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ABSTRACT

Motivation: Next generation sequencing technology generates high-
throughput data, which allows us to detect fusion genes at both
transcript and genomic levels. To detect fusion genes, the current
bioinformatics tools heavily rely on paired-end approaches and
overlook the importance of reads that span fusion junctions. Thus
there is a need to develop an efficient aligner to detect fusion
events by accurate mapping of these junction-spanning single reads,
particularly when the read gets longer with the improvement in
sequencing technology.
Results: We present a novel method, FusionMap, which aligns
fusion reads directly to the genome without prior knowledge of
potential fusion regions. FusionMap can detect fusion events in both
single- and paired-end datasets from either RNA-Seq or gDNA-Seq
studies and characterize fusion junctions at base-pair resolution.
We showed that FusionMap achieved high sensitivity and specificity
in fusion detection on two simulated RNA-Seq datasets, which
contained 75 nt paired-end reads. FusionMap achieved substantially
higher sensitivity and specificity than the paired-end approach when
the inner distance between read pairs was small. Using FusionMap
to characterize fusion genes in K562 chronic myeloid leukemia cell
line, we further demonstrated its accuracy in fusion detection in
both single-end RNA-Seq and gDNA-Seq datasets. These combined
results show that FusionMap provides an accurate and systematic
solution to detecting fusion events through junction-spanning reads.
Availability: FusionMap includes reference indexing, read filtering,
fusion alignment and reporting in one package. The software is free
for noncommercial use at (http://www.omicsoft.com/fusionmap).
Contact: ge@amgen.com
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
A fusion gene is a hybrid gene by joining parts from two previously
separate genes at transcript or genomic level. The importance of
fusion genes in cancer development has been well recognized
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since the discovery of the recurrent BCR-ABL1 fusion gene in
chronic myelogenous leukemia (CML) (Tkachuk et al., 1990) and
TMPRSS2-ERG fusion gene in solid tumor (Tomlins et al., 2005).
Fusion genes are caused by chromosomal aberrations, e.g. inversion,
translocation, large deletion or insertion. For example, BCR-ABL1
is formed by a translocation event involving chromosome 9 and 22.
Its fusion transcript is translated into an abnormal tyrosine kinase,
which plays a critical role in the development of CML (Lugo et al.,
1990; Rabbitts, 2009).

These chromosomal aberrations were traditionally detected
through fluorescence in situ hybridization (FISH) or comparative
genomic hybridization (CGH) techniques (Edwards, 2009). Array-
CGH and SNP array were later developed to detect genomic copy
number variations at 1Kb resolution in a high-throughput fashion
(Pinkel et al., 1998; Redon et al., 2006). Compared to these
techniques, next-generation sequencing (NGS) generates base-pair
resolution data, which allows the detection and characterization of
genomic aberrations at more levels of details. With NGS, fusion
genes were detected using either genomic DNA sequencing (gDNA-
Seq) (Campbell et al., 2008; Hampton et al., 2009) or transcriptome
sequencing (RNA-Seq) (Berger et al., 2010; Levin et al., 2009;
Maher et al., 2009a).

In NGS datasets, fusion genes can be detected based on both
paired- and single-end reads. On the one hand, paired-end reads
(50–100 bp) generated from long fragments (200–500 bp) are shown
to be useful in increasing the ability to detect fusion events (Berger
et al., 2010). In a paired-end NGS dataset, a discordant read pair is
one that is not aligned to the reference genome with the expected
distance or orientation. If a set of discordant read pairs are mapped to
two different genes, a fusion gene is suggested (Maher et al., 2009b).
Computational tools like FusionSeq (Sboner et al., 2010) have been
developed to detect fusion candidates by analyzing paired-end reads
and removing spurious candidates using varied filters. On the other
hand, single-end reads that span the fusion junctions provide base-
pair evidence for the fusion events. Since sequencing technology is
improving rapidly, the current usable read length from the Illumina
Genome Analyzer is typically in the range of 75–100 nt and reaches
150 nt using Illumina’s TruSeq SBS V5 GA Kit (Illumina, 2010).
Long read lengths not only increase the number of fusion junction-
spanning reads but also allow us to align them unambiguously to
the fusion junction. Moreover, junction-spanning reads can also be
present in paired-end datasets. They provide additional information
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Fig. 1. Identification of fusion events in NGS dataset through junction-
spanning reads. Fusion source 1 and 2 are from two different genes or
genomic regions.

for fusion genes suggested by discordant read pairs. When the read
length is long or the inner distance (the gap size) between read pairs
is short, the number of junction-spanning reads would be larger
than that of discordant read pairs. Then, fusion detection based
on junction-spanning reads is more powerful than the paired-end
approach.

