
[17:34 18/4/2011 Bioinformatics-btr151.tex] Page: 1351 1351–1358

BIOINFORMATICS ORIGINAL PAPER Vol. 27 no. 10 2011, pages 1351–1358
doi:10.1093/bioinformatics/btr151

Sequence analysis Advance Access publication March 30, 2011

Exact and complete short-read alignment to microbial genomes
using Graphics Processing Unit programming
Jochen Blom1,†,∗, Tobias Jakobi1,†, Daniel Doppmeier2, Sebastian Jaenicke1,
Jörn Kalinowski2, Jens Stoye3,4 and Alexander Goesmann1,4,5
1Computational Genomics, 2Institute for Genome Research and Systems Biology, CeBiTec, 3Genome Informatics,
Faculty of Technology, 4Institute for Bioinformatics and 5Bioinformatics Resource Facility, CeBiTec, Bielefeld
University, Bielefeld, Germany
Associate Editor: Alfonso Valencia

ABSTRACT

Motivation: The introduction of next-generation sequencing
techniques and especially the high-throughput systems Solexa
(Illumina Inc.) and SOLiD (ABI) made the mapping of short
reads to reference sequences a standard application in modern
bioinformatics. Short-read alignment is needed for reference based
re-sequencing of complete genomes as well as for gene expression
analysis based on transcriptome sequencing. Several approaches
were developed during the last years allowing for a fast alignment
of short sequences to a given template. Methods available to date
use heuristic techniques to gain a speedup of the alignments, thereby
missing possible alignment positions. Furthermore, most approaches
return only one best hit for every query sequence, thus losing the
potentially valuable information of alternative alignment positions
with identical scores.
Results: We developed SARUMAN (Semiglobal Alignment of short
Reads Using CUDA and NeedleMAN-Wunsch), a mapping approach
that returns all possible alignment positions of a read in a reference
sequence under a given error threshold, together with one optimal
alignment for each of these positions. Alignments are computed in
parallel on graphics hardware, facilitating an considerable speedup
of this normally time-consuming step. Combining our filter algorithm
with CUDA-accelerated alignments, we were able to align reads
to microbial genomes in time comparable or even faster than all
published approaches, while still providing an exact, complete and
optimal result. At the same time, SARUMAN runs on every standard
Linux PC with a CUDA-compatible graphics accelerator.
Availability: http://www.cebitec.uni-bielefeld.de/brf/saruman/saruman.html.
Contact: jblom@cebitec.uni-bielefeld.de
Supplementary information: Supplementary data are available at
Bioinformatics online.

Received on October 27, 2010; revised on March 15, 2011; accepted
on March 22, 2011

1 INTRODUCTION

1.1 Challenges of next-generation sequencing
Together with the advent of new high-throughput sequencing
technologies, the amount of generated biological data steadily

∗To whom correspondence should be addressed.
†The authors wish it to be known that, in their opinion, the first two authors
should be regarded as joint First Authors.

increased. These techniques allow for cost-effective sequencing of
complete libraries of different bacterial strains that may provide
new insights e.g. into microevolution, but experimental data need
to be processed before any conclusion can be drawn. Given an
Illumina Solexa setup with a 36-bp read length, even one lane
on the flow cell will suffice for deep coverage sequencing of
several bacterial genomes. Typically, the generated reads are mapped
on a closely related reference genome to perform a targeted
re-sequencing, an in-depth SNP analysis, or to gain knowledge
about gene expression when performing transcriptomic experiments
using cDNA sequencing. Different tools for mapping reads against
reference genomes are available at this time including MAQ
(Li et al., 2008), BWA (Li and Durbin, 2009), Bowtie (Langmead
et al., 2009), PASS (Campagna et al., 2009), SHRiMP (Rumble
et al., 2009) and SOAP2 (Li et al., 2009). MAQ was one of the
first mapping tools available and uses a hash data structure to keep
reads in memory while traversing the reference genome, resulting
in a comparably low memory footprint. But it lacks support for the
output of more than one mapping position per read and is not able to
compete with more recent approaches in terms of speed (Langmead
et al., 2009). BWA, Bowtie and SOAP2 are indexing the complete
reference genome using a Burrows-Wheeler-Transformation (BWT)
(Burrows and Wheeler, 1994) and process all the reads sequentially,
resulting in a considerable speedup of the mapping process. PASS
and SHRiMP also perform an indexing of the reference sequence,
but use a spaced seed approach (Califano and Rigoutsos, 2002)
instead of BWT. All mentioned approaches except SHRiMP are
heuristic and do not guarantee the mapping of all possible reads.
Especially reads that show insertions or deletions (indels) compared
to the reference sequence are often missed. Bowtie is unable to
identify such alignments by design, while SOAP2 only supports
gapped alignments in paired-end mode. As high accuracy and
confidence of short-read alignment is highly desirable, especially
in the analysis of single nucleotide polymorphisms (SNPs) or
small-scale structural variations, we decided to design an exact
short-read alignment approach that identifies all match positions
for each read under a given error tolerance, and generates one
optimal alignment for each of these positions without any heuristic.
To obtain an adequate runtime even for large-scale, whole-genome
applications, we employ the massively parallel compute power of
modern graphics adapters [Graphic Processing Unit (GPUs)]. A
qgram-based (Jokinen and Ukkonen, 1991) filter algorithm was
designed to find auspicious alignment positions of short reads
within the reference sequence. After the localization of possible

© The Author 2011. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 1351

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/27/10/1351/260144 by guest on 03 April 2024

[17:34 18/4/2011 Bioinformatics-btr151.tex] Page: 1352 1351–1358

J.Blom et al.

mapping positions, we use a Needleman–Wunsch (Needleman and
Wunsch, 1970) algorithm to compute optimal alignments of the
candidate sequences to the reference sequence. The alignments are
processed in parallel on a NVIDIA graphics card using the NVIDIA
CUDA (Compute Unified Device Architecture) framework. This
combination of a filter step with the parallel computation of optimal
alignments on graphics hardware allows us to compute an exact and
complete mapping of all reads to the reference in a time comparable
to existing heuristic approaches.

