
[12:45 22/1/2011 Bioinformatics-btq677.tex] Page: 464 464–470

BIOINFORMATICS ORIGINAL PAPER Vol. 27 no. 4 2011, pages 464–470
doi:10.1093/bioinformatics/btq677

Sequence analysis Advance Access publication December 9, 2010

SlideSort: all pairs similarity search for short reads
Kana Shimizu1,∗ and Koji Tsuda1,2

1Computational Biology Research Center, National Institute of Advanced Industrial Science and Technology (AIST)
and 2ERATO Minato Project, Japan Science and Technology Agency, Japan
Associate Editor: Alex Bateman

ABSTRACT

Motivation: Recent progress in DNA sequencing technologies calls
for fast and accurate algorithms that can evaluate sequence similarity
for a huge amount of short reads. Searching similar pairs from a
string pool is a fundamental process of de novo genome assembly,
genome-wide alignment and other important analyses.
Results: In this study, we designed and implemented an exact
algorithm SlideSort that finds all similar pairs from a string pool in
terms of edit distance. Using an efficient pattern growth algorithm,
SlideSort discovers chains of common k-mers to narrow down the
search. Compared to existing methods based on single k-mers, our
method is more effective in reducing the number of edit distance
calculations. In comparison to backtracking methods such as BWA,
our method is much faster in finding remote matches, scaling easily
to tens of millions of sequences. Our software has an additional
function of single link clustering, which is useful in summarizing short
reads for further processing.
Availability: Executable binary files and C++ libraries are available
at http://www.cbrc.jp/~shimizu/slidesort/ for Linux and Windows.
Contact: slidesort@m.aist.go.jp; shimizu-kana@aist.go.jp
Supplementary information: Supplementary data are available at
Bioinformatics online.

Received on August 19, 2010; revised on October 27, 2010; accepted
on December 3, 2010

1 INTRODUCTION
Due to the dramatic improvement of DNA sequencing, it is
required to evaluate sequence similarities among a huge amount
of fragment sequences such as short reads. We address the problem
of enumerating all neighbor pairs in a large string pool in terms of
edit distance, where the cost of insertion, deletion and substitution is
one. Namely, given a set of n sequences of equal length �, s1,...,sn,
the task is to find all pairs whose edit distance is at most d,

E={
(i,j) |EditDist(si,sj)≤d,i< j

}
. (1)

It is conventionally called all pairs similarity search.
All pairs search appears in important biological tasks. For

example, it is required in finding seed matches in all pairs alignment
necessary in sequence clustering (Abouelhoda et al., 2004). Such
alignments can then be used to detect and correct errors in short
reads (Qu et al., 2009). In the first step of de novo genome
assembly (Simpson et al., 2009; Zerbino and Birney, 2008), short

∗To whom correspondence should be addressed.

reads are decomposed to k-mers, and suffix–prefix matches of length
k−1 are detected. In most cases, exact matches are employed due to
time constraint. Using approximate matches, the length of contigs
can be extended, which leads to final assembly of better quality. This
problem reduces to all pairs similarity search by collecting all k−1
prefixes and suffixes into a sequence pool. From the output, only
prefix–suffix pairs are reported.