One approach to detect fusion junction-spanning reads is mapping
the reads to a set of artificially constructed exon–exon segments
from potential fusion gene pairs (Levin et al., 2009). However,
such an approach relies on prior knowledge of potential fusion
regions and only identifies fusion junctions between known exons.
Another approach is using splice aligners, such as TopHat (Trapnell
et al., 2009) SpliceMap (Au et al., 2010) and MapSplice (Wang
et al., 2010), to detect splice junctions. These alignment tools
can split and map a read to different locations in a genome but
only within local regions (usually ≤50 Kb). They are not able to
identify distant or inter-chromosome fusion genes. Therefore, the
development of a dedicated fusion aligner to align junction-spanning
reads is necessary for fusion detection.

In this article, we describe a new method, FusionMap, which
detects and aligns fusion junction-spanning reads to the reference
genome systematically. FusionMap can be applied to both single-
and paired-end datasets from either RNA-Seq or gDNA-Seq studies.
During the fusion alignment, FusionMap dynamically creates
a pseudo fusion transcript/sequence library based on consensus
junction sequences suggested by seed reads, and then aligns the
remaining full-length reads to this pseudo reference (Fig. 1 and
Supplementary Fig. S1). The program reports a list of detected fusion
junctions, statistics of supporting reads, fusion gene pairs, as well
as genomic locations of breakpoints and junction sequences, which
characterize fusion genes comprehensively at base-pair resolution.

2 METHODS

2.1 Basic alignment
Fusion reads are defined as reads spanning fusion junctions between two
different genes or genomic regions. FusionMap makes substantial use of
a basic aligner to detect and align fusion reads to the genome reference.
The basic alignment is an implementation of a modified GSNAP method
(Wu and Nacu, 2010). GSNAP is a hash table based aligner allowing for
multiple mismatches and long indels. In GSNAP, the hash table indexes
12mers every 3 nt in the genome and uses another array to store the position
list of each 12mer. Each 12mer is used as a hash key to quickly look up the

possible positions for the input read. GSNAP can detect complex variation
such as long indels and novel splicing junctions in both gDNA-Seq and
RNA-Seq datasets. In FusionMap, we have implemented GSNAP with two
important modifications. First, we store the positions for 14mers instead
of 12mers in the hash table. The memory required for the data structures
increases from 5.0 GB to 5.9 GB, but the position list for each 14mer is
decreased by a factor of 16 on average. This modification speeds up the
GSNAP alignment by a factor of 2–4 times depending on the read length.
Second, for RNA-Seq alignment where a known gene model is available,
we first align the reads to the transcriptome library allowing for nonunique
mapping, and remap the transcriptome coordinates to genomic coordinates.
Most of the nonunique transcriptome coordinates will be converted to
unique genome coordinates. This modification significantly improves the
performance of RNA-Seq alignment, as the majority of the reads can be
mapped to the transcriptome as exon reads or known exon junction spanning
reads. For those reads that cannot be mapped to the transcriptome, we use
GSNAP to align them to the genome as potential intron or novel inter-exon
reads.

2.2 Fusion detection pipeline
FusionMap can be applied directly to the whole dataset but would take less
time if it focuses on unmapped reads after regular alignment. The fusion
detection pipeline contains five main steps as described in the following
subsections:

Step 1: filtering: FusionMap filters input reads before fusion alignment.
For each read, if the quality score is available, FusionMap has an option to
trim the low-quality base from the 3′ end until the first high-quality base is
found. It then aligns all reads to a pre-built reference index. The reference
can be a genome or a set of target regions. The alignment considers known
and novel splice junctions if the input reads are from RNA-Seq studies. All
aligned reads will be regarded as normal reads from transcripts or genomic
regions and filtered out. Due to sequencing/base-calling errors and single
nucleotide polymorphisms (SNPs), some normal reads will not be filtered
out using standard alignment parameters, e.g. allowing two mismatches for
75 nt reads. During fusion alignment as described in Step 2, FusionMap will
cut each unfiltered normal read into two parts and align them separately.
The program may detect a false fusion junction if one part is aligned to its
true position while the other part is misaligned to a different location due
to the sequence similarity. In order to reduce the false discovery due to the
misalignment, by default, we relax the alignment parameter in this filtering
step allowing at most 8% dissimilarity between each read and the reference.
It allows at most six mismatches for a 75 nt read.

Moreover, because a true fusion read spans across a fusion junction, if
we cut the read in the middle we should be able to align at least one half to
the reference. If neither half can be aligned, the read will be regarded as a
low-quality read or artifact and filtered out. In practice, more than 90% of the
input reads can be excluded from further consideration by the two filtering
strategies.