1.2 Parallelization in biosequence analysis
In computational biology, huge amounts of data need to be processed
and analyzed, therefore suggesting the exploration and evaluation
of new computational technologies like parallel programming. One
basic idea behind parallel programming is to divide a problem
into smaller, easier to solve subproblems, a technique known
as ‘divide and conquer’. Another approach is to solve a huge
number of small independent tasks by parallelization such that
each problem can be solved on a different processing unit, either
cores of one computer or a compute cluster. Once all calculations
are finished, they are combined into a solution of the original
problem. While server systems with 32 and more CPU cores are
available today and can be used to efficiently speedup multithreaded
software, they still pose a significant capital investment. Therefore,
specialized hardware for parallel processing has been employed,
such as Celeras GeneMatch™ASIC (application-specific integrated
circuit) approach which uses specialized processors to accelerate
several bioinformatics algorithms. A few years later, TimeLogic
developed Field Programmable Gate Arrays (FPGAs) to run adapted
versions of the Smith–Waterman, BLAST and HMMer software
with significant performance gains. Unfortunately, the prices for
such optimized special purpose hardware together with appropriate
licenses lie in the same expensive investment range as large servers.
A more cost-efficient possibility is the use of existing hardware
which can be employed for scientific computing through different
frameworks. The MMX technology introduced by Intel in 1997
is a SIMD (single input multiple data) approach which allows for
parallel processing of large amounts of data with specialized CPU
instructions. The MMX instruction set as well as its successor
SSE (Streaming SIMD Extensions) have been used to accelerate
implementations (Farrar, 2007; Rognes and Seeberg, 2000) of
the Smith–Waterman algorithm (Smith and Waterman, 1981). In
2008, also a first attempt on non-PC hardware has been published.
SWPS3 (Szalkowski et al., 2008) employs the Playstation 3’s cell
processor to speedup an adapted version of the Smith–Waterman
algorithm. Another trend in the recent past is the use of modern
graphics adapters in scientific computation due to their immense
processing power which still increases at a much faster rate than
the processing power of general purpose processors. While there
are several implementations available (Liu et al., 2009; Manavski
and Valle, 2008) that focus on the alignment of one query sequence
to a database of reference sequences, an algorithmic adaptation of
massively parallel pairwise alignments, as it could be used for short-
read alignments, is still missing. First approaches using graphics
cards as hardware accelerators for bioinformatics algorithms (Liu
et al., 2006) relied on OpenGL, resulting in a difficult and
limited implementation. Today, frameworks simplify software
development by hiding the layer of 3D programming behind a

more general Application Programming Interface (API). Thus, the
focus of development shifts from fitting a given algorithm to
OpenGL operations to the development of the best implementation.
The CUDA platform developed by the NVIDIA cooperation
(http://www.nvidia.com/object/cuda_home.html) and ATI’s Stream
framework (http://www.amd.com/stream) are novel approaches to
use the huge computational power of modern graphics cards not only
for games but also for scientific applications. Contemporary graphics
processing units are built as massively parallel computational
devices, optimized for floating point operations. Compared to
universal central processing units (CPUs) used in every computer,
GPUs are specialized for parallel execution of many small tasks
while CPUs are designed to execute fewer large tasks sequentially.
As such, GPUs are also well suited for the highly parallel
computation of small-scale alignments.

2 METHODS

2.1 Problem
The short-read matching problem can be defined as follows: we have given a
short sequencing read f of length |f |=m, a (in most cases genomic) reference
sequence g of length |g|=n, and an error threshold e≥0 defined by the user.
Then we want to calculate all starting positions i in g, such that there exists
an alignment of f and a prefix of g[i...] with at most e errors (mismatches
and/or indels). The algorithm shall be capable to export an optimal alignment
for every such match position.

This problem has been studied widely in the past, and most solutions are
based on one of the two following principles, or combinations thereof: the
qgram lemma states that two strings P and S with an edit distance of e share
at least t qgrams, that is substrings of length q, where t=max(|P|,|S|)−q+
1−q ·e.

That means that every error may destroy up to q ·e overlapping qgrams.
For non-overlapping qgrams, one error can destroy only the qgram in which
it is located, which results in the applicability of the pigeonhole principle.
The pigeonhole principle states that, if n objects (errors) are to be allocated
to m containers (segments), then at least one container must hold no fewer
than � n

m � objects. Similarly, at least one container must hold no more than
� n

m � objects. If n<m, it follows that � n
m �=0, which means that at least one

container (segment) has to be empty (free of errors). Moreover, if n<m this
holds for at least m−n segments. In our algorithm, presented in the following
section, we first use a 2-fold application of the pigeonhole principle to find
regions of interest in the genome, before we apply parameters derived from
the qgram lemma to make our final selection of positions to pass the filter.

