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ABSTRACT

Motivation: Panels of cell lines such as the NCI-60 have long been
used to test drug candidates for their ability to inhibit proliferation.
Predictive models of in vitro drug sensitivity have previously been
constructed using gene expression signatures generated from gene
expression microarrays. These statistical models allow the prediction
of drug response for cell lines not in the original NCI-60. We improve
on existing techniques by developing a novel multistep algorithm that
builds regression models of drug response using Random Forest,
an ensemble approach based on classification and regression trees
(CART).
Results: This method proved successful in predicting drug response
for both a panel of 19 Breast Cancer and 7 Glioma cell lines,
outperformed other methods based on differential gene expression,
and has general utility for any application that seeks to relate gene
expression data to a continuous output variable.
Implementation: Software was written in the R language and will
be available together with associated gene expression and drug
response data as the package ivDrug at http://r-forge.r-project.org.
Contact: riddickgp@mail.nih.gov
Supplementary Information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Advances in high-throughput drug screening technologies in the
past 20 years have enabled the testing of hundreds of thousands
of drug candidates on panels of cancer cell lines. An important goal
is applying this information to predict drug response in different cell
lines specific to certain cancer types and ultimately clinical tumor
samples. The enormous diversity of tumor biology, even within
cancers from the same tissue, makes this aim especially challenging.
Several attempts to create predictive models of drug response have
made use of the NCI-60, a panel of human cell lines originally
derived from human cancers spanning nine different tissues of
origin (Covell et al., 2007; Shoemaker, 2006). The Developmental
Therapeutics Program (DTP) at the National Cancer Institute has
screened nearly 400 000 compounds against these cell lines since
the origin of the NCI-60 program in the late 1980s. Cell lines from
a particular tissue of origin were eventually shown not to be highly
predictive of human tumors of the same tissue type. Nevertheless, the
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overall pattern of inhibitory responses from a particular drug across
all 60 cell lines proved highly useful as a drug response ‘fingerprint’
that could help pinpoint drug mechanism and efficacy (Paull et al.,
1989; Weinstein, 2006).

The NCI-60 has been extensively molecularly characterized using
a variety of high-throughput assays, including five independent
gene expression microarray experiments utilizing a number of
different platforms. Staunton et al. (2001) first applied NCI-60
basal (resting) gene expression data, produced without application
of a drug, to create predictive models of drug activity (Staunton
et al., 2001). Gene signatures of 232 drugs from 6817 genes were
created using a weighted voting algorithm, which predicted a binary
response (sensitive or resistant) based on an association between
gene expression and drug response. The contribution of each gene
expression level in the training set to the model was weighted
by the statistical correlation between the expression level for that
gene across all cell lines and the experimentally determined drug
sensitivity across all cell lines. Using this approach, one-third of the
original 232 drugs could predict drug sensitivity at significant levels
(P<0.05) when tested on cell lines from the NCI-60 that had been
held out from the original training set.

Lee et al. (2007) used differential gene expression between
sensitive and resistant cell lines to define a drug signature
(Lee et al., 2007). They showed that signatures produced from the
top 12 and bottom 12 responding cell lines for each drug could be
used to create a categorical model for cisplatin and paclitaxel in
a panel of 40 bladder cancer cell lines. Then by screening 45 545
compounds in the DTP database against the same cell line panel,
the authors identified 139 compounds predicted to be effective at
inhibiting growth in >35% of cell lines. The top compound hit
proved to be a potent inhibitor of growth in bladder cancer cell lines,
although the rest of the predictions were not systematically tested.

Recently, Mori et al. (2009) developed a phenotype-based screen
based on the NCI-60 (Mori et al., 2009). Signatures developed from
Ras activation, PI3K activation, as well as tumor samples from basal-
defined breast cancer were first compared with expression states in
cell lines from the NCI-60. Cell lines were ranked by statistically
defined similarity to signatures. The Pearson’s correlation between
signature similarity and drug response in the database was then
used to identify drugs with similar response patterns. Although
the results were not systematically experimentally tested, one
drug (simvastatin) showed the ability to inhibit tumor growth of
basal-type breast tumors in a mouse model.