Basically, most popular methods solve the search problem by
either of the following two approaches or a combination of them.
(i) Finding a common k-mer and verify the match (Lipman and
Pearson, 1985; Simpson et al., 2009; Warren et al., 2007; Weese
et al., 2009; Zerbino and Birney, 2008). (ii) Backtracking in an
index structure (i.e. suffix array and FM-index) (Langmead et al.,
2009; Li and Durbin, 2009; Li et al., 2009; Rajasekaran et al., 2005;
Sagot, 1998; Trapnell et al., 2009). The first type finds common
k-mers in strings (i.e. seed match) and verify if two strings sharing
the k-mer are neighbors indeed by extending the match with dynamic
programming. It works perfectly well when the string is long enough.
However, when strings are short and the threshold d is large, the
length of shared k-mers falls so short that too many candidate
pairs have to be verified. The second type stores the strings into
an index structure, most commonly a suffix array. Then, similar
strings are found by traversing nodes of the corresponding suffix
tree. This approach works fine if d is small, e.g. d≤2, and employed
in state-of-the-art short read mapping tools such as BWA (Li and
Durbin, 2009), bowtie (Langmead et al., 2009) and SOAP2 (Li et al.,
2009). However, it becomes rapidly infeasible as d grows larger,
mainly because the complexity is exponential to d and no effective
pruning is known. ELAND and SeqMap (Jiang and Wong, 2008)
decompose sequences into blocks and use multiple indices to store
all k-concatenations of blocks. Obviously, it requires much more
memory compared with BWA, which would be problematic in many
scenarios. Multisorting (Uno, 2008) uses multiple substring matches
to narrow down the search effectively, but it can find neighbors in
terms of Hamming distance only.

Our method termed SlideSort finds a chain of common substrings
by an efficient pattern growth algorithm, which has been successfully
applied in data mining tasks such as itemset mining (Han et al.,
2004). A pattern corresponds to a sequence of substrings. The
space of all patterns is organized as a tree and systematically
traversed. Our method does not rely on any index structure to avoid
storage overhead. Instead, radix sort is employed to find equivalent
strings during pattern growth. To demonstrate the correctness of
our algorithm, the existence of a common substring chain in any
neighbor pair is proved first. In addition, we deliberately avoid
reporting the same pair multiple times by duplication checking.
As a result, our method scales easily to 10 million sequences and is

© The Author(s) 2010. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/27/4/464/197379 by guest on 17 April 2024

[12:45 22/1/2011 Bioinformatics-btq677.tex] Page: 465 464–470

SlideSort

much faster than seed matching methods and suffix arrays for short
sequences and large radius.

The rest of this article is organized as follows. Section 2 introduces
our algorithm. In Section 3, results of computational experiments are
presented. Section 4 concludes the article.

2 METHOD
Two similar strings share common substrings in series. Therefore, we can
detect similar strings by detecting chains of common strings systematically.
Before proceeding to the algorithm, let us describe fundamental properties
first. Divide the interval 1,...,� into b blocks of arbitrary length w1,...,wb,∑b

i=1 wi=�. The starting position of each block is defined as qi=1+
∑i−1

j=1 wj . The alphabet is denoted as �. We assume that each string in the

database {si}ni=1 consists of � letters, si∈|�|�. Given two strings s, t, s= t
holds if all letters are identical. The substring from positions i to j is described
as s[i,j].

A pattern of length k is defined as a sequence of strings and block indices,

X=[(x1,y1),...,(xk,yk)]
where xi∈|�|wyi , 1≤y1 <y2,...,<yk≤b. Pattern X matches to string si with
offset p= (p1,...,pk), if

si[qyj+pj,qyj+pj+wyj−1]=xj, for all j=1,...,k.

All occurrences of X in the database are denoted as

C(X)={(i,p) |X matchessi with offset p}.
For convenience, an index set I(X) is defined as the set of sequences
appearing in C(X). The number of sequences in I(X) is defined as |I(X)|.

The relationship between neighbor pairs and patterns are characterized by
the following theorem.

Theorem 1. If si and sj of equal length � are neighbors, i.e. EditDist(si,sj)≤
d,i< j, there exists a pattern X of length b−d such that X matches si with zero
offset (p1=p2= ...=pb−d=0) and matches sj with bounded offset−�d/2�≤
pk≤�d/2� , k=1,...,b−d.

Proof. There are multiple possible alignments of si and sj . An alignment
is characterized by the number of matches m, that of mismatches f , that of
gaps gi in si and that of gaps gj in sj .The length of si is equal to m+f +gj

and that of sj is m+f +gi, because any letter in si is aligned to either a letter
in sj or gap symbol in sj and vice versa. Thus, we obtain gi=gj≤�d/2�
by taking into account that the maximum number of gaps does not exceed
d. Therefore, an aligned position of any letters is within a bound of �d/2�
letters from its original position.