2.2 Solution
Assumptions and definitions: as a basic assumption, we require a minimal
length of reads in relation to the given error threshold: m>e+1. Given this
assumption, we calculate the length of the qgrams for our filter algorithm as
follows. We define the length q of the qgrams as the largest value below m

e+1
such that

q′ :=� m

e+1
�, q :=

{
q′ if (e+1)q′<m,

q′−1 otherwise.

This guarantees that a read f can be split into e+1 intervals with an
additional non-empty remainder of length R :=m−(e+1)q.

Given the calculated qgram length, we create an index I of the starting
positions of qgrams in sequence g, such that for each possible qgram x, I(x)
contains the starting positions of x in g.

In the following step of the filter algorithm, every read is segmented into
pieces of length q (Fig. 1). We choose a set S of c=�m

q � segments S=s1 ...sc

of length q from f , such that for i=1,...,c :si= f [(i−1)∗q+1...i∗q]. As in

1352

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/27/10/1351/260144 by guest on 03 April 2024

[17:34 18/4/2011 Bioinformatics-btr151.tex] Page: 1353 1351–1358

GPU short read alignment

Fig. 1. The two sets of segments S and K . The two sets are shifted by the
distance of R.

most cases q=� m
e+1 �, it can easily be shown that c converges against e+1

for increasing read length m. We additionally choose a second set K of c
segments K=k1 ...kc of length q, such that for i=1,...,c :ki= f [(i−1)∗q+
1+R...i∗q+R], a set shifted by the remainder R.

The simple version of our algorithm allows for mismatches only, not
for insertion or deletions. In this case, it can be shown by the following
observations that a matching read f must have at least two matching segments
from the sets S and/or K . There are two cases, in the first case two segments
of set S will match, in the second case one segment from S and one segment
from K will match. The term ‘matching segment’ in the following indicates
that a starting position for the respective segment can be found in the genome
via exact occurrence within index I . The first segment found in the index is
used as seed, the second ‘matching’ segment has to be listed in the index in
appropriate distance to this seed. The algorithm is based on the assumption
that S and K comprise c=e+1 segments. In cases where c>e+1, we know
by the pigeonhole principle that at least two segments of S must match, which
fulfills our filter criterion directly. The segment set K is not needed in such
cases, and all algorithmic steps after the first can be skipped.

Filter algorithm: by the pigeonhole principle, we know that one segment
of set S ‘must’ match, as we allow e errors and have e+1 segments. We
can identify all match positions of segments si∈S for the given read in the
qgram index I and use them as starting points for the filter algorithm.

(1) For every segment si matching at a position b in the genome g
we check in I if there is another segment sj ∈S,j> i, that starts at
the expected position b+(j−i)∗q. If we find such a segment, we
identified the two matching segments we expect.

In the case that only one segment si∈S matches, there has to be exactly one
error in every remaining segment s1 ...si−1,si+1 ...sc. Otherwise, a second
segment of set S would match. We can infer that not more than c−i errors are
remaining in the segments to the right of read si, but due to the overlapping
construction of our segment sets we have one segment more of K to the
right of read si to check. Hence, if read f is a possible hit, one of these
c−(i−1) segments ki...kc has to match, and we can start the checks for set
K at position ki.

(2) Check if segment ki overlapping si matches. If it does, we have
successfully matched 2 qgrams and passed the filter.

If segment ki does not match, we know that ki overlaps si on q−R positions.
These positions are free from errors (as si matched without errors). Thus, the
error causing ki not to match must have been on the last R positions of ki

which are the first R positions of si+1. As there is exactly one error in every
segment of S, we can conclude that the last q−R positions of si+1 are free of
errors, which are the first q−R positions of ki+1. So if ki+1 does not match,
the next error is in the first R positions of si+2 and so on.

(3) Iteratively check all remaining segments ki+1 ...kc until one segment
matches and the read f passes the filter or until kc is reached.

If we reach kc, that means that kc−1 did not match, we know that the
error of sc was in the first R positions. So the last q−R positions of sc must

Fig. 2. A matching segment si∈S where no other segment of S has a match
in correct distance. Segments of set K are checked in this case. If none of the
segments ki ...kc matches, the read cannot match at the respective genome
position.

be correct, and so must be the first q−R positions of kc. The remaining R
positions of kc must also be correct because all errors are within segments
s1 ...sc. The last R positions of kc are not part of one of these segments, so
any error within them would be the e+1st one. If kc does not match, it can
be excluded that read f can be aligned to the reference sequence g with a
maximum of e errors at the actual position. See Figure 2 as illustration of
this matching process.

Insertions and Deletions: it is possible to allow indels in the matching
process by checking every segment not only on one position, but also on
several positions by shifting the segment to the left or right by up to t
positions, where t=e−(i−1) for an initial matching segment si as at least
i−1 errors have already occurred in the previous i−1 segments. Hence,
we conclude that if there are only e errors in f , it is always possible to
match (i) two segments of S or (ii) one segment of S and one segment
of K . Algorithm 1 identifies reads as candidates for a Needleman–Wunsch
alignment by checking for this condition.

