at each step the
subnetwork pair that leads to the highest improvement in cost
function is merged. This finds a solution relatively fast compared
with the complexity of the task. Note that the order in which
the subnetworks become merged may affect the solution. Finally,
the variational implementation considerably speeds up mixture
modeling (Kurihara et al., 2007). The running time of our application
was 248 min on a standard desktop computer (Intel 2.83GHz;
Supplementary Fig. 5).

Investigation of a human pathway interaction network revealed
tissue-specific regulation in the network, that is, groups of interacting
genes whose joint response differs between tissues. This highlights
the context-dependent nature of network activation, and emphasizes
an important shortcoming in the current gene set-based testing
methods (Nam and Kim, 2008): simply measuring gene set
‘activation’ is often not sufficient; it is also crucial to characterize
how the expression changes, and in which conditions. Organism-
wide modeling can provide quantitative information about these
connections.

5 CONCLUSIONS
We have introduced and validated a general-purpose algorithm
for global identification and characterization of transcriptional

responses in genome-scale interaction networks across a diverse
collection of tissues, applicable also to cell-biological conditions
within and between tissues. An organism-wide analysis of a human
pathway interaction network validated the model, and provided
a global view on cell-biological network activation. The results
revealed unique and shared mechanisms between tissues, and
potentially help to formulate novel hypotheses of gene function in
previously unexplored contexts.
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