Let us divide si into b blocks of length w1,...,wb. Since the number of
mismatches are at most d, at least b−d blocks match exactly with their
counterparts in sj in any alignment. Also, since aligned positions are bound
within �d/2� from their original positions, the matching counterpart of any
block of si can be found in sj within offset between −�d/2� and �d/2�. �

Figure 1 illustrates an example of patterns with b=5,d=3. This theorem
implies that any neighbor pair has a chain of b−d common blocks and the
corresponding blocks lie close to each other. It serves as a foundation of our
algorithm presented later on.

Fig. 1. An example pattern for block size 5 and edit-distance threshold 3.
si matches to X with no offset in the first block and the third block. sj matches
to X with no offset in the first block but with −1 offset in the third block.

2.1 Pattern growth
In our algorithm, all patterns X of |I(X)|≥2 are enumerated by a recursive
pattern growth algorithm. In a pattern growth algorithm, a pattern tree is
constructed, where each node corresponds to a pattern (Fig. 2). Nodes at
depth k contain patterns of length k.

At first, patterns of length 1 are generated as follows. For each block y1=
1,...,d+1, a string pool is made by collecting substring of {si}ni=1 starting
at qy1−�d/2�,...,qy1+�d/2�. Applying radix sort to the string pool and
scanning through the sorted result, repetition of equivalent strings can be
detected (Fig. 3). Each pattern of length 1, denoted as X1, is constructed as
a combination of the repeated string x1 and y1,

X1←{(x1,y1)}.
At the same time, all occurrences C(X1) are recorded. If si matches the same
pattern X1 by several different offsets, only the smallest offset is recorded.
They form the nodes corresponding to depth 1 of the pattern tree.

Given a pattern Xt of length t, its children in the pattern tree are generated
similarly as follows. For each yt+1=yt+1,...,d+ t+1, a string pool is made
by collecting substrings of I(Xt) starting at qyt+1−�d/2�,...,qyt+1+�d/2�.
Because the string pool is made from the occurrence set only, the size of the
pool decreases sharply as a pattern grows. By sorting and scanning, a next
string xt+1 is identified and the pattern is extended as

Xt+1←Xt+{(xt+1,yt+1)},
and the occurrences C(Xt) are updated to C(Xt+1) as well.

To avoid generation of useless patterns, the pattern tree is pruned as soon
as the support falls below 2. Also, the tree is pruned if there is no string
in I(X) that matches X with zero offset. As pattern growth proceeds in a
depth-first manner, memory is reserved as a pattern is extended, and then
immediately released as the pattern is contracted to visit another branch.
This dynamic memory management keeps peak memory usage rather small.

2.2 From patterns to pairs
As implied in Theorem 1, every neighbor pair (Fig. 1) appears in index set
I(X) of at least one pattern. Since one of the pair must have zero offset, the
set of eligible pairs is described as

PX={(i,j)|i< j,i,j∈ I(X),si matchesX with zerooffset}.
Since not all members of PX correspond to neighbors, we have to verify if
they are neighbors by actual edit-distance calculation.

A problem here is that the same pair (i,j) possibly appears in the index
set of many different patterns. It is also possible that pair (i,j) in the same
index set is derived from different offsets. In most applications, it is desirable
to ensure that no pair is reported twice. The straightforward solution of the
problem is to check if a new pair is previously reported by storing all pairs,
which requires huge amount of memory. We propose an alternative solution
that rejects non-canonical pairs without using any extra memory as follows.

A match of si and sj can occur in various ways, each of which can be
described as the tuple (y,p), where y=y1,...,yb−d describe the blocks in the
pattern and p is the offset with which the pattern matches sj . We define the
canonical match as the one with lexicographically smallest y and p, where
priority is given to y. For example, consider the case si=AATT , sj=ATAT ,
d=2 and all block widths set to 1. There are 10 different (y,p) pairs as shown
in Figure 4, where matching residues are shown in red squares. In this case,
(1) is canonical. Among them, the matches with overlapping squares do not
have correct alignment. We do not exclude such pairs to avoid an extra run
of dynamic programming.