Alignment phase: as soon as a second qgram hit has been found for a
given start index B, the alignment of f to g[B−e,B+m+e] is enqueued
for alignment and the rest of the filter phase for this value of B can be
skipped. To speed up this alignment procedure in practice, the verification by
alignment is computed on graphics hardware. Due to the parallel computation
of alignments on graphics hardware, a huge number of possible alignment
positions is collected before being submitted to the graphics card. The actual
number depends on the amount of memory available on the graphics card
(VRAM). The alignment of the read sequence f to the possibly matching
part g[B−e,B+m+e] of the reference sequence identified in the filter step is
computed by a Needleman–Wunsch algorithm. On both sides of this template
sequence, e, additional bases are extracted from the reference sequence to
allow for indels in an end-gap free alignment. We use unit edit costs for the
alignment matrix. As soon as the error threshold is exceeded in a complete
column of the distance matrix, the calculation is stopped, the read is discarded
and backtracing is omitted. If the complete distance matrix is computed, an
optimal alignment path is calculated in the backtracing step and the read is
reported as hit together with its optimal alignment. SARUMAN does not use
banded alignments, yet, this is planned for future releases.

3 IMPLEMENTATION
The feasibility of sequence alignments using GPU hardware was
demonstrated by different tools like SW-Cuda (Manavski and
Valle, 2008) or CUDASW++ (Liu et al., 2009). But, compared
to our solution, existing implementations focused on the search
for similar sequences in a huge set of other sequences, which
corresponds to a BLAST-like use. In contrast, SARUMAN searches
for local alignments of millions of short sequences against one long
reference sequence. Employing the filtering algorithm described in
the previous section, all possible alignment positions in the reference
genome can be identified, and thereby the problem is reduced to

1353

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/27/10/1351/260144 by guest on 03 April 2024

[17:34 18/4/2011 Bioinformatics-btr151.tex] Page: 1354 1351–1358

J.Blom et al.

Algorithm 1 (Mapper)

Require: A read f of length m
Require: A reference sequence g of length n

1. ## Set of candidate positions ##
2. C←∅
3. ## q calculated as described in Section 2.2 ##
4. c←�m

q �
5. R←m−c ·q
6. for i←1,...,c do
7. u← (i−1) ·q+1
8. ## initial matching segments ##
9. for each b in I(si) do

10. B←b−u
11. ## check remaining segments of S ##
12. for j← i+1,...,c do
13. v← (j−1)·q+1
14. ## shift by up to e−(i−1) positions ##
15. for t←−(e−(i−1)),...,+(e−(i−1)) do
16. ## if distance fits, add to alignment queue ##
17. if B+v+t∈ I(sj) then
18. add B to C
19. end if
20. end for
21. end for
22. if not B∈C then
23. ## check segments of K ##
24. for j← i,...,c do
25. v← (j−1)·q+1+R
26. for t←−e−(j−1),...,e−(j−1) do
27. if B+v+t∈ I(kj) then
28. add B to C
29. end if
30. end for
31. end for
32. end if
33. end for
34. end for
35. ## Send candidates to alignment ##
36. for each B∈C do
37. align f to g[B−e,B+m+e] and report hit if successful
38. end for

global alignments of a read sequence with a short substring of a
reference genome. Thus, compared to SW-Cuda, SARUMAN does
not align sequences against a database of templates, but is designed
as an alignment application to perform thousands of short pairwise
global sequence alignments in parallel.

The CUDA API is an extension to the C programming language.
Thus, the mapping part of SARUMAN was implemented in the
C programming language to simplify the integration of CUDA
code. Our software is divided into two consecutive phases, namely
mapping and aligning. Phase one, the creation of the qgram index
together with the following mapping of reads through qgrams, is
completely processed on the host computer. During phase two,
CUDA is used to compute the edit distance for candidate hits on the
graphics card using a modified Needleman–Wunsch algorithm. If the
computed edit distance of read and genome lies below a given error
threshold, the optimal alignment is computed in the backtracing step

on demand. The complete workflow of SARUMAN is illustrated in
Figure 3.

