Vol. 26 no. 21 2010, pages 2778-2779
AP P LI CATI ON S N 0 TE doi:10.1098/bioinformatics/btq524

Genome analysis

Advance Access publication September 16, 2010

Ruffus: a lightweight Python library for computational pipelines

Leo Goodstadt

Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of

Oxford, Oxford OX1 3QX, UK
Associate Editor: Martin Bishop

ABSTRACT

Summary: Computational pipelines are common place in scientific
research. However, most of the resources for constructing pipelines
are heavyweight systems with graphical user interfaces. Ruffus is a
library for the creation of computational pipelines. Its lightweight and
unobtrusive design recommends it for use even for the most trivial
of analyses. At the same time, it is powerful enough to have been
used for complex workflows involving more than 50 interdependent
stages.

Availability and implementation: Ruffus is written in python. Source
code, a short tutorial, examples and a comprehensive user manual
are freely available at http://www.ruffus.org.uk. The example program
is available at http://www.ruffus.org.uk/examples/bioinformatics
Contact: ruffus@llew.org.uk

Received on August 4, 2010; revised on August 31, 2010; accepted
on September 9, 2010

1 INTRODUCTION

Large-scale computational analyses are now integral to many
biological studies. “Workflow” management systems have accord-
ingly proliferated, including Taverna (Oinn et al., 2004), Biopipe
(Hoon et al., 2003) and Pegasys (Shah et al., 2004). These are highly
featured, designed for automated and robust operation even by non-
expert users, managed using graphics user interfaces and specified
in XML or proprietary domain-specific languages.

However, these workflow systems can be too cumbersome
for explorative and empirical studies with novel datasets. The
appropriate scientific approach cannot always be determined a priori.
On the other hand, the advantages of computational pipelines over
ad hoc scripts, even for simple tasks, are all more apparent with
increasingly complex datasets and the use of parallel processing.

The standard Unix build (software construction) system ‘make’
has been widely used to keep track of dependencies in scientific
pipelines. ‘Makefiles’ specify the files names of data for the input and
output of each stage of a pipeline as well as the ‘rules’ (commands)
for generating each type of output from its corresponding input. The
entire pipeline is represented by a statically inferred dependency
(directed acyclic) graph for the succession of data files. The same
‘rule’ can be applied to multiple data files at the same time, for
example, to run BLAST searches on many sequence files in parallel.
Automatic data tracking in pipelines allows only the out-of-date parts
of the analyses to be rescheduled and recalculated, with minimal
redundancy. This is necessary when parts of the pipeline are subject
to rapid cycles of development or where the underlying data is being
generated continually.

Unfortunately, ‘make’ is not a good fit for the design of scientific
pipelines. ‘Make’ specifications are written in an obscure and limited
language. (This is mitigated in ‘make’ replacements such as ‘scons’
or Ruby ‘rake’). Pipeline dependencies are not specified directly
but inferred by the ‘make’ program by linking together ‘rules’ in the
right order. This means that scientific pipelines can be difficult to
develop, understand and debug.

So-called ‘embarrassingly parallel’ problems are particularly
common in bioinformatics; examples include BLAST and HMMer
searches of sequence databases, or region-by-region genome
annotation. The number of parallel operations needed varies at ‘run-
time’ with the presented data: a larger sequence file might be split
up into smaller fragments to be processed in parallel. However,
‘make’ systems and their kin require all operations in a pipeline
to be determined when the build script is analysed, because of the
reliance on static, pre-calculated dependency graphs. They cannot
easily deal with, for example, the splitting up of large problems into
smaller fragments to be computed in parallel, if the number of such
fragments depends on the input data and runtime conditions, and
can only be determined in the middle of running the pipeline.

In this article, we present a new lightweight library for
computational pipelines that explicitly supports these programming
tasks. Some of its main advantages of Ruffus are:

* Ruffus configuration files are normal Python scripts. Python
is a modern dynamically typed programming language known
for its elegance, simplicity, and that is already widely used in
the bioinformatics community (Cock et al., 2009). Standard
Python tools can be used to develop and debug Ruffus scripts.

¢ Like ‘makefiles’, Ruffus scripts can run only the out-of-date
parts of the pipeline, using parallel processing if appropriate.

* Pipeline dependencies are specified explicitly for maximal
clarity and ease of documentation.

* A flowchart of the pipeline can be printed out in a variety
of graphical formats. Detailed trace output is available,
documenting which operations are up-to-date or will be run
(Fig. 1).

2 DESIGN

Ruffus is a module for the python language that adds lightweight
support for computational pipelines. Each stage of the pipeline is a
separately written (normal) python function. By convention, strings
contained in the first two arguments of pipelined functions are
assumed to be names of input and output files for this stage. The
modification times of the underlying files are used to determine if
this part of the pipeline is up-to-date or not, and should be re-run.