To judge if a given match (y,p) is canonical or not, it is sufficient to
check if there exists another match that is lexicographically smaller. More
precisely, the match represented by y,p is not canonical, iff there exists a
block 1≤z≤max(y),z /∈y and an offset −�d/2�≤r≤�d/2� such that

si[qz,qz+wz−1]=sj[qz+r,qz+r+wz−1]. (2)

This canonicity check can be done in O(d�) time.

465

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/27/4/464/197379 by guest on 17 April 2024

[12:45 22/1/2011 Bioinformatics-btq677.tex] Page: 466 464–470

K.Shimizu and K.Tsuda

Fig. 2. Pattern growth and pruning process of the proposed method. Patterns are enumerated by traversing the tree in depth-first manner. In each node, new
elements are generated by sorting substrings in sequence pool (‘ATA’, ‘TAT’, ‘TTA’ for y1=1). Useless patterns (‘TTA’ in this case) are removed. Remaining
elements are added to yield new patterns. This process is executed by recursive call until the pattern size reaches b−d.

Fig. 3. Discovery of equivalent strings by radix sort.

Fig. 4. All (y,p) of si=AATT , sj=ATAT . Matching residues are shown in red
squares. Since the red squares overlap in (6) and (10), they do not correspond
to correct alignment.

Pseudocode of the overall algorithm is shown in Algorithm 1. In line 18,
it suffices to compute diagonal stripe of width 2d+1 of DP matrix. Thus,
the distance calculation is performed in O(d�) time.

2.3 Remarks
With small modification, SlideSort can deal with gap opening and gap
extension penalties. Define the gap open and extension cost as γo and
γe, respectively. Denote the number of mismatches, gap opens and gap
extensions as f , go and ge, respectively. Then our all pairs similarity search
problem is reformulated as finding pairs such that f +goγo+geγe≤d. Denote

the number of gaps in each sequence as gi and gj . Then, ge=gi+gj and
go≥2 (if ge �=0), go=0 (if ge=0) by definition. When ge �=0, we have
(gi+gj)γe≤d−2γo. Since the lengths of two sequences are equal, the
number of gaps is also equal, gi=gj , leading to the following inequality,

gi=gj≤�(d/2−γo)/γe�.
Therefore, the offsets pk , for k=1,...,b−d, are bounded by

−�(d/2−γo)/γe�≤pk≤�(d/2−γo)/γe�. (3)

When ge=0, we can find all pairs by zero offsets, hence the offset range
(3) covers this case as well. Notice that the block size b must be larger
than max(d,�d/(γo+γe)�). This modification is effective to reduce both
computation time and memory space when γo and γe are larger than
substitution cost.

It is worthwhile to notice that SlideSort can handle sequences of slightly
different lengths without any essential modification. See a Supplementary
Method in Supplementary file 1 for details.

2.4 Complexity
Denote by σ=|�| the alphabet size. Space complexity of SlideSort is
O((b−d)dnlogn+n�logσ), because it requires an pointer array to describe
the pattern tree, and the original strings must be retained. Denote by m
the number of all pairs included in the index set I(X). Time complexity of
SlideSort is O(bd−1db−d�n+md�), in which the first part is for sorting and
the latter part is for edit-distance calculations. The time complexity depends
on the effectiveness of pruning through m. The worst case of the latter part
becomes O(n2d�) when all the input short reads are identical. In most cases,
however, short reads are quite diverse and m is expected to scale much better
than O(n2).

The all pairs similarity search problem can be solved by finding
approximate non-tandem repeats in the concatenated text of length n�. An
enhanced suffix array can solve it with O(�d+1σdn) time and O(nlogn+
n�logσ) space (Abouelhoda et al., 2004). This time complexity is essentially
achieved by producing all variants within distance d of all sequences and
finding identical pairs. The difference is that the time complexity of the suffix
array depends on the alphabet size and that not of SlideSort. Thus, SlideSort
can be applied to large alphabets (i.e. proteins) as well.