3.1 Mapping phase
The memory usage of the qgram index depends on the qgram length
and the number of replicates per qgram number, but is mainly
dependent on the size of the reference genome. To process large
reference genomes with limited resources, the reference sequence is
divided into several chunks that are processed iteratively. The size
of a sequence that can be processed in one iteration is restricted
by the available memory. Using this technique, it is possible for
SARUMAN to run on computers with small amounts of RAM by
dividing the qgram index into chunks perfectly fitting into available
memory. Our tests show that a standard computer with 4 GB of
RAM and a recent dual core CPU is able to read and process even
large bacterial genomes like Sorangium cellulosum (13 033 779 bp)
without any difficulties. However, this approach is not feasible
for large eukaryotic genomes as the number of needed iterations
would be too high. Supported read input formats are FASTA as well
as FASTQ. While the reads are stored in memory, all sequences
containing more than e ambiguous bases (represented as N) are
filtered out, due to the fact that an N would nevertheless be treated
as a mismatch by SARUMAN. Subsequently, perfect matches are
determined by exact text matching and exported as hits. Preceding
the actual filtering step, all reads are preprocessed. During this
phase, all located start positions of the 2∗c qgrams of a read in
the reference genome are extracted from the qgram hash index.
This list of positions is stored in an auxiliary data structure in order
to minimize access to the hash index in later stages and therefore
speedup the following filter step. Reads with perfect hits on the
reference genome are still further processed as there may exist
imperfect hits elsewhere on the reference, but for such reads the
starting positions of qgrams representing the perfect hit are removed
from the auxiliary data structure. After the first steps, each read is
mapped onto the reference genome using the algorithm described
in Section 2, whereas a read is only mapped once to a given start
position to avoid redundancy. While a combination of first and last
qgram (e.g. s1 and kc) exactly determines start and end position of
the read, two ‘inner’ qgrams (e.g. s2 and kc−1) would result in a
longer alignment in order to find the correct start and stop position.
Start positions for possible mappings are stored and transferred to
the CUDA module in a later stage. In order to not only exploit
the parallel architecture of graphics cards but also the availability
of multicore CPUs, the matching phase uses two threads. The first
thread handles mapping on the sense strand, whereas the second
thread processes mapping on the antisense strand. In contrast to
many other approaches, which employ a 2-bit encoding for the four
DNA letters, SARUMAN is able to handle Ns in reads as well as in
the reference genome. Since many genomes contain a small number
of bases with unknown identity, it is of advantage to treat these
bases as N. Replacing these positions with random or fixed bases
to maintain the 2-bit encoding may lead to wrong and in case of
random replacements even to irreproducible results.

3.2 Alignment phase
To efficiently use CUDA, it is of great advantage to understand the
underlying hardware of CUDA capable graphics adapters. A GPU
consists of a variable number of multiprocessors reaching from 1 in

1354

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/27/10/1351/260144 by guest on 03 April 2024

[17:34 18/4/2011 Bioinformatics-btr151.tex] Page: 1355 1351–1358

GPU short read alignment

Fig. 3. Program flow within SARUMAN. The three different application phases have been highlighted in different shades of gray. After reading the reference
genome, a qgram index is created, followed by the prefiltering of perfect hits. Consecutively, all reads are processed by the filtering algorithm which reports
all candidate hits and copies all necessary data to the GPU. Edit distances for candidates are computed and alignments for promising hits calculated, which
in the last step are postprocessed and printed out.

Fig. 4. CUDA hardware layout and memory organization. Each
multiprocessor consists of eight processors, each with an own set of
registers. Shared, constant and texture memory can be used by each of
the eight processors, while device memory is globally accessible between
multiprocessors.

entry level graphics adapters up to 60 multiprocessors in high end
video cards. Each of these multiprocessors has access to registers of
8 or 16 kb size and is divided into 8 small processors. The available
registers are divided and equally assigned to processors. This small
amount of writable memory should be used for data processed in the
currently active thread while texture memory and constant memory
are read only and can be used to prefetch data from the much slower
device memory. An overview of the CUDA hardware and memory
model is given in Figure 4. Implementing code for the execution on
a GPU is very similar to standard application development. Some
additional keywords extending the C programming language are
used to define on which device a function should be executed. A
function on the GPU is mapped to one thread on one processor
located on the graphics card, whereas one function can and should
be executed on many different datasets in parallel. This execution
scheme is called SIMT (single input multiple threads) due to its
relation to the similar SIMD scheme used in classical parallel
programming. Parallel programming with CUDA is transparent and
(within NVIDIA products) device independent for developers and
users. Launch of a CUDA application is controlled using only a
few parameters defining the total number of threads. Those threads
are organized hierarchically into grids, which themselves consist of

threadblocks. Each threadblock is a collection of a given number
of threads. A threadblock must be executable in any order and
therefore must not have any dependencies on other blocks of the
same grid. Once a sufficient number of candidate hits has been
found by the filter algorithm, all necessary data for performing the
alignments is collected. Read and genome sequences are stored
together with auxiliary data structures. Afterwards, all required
data for the alignment phase is copied to the GPU as one large
unit in order to minimize I/O overhead. The maximal number of
alignments fitting in the GPU memory heavily depends on read
length. SARUMAN automatically calculates a save value for the
number of parallel alignments. As the memory of the graphics
adapter is also a limiting factor, SARUMAN does not use the quality
information of reads as this would double up the memory usage.
For datasets with sufficient coverage and quality, we recommend
to simply remove all reads with low-quality bases. For 36 bp reads,
a value of 200 000 alignments (100 000 for each mapping thread
and direction) can be achieved on a standard GPU with 1 GB
of graphics memory [Video RAM (VRAM)]. Once all data of
the candidate hits has been copied to the GPU for each pair of
genome and read sequence, the edit distance is computed using the
desired values for match and mismatch positions. By comparing the
distance with the supplied maximal error rate, all candidates with
values above this threshold are discarded. Complete alignments are
only computed in a second backtracing step for candidates with
a tolerable edit distance. Typically, the alignment phase for one
batch takes only a few seconds to complete, including the whole
process of copying raw data to and processed alignments from the
GPU. Before any output is written, alignments are postprocessed by
clipping gaps at the start and end. For each possible start position
of each read, the optimal alignment is reported, in contrast to other
available tools which only deliver a fixed number of positions or do
not even guarantee to report any optimal alignment. SARUMAN
produces tab separated output by default which includes start
and stop position of the mapping together with the edit distance
and the complete alignment. The package includes an easy to
use conversion tool to generate the widely used SAM alignment
format. The SARUMAN software is available for download at
http://www.cebitec.uni-bielefeld.de/brf/saruman/saruman.html.