In an attempt to build on these promising approaches, we asked
whether the existing methods could be improved in three specific
ways: (i) creation of drug gene expression signatures based on
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a multivariate model rather than a univariate test of differential
gene expression. (ii) An automated means to remove outlying
cell lines from the statistical model rather than manual curation.
(iii) A multivariate regression model for predicting continuous drug
response. We implemented this approach using Random Forest,
an ensemble machine-learning approach that has been successfully
applied to many different problems in computational biology
(Breiman, 2001; Liaw and Wiener, 2002).

2 METHODS

2.1 Overview
Predictive models for each drug are individually created by combining two
data sources: (i) drug sensitivity (IC50) for that drug across all cell lines in the
NCI-60 and (ii) basal gene expression of each cell line in the NCI-60, which
represents the ‘resting’ physiological state of the cell, before application of
any drug.

Creating a model of drug responses using Random Forest consists of three
steps (Fig. 1). First, IC50 response data for a particular drug are normalized
to a [0,1] interval. A Random Forest model is then trained on the basal gene
expression data for the NCI-60 (16 644 probesets) with IC50 as the response
variable (Fig. 1a). Variable importance generated by the model is then used
to select a smaller subset of probesets that are highly predictive of drug
response (typically 100–500 probesets). In the second step, another model
is then fitted between the gene expression signature and the IC50 response.
From this model, the case proximity matrix is then used to identify core cell
lines associated with the drug (Fig. 1b, Equation 1). Once the IC50 values

Fig. 1. Overview of the model building algorithm. (A) A RANDOM
FOREST model is fit between all the probesets in the training set (16 644)
and the IC50 values for each drug. (B) PROBESETS that have a variable
importance OF 2 SDs > mean of variable importance for all probesets are
kept as a gene expression signature; a second Random Forest model is
fit between this gene expression signature and the IC50 values for each
drug. (C) CASE proximity values for each drug are generated from the
second model using Equation (1), outlying cell lines are removed, and a
third Random Forest model is fit with the remaining cell lines and the gene
expression signature.

for outlying cell lines have been removed, a third model is fitted to the gene
expression signature (Fig. 1c).

2.2 Datasets
2.2.1 Gene expression microarray Gene expression microarray data
for the NCI-60 cell lines were downloaded from the NCI DTP site
(http://dtp.nci.nih.gov). Both Genelogic and Chiron NCI-60 datasets were
originally generated using Affymetrix u133A/B microarrays and processed
using MAS5. Probesets with a row-wise coefficient of variation (SD/mean)
>0.06 were kept for further analysis. Probesets were further retained if
they showed >0.2 Pearson’s correlation coefficient across the 58 cell lines
shared between Genelogic/Chiron datasets. Data for one glioma cell line
(U251) that appeared both in the NCI-60 and 7 Glioma cell lines was
dropped from the NCI-60 dataset before the generation of statistical models.
Lastly, the arithmetic mean of matching probesets from Genelogic/Chiron
datasets was taken, and these composite probesets were then z-normalized
in a column-wise fashion for each cell line.

Affymetrix u133 2.0+ Gene expression microarray data for 19 breast
cancer cell lines (GSE3156) was downloaded from the NCBI Geo Gene-
Expression Database (http://www.ncbi.nlm.nih.gov/geo/). Probeset values
were column-wise z normalized. Six cell lines from this dataset that also
appeared in the NCI-60 were excluded from further analysis.

Gene expression microarray data for seven Glioma cell lines (A172,
LN229, T98G, U87, U118, U251, U373) were measured on the Affymetrix
u133 2.0+ platform. RNAextraction and analysis was performed as described
previously (Li et al., 2008). Probeset values were processed using MAS5 and
then z normalized in a column-wise fashion.

2.2.2 Drug sensitivity data IC50 is defined as the concentration of a
compound required to produce 50% growth inhibition after 48 h in a cell
line relative to the control. NCI-60 IC50 data for a list of 40 federal
drug administration (FDA)-approved oncology drugs were downloaded from
the DTP web site and used as a training set. Values (previously −log10
transformed) were normalized over the [0,1] interval. If more than one
experiment existed for each drug, the entry with the largest number of
replicates was used.