3 EXPERIMENTS
From NCBI Sequence Read Archive (http://www.ncbi.nlm.nih
.gov/sra/), we obtained two datasets: paired-end sequencing of

466

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/27/4/464/197379 by guest on 17 April 2024

[12:45 22/1/2011 Bioinformatics-btq677.tex] Page: 467 464–470

SlideSort

Algorithm 1 SlideSort
1. function SlideSort
2. SlideSortRecursive(φ,φ)
3. end function
4. function SlideSortRecursive(y , X)
5. if y=φ then
6. m←1
7. go to line 26
8. end if
9. if |I(X)|<2 then 	 Pruning by frequency

10. return
11. end if
12. if no strings in I(X)match X with zero offset then
13. return
14. end if
15. if |y|=b−d then
16. for (i,j)∈PX do
17. if (i,j) is canonical then 	 See equation 2
18. if EditDist(si,sj)≤d then
19. Report (i,j)
20. end if
21. end if
22. end for
23. return
24. end if
25. m=max(y)+1
26. for z=m,··· ,d+|y| do
27. R←φ

28. for −�d/2�≤r≤�d/2� do 	 Generate a string pool
29. R←R∪{s[qz+r,qz+r+wz−1] |s∈ I(X)}
30. end for
31. Sort and scan R to find the set of new elements X
32. for all (xnew,z)∈X do
33. SlideSortRecursive(y+{z},X+{(xnew,z)})
34. end for
35. end for
36. end function

Human HapMap (ERR001081) and whole genome shotgun bisulfite
sequencing of the IMR90 cell line (SRR020262). They will be
referred to as dataset 1 and 2, respectively. Sequence length of
dataset 1 is 51 and that of dataset 2 is 87. Both datasets were
generated by Illumina Genome Analyzer II. Reads that do not
include ‘N’ were selected from the top of the original fastq files.
Our algorithm was implemented by C++ and compiled by g++.
All the experiments were done on a Linux PC with Intel Xeon
X5570 (2.93 GHz) and 32 GB RAM. Only a single core is used
in all experiments.

As competitors, BWA (Li and Durbin, 2009) and SeqMap (Jiang
and Wong, 2008) are selected among many alternatives, because
the two methods represent two totally different methodologies,
backtracking and block combination. BWA is among the best
methods using index backtracking, while SeqMap takes an
ELAND-like methodology of using multiple indexes for all block
combinations. SlideSort is also compared to the naive approach that
calculates edit distances of all pairs. BWA and SeqMap are applied
to all pairs similarity search by creating an index from all short reads
and querying it with the same set of reads.

Notice that both BWA and SeqMap are not originally designed
for all pairs similarity search but for read mapping, which requires
a larger search space. Although fair comparison is difficult between
tools of different purposes, we used mapping tools as competitors,
because no tool is widely available for all pairs similarity search, to
our knowledge.

For our method, the number b of blocks has to be determined.
In the following experiments, we set b relative to the distance
threshold d as b=d+k. Here, k corresponds to the pattern size.
In the following experiments, we tried k=1,...,5 and reported the
best result.

The number of neighbor pairs for both datasets are shown in
Supplementary Figure S1. We confirmed that both SlideSort and
the naive approach reported exactly the same number of neighbor
pairs, which ensures correctness of our implementation of SlideSort.

3.1 Computation time and memory usage
Figure 5 plots computation time against the distance threshold d.
SlideSort is consistently faster in all configurations. As the number
of sequences grows and the distance threshold is increased, the
difference from BWA and SeqMap becomes increasingly evident.
Not all results are obtained, because of the 30 GB memory limit
and 300 000 s time limit. Figure 6 compares peak memory usage of
SlideSort, SeqMap and BWA. We separately measured the memory
usage of the indexing step and searching step for BWA, because
BWA is designed to execute those steps separately. The peak
memory of BWA for the search step is the smallest in most of the
configurations, while that of SlideSort is comparable or slightly
better than BWA’s peak indexing memory. Detailed results for
100 000 short reads are shown in Table 1.