1355

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/27/10/1351/260144 by guest on 03 April 2024

[17:34 18/4/2011 Bioinformatics-btr151.tex] Page: 1356 1351–1358

J.Blom et al.

4 RESULTS

4.1 Evaluation methods
The evaluation was accomplished on a standard desktop PC with an
Intel Core2Duo E8400 3 GHz dual core processor with 8 GB DDR2
RAM and a GeForce GTX280 graphics card with 1 GB of VRAM.
All programs were run multithreaded on both processor cores, the
operating system was Ubuntu Linux. We used four datasets for the
performance evaluation, three synthetic read sets of roughly 18 mio.
reads generated from the Escherichia coli K12 MG1655 genome
(GenBank accession NC_000913), and a real dataset with data from
one lane of a re-sequencing run of Corynebacterium glutamicum
ATCC 13032 (GenBank Accession BX927147) using the Illumina
Solexa GAII sequencer, comprising 18 161 299 reads of 35 bp
length. The settings for all programs used in the comparisons were
adjusted to make the run parameters as comparable as possible.
To achieve this, we allowed two mismatches/indels for each read
and set all programs to support multithreading. Furthermore, we
allowed gapped alignment of reads where possible and adjusted the
alignment scoring matrix to simple unit costs. Detailed settings for
all tool runs are given in the Supplementary Material.

4.2 Performance evaluation
In order to prove the exactness and completeness of the presented
approach and to measure the discrepancy between exact and
heuristic implementations, we used the synthetic read sets described
in Section 4.1. Synthetic reads were generated with 36, 75 and 100 bp
length in both directions with up to two errors of different types, i.e.
mismatches, insertions, deletions and combinations thereof. About
three million of the artificial reads contained indels. These reads
were mapped to the original source genome Escherichia coli K12
MG1655. The dataset is available on the project homepage. Table 1
compares the mapping ratios of the different tools together with their
respective running time for 75 bp reads. Data for 36 bp reads and

100 bp reads are provided in the Supplementary Material. The goal
was to map all artificial reads on the genome at the exact position
without missing any mappings. As expected, using SARUMAN we
were able to map all artificial reads to the genome. Furthermore,
nearly all reads were mapped to the correct position in the reference
genome. In some rare cases (ca. 0.45%), SARUMAN returned
optimal alignments that are shifted from the reads original position
by up to e bases (Fig. 5). Such cases cannot be resolved, this
is a general problem of the edit cost function and not a flaw of
SARUMAN. Additionally, SARUMAN reported a large number
of other matches on different sites of the genome. Among them
were six matches that placed a read to an alternative position in
the reference genome with a better score than the alignment to the
original position. In this case, the incorporation of errors led to a read
that just by chance fits better to a wrong genomic position. While
alternative hits can be identified as misplaced in synthetic data, this
behavior is preferable for real data as one can not determine the
correct mapping position among several equally good locations.

The evaluation shows a clear separation of the programs into two
classes, depending on their ability to handle gaps. Neither SOAP2
nor Bowtie are able to perform gapped alignments, both tools were

Fig. 5. Example for an ambiguous mapping. The read has a deletion in a
poly-T region compared to the reference. This results in a shift of the mapping
position by one base as it is not possible to determine in which position the
deletion event happened.

Table 1. Sensitivity evaluation with an artificial dataset of 17.980.142 reads (75 bp) generated from Escherichia coli K12 MG1655 with up to two errors

SARUMAN SOAP2 Bowtie BWA SHRiMP PASS Reference

Mapped 17 980 142 15 142 908 15 123 838 17 746 484 17 980 142 16 873 044 17 980 142
Not mapped 0 2 837 234 2 856 304 233 658 0 1 107 098 0
Perfect 4 999 944 4 999 942 4 999 944 4 999 944 4 999 944 4 999 944 4 999 944
With errors 12 980 198 10 142 966 10 123 894 12 746 540 12 980 198 11 873 100 12 980 198
1 mismatch 4 999 908 4 999 906 4 999 908 4 999 908 4 999 908 4 999 908 4 999 908
2 mismatches 4 999 936 4 999 936 4 999 936 4 999 936 4 999 936 4 999 936 4 999 936
1 Insertion 499 992 34 648 29 900 489 788 499 992 478 754 499 992
2 Insertions 499 998 1243 496 405 563 499 998 496 499 998
1 Deletion 493 560 46 740 46 740 491 454 493 560 475 916 493 560
2 Deletion 493 354 4828 4828 433 605 493 354 452 714 493 354
1 Ins, & 1 Mism, 500 000 21 374 12 308 458 957 500 000 18 334 500 000
1 Del, & 1 Mism, 493 450 34 291 29 778 467 329 493 450 447 042 493 450

MCP 17 899 092 15 070 286 15 061 178 17 432 842 17 785 567 16 577 180 –
BMCP 17 899 086 15 070 286 15 061 178 17 430 632 17 784 713 16 577 173 –
Total alignments 19 971 674 16 425 886 16 542 168 18 022 317 19 423 932 18 447 418 –

Runtime (min) 12:03 06:40 18:56 15:09 95:06 27:42 –
RAM usage (kb) 3 375 236 702 964 14 420 117 172 1 313 944 399 278 –

MCP (Mapped to Correct Position) denotes the number of mapped reads that had a match to their original position. BMCP (Best Match at Correct Position) denotes the number of
reads where the best match was located at the correct position.