For the seven glioma cell lines in the test set, we measured percent growth
inhibition relative to a control for the 40 drugs at five concentration points in
triplicate: 50 µM, 5 µM, 500 nM, 50 nM and 5 nM. Cell lines U87, U373 and
T98G were grown in modifified eagle’s medium (MEM) 10% fetal bovine
serum (FBS), LN229 was grown in Dulbecco’s modified Eagle’s medium
10% FBS, U251 was grown in RPMI 1640 5% FBS and both A172 and U118
were grown in DMEM 10% FBS. Cells were seeded at 10 000 cells/well in a
96-well plate in 150 µM media/well. Viability assays were performed after
48 h of initial seeding as described previously (Vichai and Kirtikara, 2006).
IC50 calculations were performed by curve fitting of the data using the IC50
package for the R statistical computing environment.

For the 19 Breast cancer cell lines in the test set, IC50 data for simvastatin
and pepleomycin were downloaded from Supplementary Material associated
with Mori et al. (2009).

2.3 Signature generation
2.3.1 Using Random Forest variable importance to create a gene expression
signature for each drug Existing algorithms for producing gene expression
signatures from drug response data compute univariate measures of
differential gene expression between cell lines labeled sensitive or resistant.
Two drawbacks exist with this approach: (i) definition of resistant and
sensitive cell lines can be drug dependent, is arbitrarily defined and methods
based on SD are only appropriate when IC50 values in the NCI-60 are
normally distributed—which often not the case. (ii) Univariate differential
gene expression cannot capture higher order gene–gene interactions that may
be important for predicting drug response.
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To improve on this approach, we used gene expression signature generated
by fitting a regression model between drug IC50 and basal gene expression
using Random Forest. This machine-learning algorithm combines many
single regression or classification trees into a large ‘ensemble’ to improve
performance and robustness. Two methods are used to inject randomness
into the ensemble—(i) Bootstrap aggregation: each tree is grown from
a randomly selected subset of the training cases (defaults to 70% for
regression). (ii) Random Subspace Method: the splitting variable for each
node in an individual tree is selected from a random subset of the input
variables (defaults to 30% for regression). Supplementary Figure S1 provides
a more detailed explanation of the Random Forest algorithm.

Each tree in the forest is trained on a random subset of the cases and then
tested on the remaining cases, called the out-of-bag cases (OOB). To compute
variable importance, individual values of variables in the OOB are randomly
switched with another variable in the OOB. Decrease in performance of each
regression tree, measured by R2 for each variable after its value has been
permuted, provides a measure of its importance in the regression model.

To use the variable importance measure to create a signature, a Random
Forest regression model using 25 000 trees was trained on the normalized
IC50 values for each drug, using all the gene expression probeset values
from the composite Genelogic/Chiron dataset. Probesets for the signature
were selected if they showed variable importance values >2 SD above the
mean of all variable importance values for each particular drug. To improve
performance for signature generation, we used the Simple Network of
Workstations (SNOW) package for R to process many drugs simultaneously
on a computational cluster.

2.3.2 Using Random Forest case proximity to identify core cell lines
associated with each drug How to select an appropriate training set from a
heterogeneous panel of cell lines derived from nine different tissues of origin
remains a central challenge in using the NCI-60 to predict drug response. To
accomplish this, we developed a novel computational approach using the case
proximity metric originally developed in Random Forest. Case proximity in
the model space is defined in the following way: both OOB and non-OOB
cases (cell lines in our model) are put down in each regression tree after
all the trees in the Random Forest have been grown. For each pair of j, k
cases, count the number of times both cases are assigned to the same terminal
node. Dividing by the total number of trees in the forest normalizes proximity
counts.

To identify cell lines that were outliers in the regression model, we
examined the relationship between proximity and differences in IC50 values
(Equation 1) for each drug.We reasoned that cell lines j showing a consistent
gene expression/IC50 relationship should show a statistically significant
correlation between these two sets of values. For all cell lines i and each
particular cell line j, a vector of the

n∑

i=1

(pij −Pj)(IC50ij −IC50j)

(n−1) SPj SIC50j

(1)

absolute value of the differences in IC50 values between that cell line and
all other cell lines IC50j was first computed. The Pearson’s correlation
coefficient between the vector IC50j and proximity values Pj between this
cell line and all other cell lines then defined this relationship. For each
drug, cell lines j were kept in the training set that showed correlation
coefficients P<0.05. The Bonferonni method was applied to control for
multiple hypothesis testing for each drug. To allow users to substitute
alternative and less conservative measures of multiple hypothesis correction,
we included an option in our software to disable Bonferonni correction.
Figure 2 provides a visual representation of the algorithm for two drugs. The
proximity matrices for pepleomycin (Fig. 2a) and simvastatin (Fig. 2b) are
shown as heat maps. Cell lines showing similar behavior in the model space
cluster together in blocks of high proximity values around the diagonal. After
removing outlying cell lines, the proximity matrices (Fig. 2a and b) show
higher degrees of internal consistency, and IC50 values for each cell line
(upper bar) show a higher degree of correspondence with each cluster of cell
lines along the diagonal.