BWA is most efficient in space complexity, because its index size
does not depend on the distance threshold. Instead, BWA’s time
complexity rapidly deteriorates as the edit-distance threshold grows
due to explosion of the number of traversed nodes in backtracking.
In contrast, SeqMap indexes and hashes all the combination of key
blocks, which leads to huge memory usage. SlideSort is similar to
SeqMap in that it considers all block combinations, but is much more
memory efficient. The difference is that SlideSort is an indexing free
method, which dynamically generates the pattern tree by depth-first
traversal. It allows us to maintain only necessary parts of tree in
memory.

3.2 Effect of pattern size
Figure 7 investigates the influence of pattern size k on the efficiency.
Except for d=1, the best setting was around k=2–4. Our method
k=1 roughly corresponds to the single seed approach, so this result
suggests the effectiveness of using chains. Overall, the computation
time was not too sensitive to the choice of k.

3.3 Comparison to single seed
Our algorithm employs a chain of common substrings to narrow
down the search. Compared with the single seed approach that uses
a k-mer to derive candidate pairs, the total length of substrings
can be much larger than the k-mer without losing any neighbors.
It yields higher specificity leading to a smaller number of candidate
pairs. Instead of a chain, one can detect multiple k-mers and verify
those pairs containing multiple matches (Burkhardt and Kärkkäinen,
2002). However, this approach has lower specificity in comparison

467

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/27/4/464/197379 by guest on 17 April 2024

[12:45 22/1/2011 Bioinformatics-btq677.tex] Page: 468 464–470

K.Shimizu and K.Tsuda

Fig. 5. Computation time on the two short read datasets. Among the four methods, ‘naive’ represents the exhaustive distance calculation.

Fig. 6. Memory usage on the two short read datasets. BWA’s memory usage is separately evaluated for the indexing step (index) and the search step (search).

Table 1. Computation time on 100 000 short reads

Dataset 1 Dataset 2

SlideSort BWA SeqMap Naive SlideSort BWA SeqMap Naive

Index Search Index Search

d = 1 0.2 2.34 3.25 7.68 8743.46 0.33 5.07 6.91 39.59 15 678
d = 3 0.85 2.37 562.63 205.26 23 796.1 1.84 5.09 1647.16 10 698.6 39 046.3
d = 5 6.56 2.19 19 697.67 93 115.2 38 179.5 5.56 5.08 12 876.88 >300 000 65 244.6

468

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/27/4/464/197379 by guest on 17 April 2024

[12:45 22/1/2011 Bioinformatics-btq677.tex] Page: 469 464–470

SlideSort

to the chain of the same total length, because the matching positions
of each elements of the chain are strictly localized due to Theorem 1.

Figure 8 compares the number of candidate pairs generated by our
method and single seed (k-mer in plot). It corresponds to the number
of edit-distance calculations. We have two variations of the single
seed method: ‘k-mer/nonredundant’ stores previously reported pairs
in memory, and does not include previously reported pairs in
candidates. ‘k-mer/redundant’ does not use additional memory but
counts the same pair multiple times. Here we set the length of the
k-mer to �/d so that no neighbors are lost. In the plot, one can
see a significant reduction in the number of candidate pairs in our
algorithm. Notice that the number of candidate pairs is shown in
log scale. In our method, the number of candidates is minimum
at the largest pattern size, because the total length of substrings
is maximized and specificity becomes optimal. However, since the
search space of patterns is expanded, the total computation time is
not optimal in this case.