1356

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/27/10/1351/260144 by guest on 03 April 2024

[17:34 18/4/2011 Bioinformatics-btr151.tex] Page: 1357 1351–1358

GPU short read alignment

Table 2. In-depth analysis of reported mappings of 18 161 299 C.glutamicum re-sequencing reads with an error threshold of two

SARUMAN SOAP2 Bowtie BWA SHRiMP Pass

Mapped 18 025 584 18 001 767 17 999 961 18 023 109 16 558 248 17 859 475
Not mapped 135 715 159 532 161 338 138 190 1 603 051 301 824
1 alignment 17 406 040 17 467 485 17 388 188 17 732 158 16 057 777 17 284 434
2 alignments 184 224 153 627 181 476 171 385 144 175 167801
3 alignments 72 679 44 237 73 534 58 298 42 699 57630
≥ 4 alignments 362 641 336 418 356 763 61 268 313 597 349610
Alignments total 20 006 760 19 755 348 19 936 446 18 494 894 17 991 074 19 713 095

Runtime (min) 6:08 9:29 19:40 8:30 32:03 23:59

Matches reported by SOAP2 include reads containing Ns, which are treated as mismatch by other programs.

not able to map more than a small portion of sequences generated
with indels to their correct position by using mismatches instead of
gaps. The second group of tools consists of BWA, PASS, SHRiMP
and SARUMAN, which are all capable of aligning reads containing
gaps, although PASS shows a poor mapping ratio for reads with
more than one indel. BWA shows a very good performance, but
still misses more than 200 000 reads. SHRIMP shows a complete
mapping of all reads, but places less reads than SARUMAN to
the correct position. SARUMAN shows also the best performance
on the real C.glutamicum dataset presented in Table 2. As this
dataset originates from a re-sequencing of the identical strain, only
a very low number of errors is expected. Therefore, the differences
between the tools are quite small. Nevertheless, SARUMAN shows
the highest mapping ratio of all tools, and furthermore produces the
highest number of valid alignments. The dataset was evaluated with
an error threshold of two: data for one and three allowed errors are
given in the Supplementary Material.

Besides sensitivity, another major requirement of short-read
alignment approaches is the performance in terms of running time.
The runtime evaluation of the artificial reads shows that SOAP
is nearly double as fast as SARUMAN, but maps significantly
less reads. All other tools are comparably fast (BWA, Bowtie)
or considerably slower (SHRIMP, PASS) than our approach. For
the C.glutamicum re-sequencing dataset, SARUMAN performs
best with a running time of 06:08 min, while SOAP and BWA
take slightly longer with 9:29 and 8:30 min, respectively. Bowtie,
PASS and SHRiMP are three to five times slower. Considering
all calculated datasets, SOAP2 shows the best performance of all
compared approaches, being the only algorithm that is faster than
SARUMAN in most cases. BWA shows a runtime comparable to
SARUMAN, while Bowtie is highly dependent on the used error
ratio. For low error rates, it can compete with other approaches,
for higher error rates the runtime rises significantly. SHRiMP and
PASS are the slowest of the compared approaches for all evaluated
datasets. In summary, SARUMAN is the only approach that provides
exact and complete results, while still being nearly as fast or even
faster than all compared approaches. Thereby, it shows the best
overall performance for short-read alignment against prokaryotic
genomes.

4.3 Performance of filter and alignment components
The performance of the filter algorithm mainly depends on the
read length and the qgram length. We compared the number of

Table 3. Sensitivity of the filter algorithm and performance gain of the
GPU implementation, tested on E.coli artificial data

Read length 36 bp 75 bp 100 bp

Candidates 23 0405 03 15 405 284 14 991 106
Aligned 14 918 066 14 553 824 14 451 680
Filter step (min) 5:26 4:53 4:49

Alignment on GPU (s) 42 430 1046
Alignment on CPU (s) 1085 3282 5814
GPU:CPU 1:25.83 1:7.63 1:5.55

The upper part shows the runtime of the filter step, the alignment candidates passing
the filter and the number of reads that where successfully aligned. The lower part
compares the runtime of the alignment step on a GPU versus the runtime on a CPU.

candidates resulting from the filter algorithm with the number of
alignments successfully verified by the alignment step. The results
are shown in Table 3. The efficiency of the filter algorithm is slightly
increasing with longer read lengths due to the bigger qgram size. The
performance of the alignment step is decreasing as the alignments
of the longer reads are more memory consuming on the graphics
adapter. But even for 100 bp reads, the GPU implementation shows
a more than 5-fold speedup compared to the CPU implementation
of the same algorithm.