Fig. 2. Pairwise proximity matrixes for pepleomycin and simvastatin.
Proximity matrices from Random Forest are defined as the number of
instances in which two cases (cell lines) are assigned to the same terminal
node of a tree, normalized over the [0,1] interval. Proximity between a case
and itself is not a meaningful value so these instances on the diagonal are set
to zero (A1) proximity matrix for pepleomycin before reduction of cell-lines
by Equation (1). (A2) Proximity matrix for pepleomycin after removal of
outlying cell lines. (B1) Proximity matrix for simvastatin. (B2) Proximity
matrix for simvastatin after removal of outlying cell lines.

After selecting core cell lines for each drug, the regression model was
then built between the gene expression signature for these cell lines and the
corresponding IC50 values for each drug using Random Forest with 10 000
trees. The model for each drug was then applied to the drug gene expression
signature in the test set.

3 RESULTS
We tested the method on two external datasets: (i) 19 Breast Cancer
Cell Lines tested with the two drugs simvastatin and pepleomycin
(ii) Seven Glioma Cell lines tested with 40 FDA-approved oncology
drugs.

3.1 Breast cancer cell lines
To test the predictive accuracy of the algorithm, cell lines were first
assigned to sensitive or resistant groups based on experimentally
determined IC50 results for simvastatin and pepleomyicin. Drug
response predictions for sensitive and resistant subsets were
generated using two methods: (i) full implementation of the
algorithm and (ii) algorithm without the use of case proximity.

As shown in Figure 3, the full implementation of the algorithm
outperforms the one-step approach. The difference between the
predicted means of resistant and sensitive groups is larger for the
two-step signature generation method.
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Fig. 3. Experimental confirmation of predictions for simvastatin and
pepleomycin in 19 breast cancer cell lines. CELL lines were identified
as resistant if showing −log(IC50)<4 and as sensitive if showing
> 5.4−log(IC50) for simvastatin (A) and −log(IC50)<4 and −log(IC50)>
5.4 for pepleomycin (B). Y -axis shows the predicted IC50. Sensitive and
resistant groups for the TWO-step method showed statistically significant
differences in means using a two-tailed t-test (P<0.05). The two-step
method produced a greater separation of means (0.17, 0.40) versus (0.20,
0.30) for simvastatin and (0.28, 0.51) versus (0.31, 0.43) for pepleomycin.

3.2 Glioma cell lines
A statistical model of drug response based on the large database of
drugs that have been tested against the NCI-60 may be particularly
useful for in silico drug screening of external panels of cell lines
specific to certain cancer types. To test the usefulness of our
algorithm in such an application, we experimentally determined the
response of seven glioma cell lines to 40 FDA-approved oncology
drugs.

Out of the 280 drug/cell-type experiments, only 40 reached 50%
growth inhibition required to calculate IC50. In order to use the
information from all experiments, we substituted % growth at 48 h
(relative to a control) for the 50 and 500 nM concentration points.

We applied the algorithm to generate gene expression signatures
drug response models from the NCI-60 for each of the 40 drugs.
The model proved successful in predicting the top 10 (Table 1) and
the bottom 10 responding drugs at the 50 and 500 nM concentration
points (Fig. 4).

To compare the performance of previous methods, we tested the
predictive capability of signatures generated from differential gene
expression between the top 12 and bottom 12 responding cell lines
for each drug using the Significance Analysis of Microarrays (SAM,
FDR ≤ 0.1; Fig. 5). In addition, we also applied the co-expression
extrapolation technique (Supplementary Fig. S2) developed by Lee
et al. (2007) to identify and retain genes that display consistent
expression between training and test sets. Signatures from the
differentially expressed genes were used to build statistical models

Fig. 4. Experimental confirmation of predictions for 40 FDA-approved
cancer drugs in seven glioma cell lines. FOR each drug, the mean of predicted
IC50 response over the seven cell lines was computed. The percent viability
of cell lines relative to a control was measured at 50 and 500 nm of drug
concentration after growth of 48 h normalized over the [0,1] interval. A two-
tailed significance test (correlation test in R) of the Pearson product moment
correlation between predicted and measured IC50 values across all 37 cell
lines showed significance for both concentration points at P<0.001.