3.4 Clustering analysis of short reads
A main application of SlideSort is hierarchical sequence clustering,
which would be used in correcting errors in short reads and
preprocessing for metagenome mapping, for example. SlideSort
provides an undirected graph G, where vertices represent short
reads and weighted edges represent edit distances of neighbor
pairs. Among hierarchical clustering algorithms, single link is
most scalable (Manning et al., 2008). Since the dendrogram of

Fig. 7. Comparison of performance of the proposed method with different
k evaluated on 1 000 000 short reads.

single link clustering is isomorphic to the minimum spanning
tree (Gower and Ross, 1969), one can perform single link clustering
via minimum spanning trees (MSTs) construction by the Kruskal or
Prim algorithm (Kruskal, 1956; Prim, 1957).

Since storing all edges can require a prohibitive amount of
memory, we used a well-known online algorithm for building
MSTs (Tarjan, 1983). It creates MSTs from a stream of edges,
discarding unnecessary edges along the way. It essentially maintains
all cycle-free connected components and, if a cycle is made by a new
edge, it removes the heaviest edge from the cycle. In our experiment,
the additional computation time for finding MSTs was trivially small
compared with that of SlideSort finding similar pairs (Table 2).
Figure 9 visualizes largest MSTs found in 10 000 000 short reads
of dataset 2 with edit-distance threshold 3 by the 3D visualization
tool Walrus (http://www.caida.org/tools/visualization/walrus/).

4 CONCLUSION
In this study, we developed a novel method that enumerates all
similar pairs from a string pool in terms of edit distance. The
proposed method is based on a pattern growth algorithm that can
effectively narrow down the search by finding chains of common
k-mers. Using deliberate duplication checks, the number of edit
distance calculations is reduced as much as possible. SlideSort was
evaluated on large datasets of short reads. As a result, it was about
10–3000 times faster than other index-based methods. All these
results demonstrate practical merits of SlideSort.

One naturally arising question is if SlideSort can be used for
mapping. In fact, it is possible by storing the pattern tree (Fig. 2) in
memory, and using it as an index structure. However, the index
would cost too much memory for genome-scale data. What we
learned from this study is that all pairs similarity search is essentially
different from mapping in that one can employ pruning and dynamic
memory management. Thus, all pairs similarity search is not a
subproblem of mapping and deserves separate treatment.

In future work, we would like to implement SlideSort with parallel
computation techniques. Recent progress in hardware technology
enables end-users to use many types of parallel computing scheme
such as SSE and GPGPU. SlideSort would be further improved by
using these technologies.

Fig. 8. Comparison of number of candidate pairs. The evaluations were done on 100 000 short reads. The proposed method was examined with k=1,...,5.
‘Neighbor pairs’ represent the actual number of neighbor pairs in data. ‘k-mer/nonredundant’ and ‘k-mer/redundant’ represent two variants of the single seed
method (see text).

469

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/27/4/464/197379 by guest on 17 April 2024

[12:45 22/1/2011 Bioinformatics-btq677.tex] Page: 470 464–470

K.Shimizu and K.Tsuda

Table 2. Comparison of computation time of searching pairs and finding MSTs for two types of short read datasets with edit-distance threshold 3

Number of reads Dataset 1 Dataset 2

Searching pairs only (s) Finding MSTs (s) Searching pairs only (s) Finding MSTs (s)

10 000 0.08 0.00 0.06 0.00
100 000 0.85 0.08 1.84 0.01
1 000 000 23.08 1.08 31.34 2.06
10 000 000 495.15 17.69 554.09 5.61

Fig. 9. Visualization of large MSTs from a neighbour graph of 10 000 000 short reads with edit-distance threshold 3. The left graph shows 360 MSTs of
112 995 nodes, each of which consists of more than 100 nodes. The right graph focuses on the largest MST that consists of 6990 nodes. It is straightforward
to obtain the dendrograms of single link clustering from these MSTs.

ACKNOWLEDGEMENT
The authors thank Kiyoshi Asai, Hisanori Kiryu, Takeaki Uno,
Tetsuo Shibuya, Yasuo Tabei and Martin Frith for their fruitful
discussions.