5 DISCUSSION
For short-read alignments against microbial genomes, SARUMAN
has proven to be as fast or even faster than other available approaches
like SOAP2, Bowtie, BWA, SHRiMP and Pass (Tables 1 and 2).
In contrast to heuristic approaches, SARUMAN guarantees to find
optimal alignments for all possible alignment positions. Compared
to SHRiMP, another exact aproach, SARUMAN shows a better
runtime performance. Thus, it is the first non-heuristic approach
providing full indel support in competitive computing time. The
completeness of the SARUMAN mapping was demonstrated using
a constructed dataset, where all reads could be mapped correctly
(Table 1). SARUMAN is designed as a short-read alignment
approach; nonetheless, it works properly and with reasonable
running times for reads up to lengths of 125 bp. The qgram index
used in the filter step has a memory usage that in worst case increases
linearly with the size of the reference genome. Furthermore, as
SARUMAN provides a proper handling of Ns in the reference
sequence as well as in the reads, it cannot use two bit encoding

1357

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/27/10/1351/260144 by guest on 03 April 2024

[17:34 18/4/2011 Bioinformatics-btr151.tex] Page: 1358 1351–1358

J.Blom et al.

of nucleotides, which further increases the memory footprint. On
a standard desktop PC with 4 GB RAM, it can map reads to all
bacterial genomes in a single iteration, with 8 GB RAM fungal
genomes of up to 50 Mb in size were processed in a single run.
If a reference genome is too large for the available memory, it is
automatically split into two or more parts as described in Section 3.
Of course the running time of the algorithm has to be multiplied
by the number of iterations that are needed. Due to this limitation,
we propose SARUMAN as dedicated solution for read mapping
on microbial reference genomes or other reference sequences of
comparable size. SARUMAN does not natively support paired
end sequencing data, but as all possible alignments are returned
this can be handled by post-processing the results to flag read
pairs as matching either in compatible distance or not. A post-
processing tool is under development. Several further improvements
to SARUMAN are planned for the future. One idea is to combine
the CUDA alignment module with other filter algorithms. These
may be heuristic solutions to establish an even faster short-read
alignment, or algorithms based on compression techniques like the
BWT to reduce the memory usage and make the approach more
applicable to large reference genomes. The highest potential for a
further speedup has the processing of the filtering algorithm on the
graphics adapter. Unfortunately, this is not yet foreseeable as it is
quite complicated to handle the reference sequence data with the
limited amount of memory available on the graphics cards, but it
may become feasible with future generations of graphics hardware.
Another planned development is a native support for color space
data as generated by the SOLiD sequencing system.

ACKNOWLEDGEMENTS
The authors wish to thank the Bioinformatics Resource Facility
system administrators for expert technical support.

Funding: German Federal Ministry of Education and Research
(grant 0315599B ‘GenoMik-Transfer’) to J.B. and S.J.

Conflict of Interest: none declared.

REFERENCES
Burrows,M. and Wheeler,D.J. (1994) A block-sorting lossless data compression

algorithm. Technical Report 124, Digital Systems Research Center, Palo Alto,
California.

Califano,A. and Rigoutsos,I. (2002) FLASH: A fast look-up algorithm for string
homology. In Computer Vision and Pattern Recognition, 1993. Proceedings
CVPR’93., 1993 IEEE Computer Society Conference on. IEEE, New York, NY,
USA, pp. 353–359.

Campagna,D. et al. (2009) PASS: a program to align short sequences. Bioinformatics,
25, 967.

Farrar,M. (2007) Striped Smith-Waterman speeds database searches six times over other
SIMD implementations. Bioinformatics, 23, 156–161.

Jokinen,P. and Ukkonen,E. (1991) Two algorithms for approximate string matching in
static texts. Lecture Notes in Computer Science, 520/1991, 240–248.

Langmead,B. et al. (2009) Ultrafast and memory-efficient alignment of short DNA
sequences to the human genome. Genome Biol., 10, R25.

Liu,W. et al. (2006) Bio-sequence database scanning on a GPU. In Parallel and
Distributed Processing Symposium, 2006. IPDPS 2006. 20th International, IEEE,
Rhodes Island, Greece, p. 8.

Liu,Y. et al. (2009) CUDASW++: optimizing Smith-Waterman sequence database
searches for CUDA-enabled graphics processing units. BMC Res. Notes, 2, 73.

Li,H. and Durbin,R. (2009) Fast and accurate short read alignment with Burrows-
Wheeler transform. Bioinformatics, 25, 1754–1760.

Li,H. et al. (2008) Mapping short DNA sequencing reads and calling variants using
mapping quality scores. Genome Res., 18, 1851–1858.

Li,R. et al. (2009) SOAP2: an improved ultrafast tool for short read alignment.
Bioinformatics, 25, 1966–1967.

Manavski,S.A. and Valle,G. (2008) CUDA compatible GPU cards as efficient hardware
accelerators for Smith-Waterman sequence alignment. BMC Bioinformatics, 9
(Suppl. 2), S10.

Needleman,S.B. and Wunsch,C.D. (1970) A general method applicable to the search for
similarities in the amino acid sequence of two proteins. J. Mol. Biol., 48, 443–453.

Rognes,T. and Seeberg,E. (2000) Six-fold speed-up of Smith-Waterman sequence
database searches using parallel processing on common microprocessors.
Bioinformatics, 16, 699–706.

Rumble,S. et al. (2009) SHRiMP: accurate mapping of short color-space reads. PLoS
Comput. Biol., 5, e1000386.

Smith,T.F. and Waterman,M.S. (1981) Identification of common molecular
subsequences. J. Mol. Biol., 147, 195–197.

Szalkowski,A. et al. (2008) SWPS3 - fast multi-threaded vectorized Smith-Waterman
for IBM Cell/B.E. and x86/SSE2. BMC Res. Notes, 1, 107.

1358

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/27/10/1351/260144 by guest on 03 April 2024