Fig. 5. Performance evaluation of the two-step algorithm. (A) THE two-
step method successfully created 37 signatures from the 40 FDA-approved
drugs while the signature generation based on differential gene expression
produced 17 and differential gene expression + co-expression extrapolation
produced 14. (B) SCATTER plot of two-step algorithm predictions for 37
drugs versus measured IC50 values. (C) Scatter plot of two-step algorithm
predictions for 14 drugs. (D) Scatter plot of predicted versus actual IC50
values for the same 14 drugs predicted using the co-expression extrapolation
method.
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Table 1. Top 10 predicted most potent drugs in seven glioma cell lines

NSC Drug names

613 327 Gemcitabine
266 046 Oxaliplatin
606 869 Clofarabine

49 842 Vinblastine sulfate
821 51 Daunorubicin HCL
312 887 Fludarabine
127 716 Decitabine

67 574 Vincristine sulfate
119 875 Cisplatin

740 Methotrexate

using Random Forest regression. Results are plotted as [0,1]
normalized x−y scatter plots of predicted versus actual drug
sensitivity at the 50 nM concentration point (Fig. 5), and show that
the two-step method outperforms differential gene expression both
in the total number of signatures created as well as the accuracy of
those signatures at predicting measured IC50 response.

4 DISCUSSION
We have created a novel algorithm for predicting in vitro drug
response from a signature of basal gene expression. Unlike previous
methods, this approach incorporates multivariate interaction of input
variables (gene expression levels), automatically indentifies core
cell lines associated with each drug, and models drug response as a
continuous variable. As demonstrated, this approach outperforms a
comparable method based on univariate differential gene expression.

Although statistical tests of differential gene expression have been
an important tool for the analysis of microarray data, interactions
between the biological pathways that drive gene expression levels
provide another layer of information that can be mined using
multivariate approaches such as Random Forest. Since regression
trees incorporate variable interactions as a natural consequence
of data partitioning, they provide an ideal algorithmic approach
for incorporating variable interactions in the creation of a gene
expression signature. Techniques for explicitly encoding gene–
gene interactions, such a multifactor dimensionality reduction
(MDR), may also be worthwhile to investigate in future work.
Although single trees do not generally provide the statistical
power of other multivariate techniques, ensemble methods such
as Random Forest that randomly sample from both cases and
input variables have shown to be competitive with class-leading
techniques such as support vector machines and stochastic gradient
boosting (Diaz-Uriarte and Alvarez de Andres, 2006). In addition,
Random Forest requires little or no parameter tuning and is therefore
suitable for machine-learning tasks such an in silico screen that
require the creation of a large number of statistical models.

The heterogeneity of cell line panels such as the NCI-60 presents
a challenge to the creation of drug gene expression signatures.
Previous workers have created models using only cell lines from the
NCI-60 showing extreme values of IC50 response to any particular
drug. However, defining resistant and sensitive cell lines becomes
problematic when many drugs show IC50 distributions across the
NCI-60 that are not normally or uniformly distributed. Using a
ranked-based definition of drug sensitivity may also produce non-
optimal training sets for drugs in which the IC50 distribution is

skewed. To overcome these obstacles, we created a novel approach
to identify core cell lines for each drug using the case proximity
metric in Random Forest. We note that another group has recently
published a method for associating drugs with sets of core cell lines
(Kutalik et al., 2008). However, this approach was based on a fully
linear method, does not incorporate variable interactions and was
not used to develop predictive models of drug response.

Functional screens that combine basal gene expression and
drug response from panels of cell lines such as the NCI-60 may
prove to be an important tool for the discovery of compound
leads—especially for complex and heterogeneous diseases such as
cancer. By experimentally testing the inhibitory profiles of 40 FDA-
approved cancer drugs in seven glioma cell lines, we have provided
one of the most complete validation tests to date of this approach.
The predictive algorithm that we have developed can be generalized
to other problems in machine learning that require the generation of
predictive signatures from large numbers of input variables that may
exhibit a high degree of noise and self-correlation.
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