2778 © The Author 2010. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org

202 YoIe 0z U0 1sonb Aq 6811 1.2/8//2/12/9Z/2101HE/SONBWLIOJUIOIG/WOD"dNO"oIapese//:sdy Woij papeojumoq

http://www.ruffus.org.uk
http://www.ruffus.org.uk/examples/bioinformatics

Ruffus

Pipeline:

Job = [original.fa -> *.segment] completed
completed Task = splitFasta

Job = [1.segment -> 1.blastResult] completed

Job = [2.segment -> 2.blastResult] completed

Job = [3.segment -> 3.blastResult] completed

Job = [4.segment -> 4.blastResult] completed
completed Task = runBlast

Job = [[1l.blastResult, 2.blastresult,
3.blastrResult, 4.blastrResult]
-» final.blast_results] completed
completed Task = combineBlastResults

combincBlastResults

Fig. 1. Trace output and flowchart for a simple Ruffus pipeline.

Table 1. Examples of Ruffus ‘decorator’ keywords

Ruffus Keyword Function of annotated pipeline function

Split Splits up input file into a number of output files
(a one-to-many operation)
Transform Transforms each input into a corresponding output
Merge Merges multiple input into a single output
(a many-to-many operation)
Group together subsets of input, summarizing each
as a separate output.

Collate

Ruffus ensures that these pipeline functions are called in the right
order with appropriate arguments. For example, when the pipeline
specifies BLAST (Altschul ef al., 1990) searches on four sequence
files, three separate calls to the appropriate python function will be
made, in parallel if necessary.

To register pipeline stages, Ruffus provides some simple
keywords (Table 1) using standard python syntax. These python
‘decorators’ placed before each function indicates how the stages
of the pipeline are linked together, the type of operation and what
arguments to supply to each stage of the pipeline.

3 FUNCTION AND EXAMPLES

A standard bioinformatics task for running a blast search efficiently
in parallel might involve splitting the initial large sequence file into
smaller pieces, calling the BLAST executable for each, and then
combining the separate high scoring segment pairs (HSPs) into the
final list of matches. These three operations would be represented by
three python functions ‘decorated’ by the ‘split’, ‘transform’
and ‘merge’ Ruffus keywords. The syntax (in outline) would be as
follows:

from ruffus import *

@split ("original.fasta", "*.segment")
def splitFasta(segFile, segments) :
code to split sequence file into
as many fragments as appropriate
depending on the size of "original.fasta"

@transform(splitFasta, suffix(".segment"),
".blastResults")

def runBlast (segFile, blastResultFile):
code to run blast here

@merge (runBlast, "final.blast_results")
def combineBlastResults(blastResultFile,
combinedBlastResultFile) :
code to combine results here

pipeline_run([combineBlastResults], verbose = 3,
multiprocess = 5)

This will run the three-stage pipeline using up to five
processors in parallel, firstly splitting up the starting
sequence file ‘original.fasta’ into multiple files with
the suffix ‘.segment’, then running the BLAST program
(Altschul et al., 1990) to produce corresponding files with the
‘.blastResult’ suffix, and finally combining all these into the
file ‘final.blast_results’. The trace file for this simple
pipeline, as well as its flowchart produced by Ruffus, is shown in
Figure 1.

More challenging examples using, for example, the full power of
regular expressions to manage pipeline data files, can be found in
the Ruffus documentation.

4 CONCLUSION

Ruffus is a python library for programming computational pipelines
with lightweight, unobtrusive syntax. It provides all the power of
traditional build systems such as automatic data tracking, but in
a modern package suited to the needs of bioinformatics. Sample
flowcharts of Ruffus pipelines, a tutorial, a detailed manual as well
as source code are freely available from http://www.ruffus.org.uk
and http://code.google.com/p/ruffus.

ACKNOWLEDGEMENTS

Many thanks to Andreas Heger for advice on the design of Ruffus;
Chris Nellaker and T. Grant Belgard for their many suggestions; and
Chris Ponting for his support throughout this project.

Funding: Medical Research Council.

Conflict of Interest: none declared.

REFERENCES

Altschul,S.F. et al. (1990) Basic local alignment search tool. J. Mol. Biol., 215, 403-410.

Cock,PJ. et al. (2009) Biopython: freely available Python tools for computational
molecular biology and bioinformatics. Bioinformatics, 25, 1422-1423.

Hoon,S. et al. (2003) Biopipe: a flexible framework for protocol-based bioinformatics
analysis. Genome Res., 13, 1904-1915.

Oinn,T. et al. (2004) Taverna: a tool for the composition and enactment of bioinformatics
workflows. Bioinformatics, 20, 3045-3054.

Shah,S.P. et al. (2004) Pegasys: software for executing and integrating analyses of
biological sequences. BMC Bioinformatics, S, 40.

2779

202 YoJB 0Z U0 150nB AQ 68111 2/8..2/1.2/92/910111E/SOIBULIOJUIOIG /WO dNO"0IWapED.//:SdYY WOy papeojumoq

http://www.ruffus.org.uk
http://code.google.com/p/ruffus