Funding: Grant-in-Aid for Young Scientists (22700319, 21680025)
by JSPS; FIRST program of the Japan Society for the Promotion of
Science in part.

Conflict of Interest: none declared.

REFERENCES
Abouelhoda,M. et al. (2004) Replacing suffix trees with enhanced suffix arrays.

J. Discrete Algorithms, 2, 53–86.
Burkhardt,S. and Kärkkäinen,J. (2002) One-gapped q-gram filters for levenshtein

distance. In Proceedings of the 13th Symposium on Combinatorial Pattern Matching
(CPM'f02). Vol. 2373 of Lecture Notes in Computer Science, Springer, Berlin,
Germany, pp. 225–234.

Gower,J. and Ross,G. (1969) Minimum spanning trees and single-linkage cluster
analysis. Appl. Stat., 18, 54–64.

Han,J. et al. (2004) Mining frequent patterns without candidate generation. Data Min.
Knowl. Discov., 8, 53–87.

Jiang,H. and Wong,W.H. (2008) Seqmap: mapping massive amount of oligonucleotides
to the genome. Bioinformatics, 24, 2395–2396.

Kruskal,J.B. (1956) On the shortest spanning subtree of a graph and the traveling
salesman problem. Proc. Am. Math. Soc., 7, 48–50.

Langmead,B. et al. (2009) Ultrafast and memory-efficient alignment of short dna
sequences to the human genome. Genome Biol., 10, R25.

Li,H. and Durbin,R. (2009) Fast and accurate short read alignment with burrows-
wheeler transform. Bioinformatics, 25, 1754–1760.

Li,R. et al. (2009) Soap2: an improved ultrafast tool for short read alignment.
Bioinformatics, 25, 1966–1967.

Lipman,D.J. and Pearson,W.R. (1985) Rapid and sensitive protein similarity searches.
Science, 227, 1435–1441.

Manning,C. et al. (2008). Introduction to Information Retrieval. Cambridge University
Press, Cambridge, UK.

Prim,R. (1957) Shortest connection networks and some generalizations. Bell Syst. Tech.
J., 26, 1389–1401.

Qu,W. et al. (2009) Efficient frequency-based de novo short-read clustering for error
trimming in next-generation sequencing. Genome Res., 19, 1309–1315.

Rajasekaran,S. et al. (2005) High-performance exact algorithms for motif search.
J. Clin. Monit. Comput., 19, 319–328.

Sagot,M.-F. (1998) Spelling approximate repeated or common motifs using a suffix
tree. In Lucchesi,C.L. and Moura,A.V. (eds), LATIN ’98: Theoretical Informatics,
Third Latin American Symposium, Vol. 1380 of Lecture Notes in Computer Science,
Springer, Berlin, Germany, pp. 374–390.

Simpson,J.T. et al. (2009) Abyss: a parallel assembler for short read sequence data.
Genome Res., 19, 1117–1123.

Tarjan,R. (1983) Data Structures and Network Algorithms. Society for Industrial and
Applied Mathematics (SIAM), Philadelphia, USA.

Trapnell,C. et al. (2009) Tophat: discovering splice junctions with rna-seq.
Bioinformatics, 25, 1105–1111.

Uno,T. (2008) An efficient algorithm for finding similar short substrings from large
scale string data. Proceedings of the 12th Pacific-Asia Conference on Advances in
Knowledge Discovery and Data Mining (PAKDD’08), Vol. 5012 of Lecture Notes
in Computer Science, Springer, Berlin, Germany, pp. 345–356.

Warren,R.L. et al. (2007) Assembling millions of short dna sequences using ssake.
Bioinformatics, 23, 500–501.

Weese,D. et al. (2009) Razers-fast read mapping with sensitivity control. Genome Res.,
19, 1646–1654.

Zerbino,D.R. and Birney,E. (2008) Velvet: algorithms for de novo short read assembly
using de bruijn graphs. Genome Res., 18, 821–829.

470

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/27/4/464/197379 by guest on 17 April 2024