Step 2: fusion alignment of seed reads: FusionMap detects fusion junctions
based on seed reads which contain the fusion positions in the middle region
of the reads (Fig. 1). In order to search seed reads efficiently, FusionMap
first follows a simple rule to check each unmapped read. Given a read string
S1∼N with N nucleotides, let Si∼j denote the substring of the whole read
from the i-th to j-th nucleotide and let parameter α denote the minimum end
length of a seed read. If the α-nt prefix (S1∼α) and suffix (S(N−α+1)∼N ) of a
read can both be aligned to the reference, FusionMap then considers it as a
candidate seed read.

For each candidate seed read, FusionMap cuts the whole read into two
ends: S1∼i and S(i+1)∼N , where α≤ i≤N-α. The region [α, N-α] contains all
possible cutting positions, and is called the seed region. By default, α = 25, a
75 nt read has 26 possible cutting positions while a 100 nt read has 51 possible
cutting positions. After cutting, FusionMap aligns S1∼i and S(i+1)∼N to the
reference separately. Let S denote the general term for a short sequence,
either a whole read or a substring of a read. We then define F(S) as the
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Table 1. Important parameters in fusion alignment

Parameter Default value

Minimum end length of a seed read α 25
Maximum hits of a seed read end (ß) 1 (unique mapping)
Non-canonical splice pattern penalty (G) 2 (equal to two mismatches)
Minimum distance of a fusion junction 5000 bp
Maximum alignment penalty for a read max(2, (ReadLength-31)/15)
Minimum number of rescued reads 1
Minimum number of distinct fusion reads 2

alignment penalty for S using the total number of mismatches plus the gap
penalty (default gap penalty is 2), and define F0(S) as the maximum allowable
alignment penalty. By default, F0(S)=max(2,(ReadLength−31)/15).

In the RNA-Seq datasets, studies have shown that most of detected fusion
junctions in RNA-Seq datasets are splice junctions of fusion genes (Levin
et al., 2009; Sboner et al., 2010). Thus, we also define an additional penalty,
G(i), for the mapped genomic location of the cutting position i in RNA-Seq
alignment:

G(i)=
{

G,ifalignmentof S1∼i and S(i+1)∼N /∈�

0, ifalignmentof S1∼i and S(i+1)∼N ∈�
,

where � denotes the event that mapped locations of S1∼i and S(i+1)∼N have
one of canonical splice patterns (GT-AG, GC-AG and AT-AC). G is a user-
defined parameter, representing the noncanonical splice pattern penalty.

Based on the alignment of S1∼i and S(i+1)∼N , FusionMap determines the
optimal cut(s) (i∗) as the fusion position(s) for S1∼N if all of the following
conditions are true:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

i∗ = arg min
α≤i≤N−α

{
F(S1∼i)+F(S(i+1)∼N )+G(i)

}
F(S1∼i∗ )+F(S(i∗+1)∼N )+G(i∗)≤F0(S1∼N )

F(S1∼i∗ )≤ F0(S1∼i∗ )

F(S(i∗+1)∼N )≤F(S(i∗+1)∼N )

FusionMap excludes any candidate seed read if no i satisfying these
conditions.

By default, G = 2 for RNA-Seq datasets. FusionMap favors the cut
and alignment that forms splice junctions by setting G > 0. When we set
G > F0(S1∼N ), it only detects fusion junctions with canonical splice patterns.
For optimal fusion cut(s) i∗, we also require that the number of alignment hits
from each single end (S1∼i∗ and S(i∗+1)∼N ) is not greater than a user-defined
parameter β (the maximum hits of a read end) to control the specificity.
By default, we set β = 1 which requires unique alignment of each end,
controlling the false discovery of fusion events in the repetitive regions.
The alignment of S1∼i∗ and S(i∗+1)∼N may have different strand orientations
and this information is important to define a fusion. In this step, qualified
reads are confirmed as seed reads.

The number of seed reads provides confident estimate for the abundance
of a fusion gene or transcript. Denote Mtotal as the total number of reads in
the NGS dataset and Mmapped as the number of reads mapped to the reference
before fusion alignment. In the remaining unmapped reads, suppose Mseed

is the number of seed reads detected by FusionMap for a particular fusion
junction. We define a measure called seed reads per kilobase of seed region
and per million mapped reads (SRPKM):

SRPKM=
Mseed

L×Mmapped
×103 ×106,

where L is the seed region length adjusted by the number of allowable
mismatches. For 75 nt reads, L = 75 − 2 * 25 + 1 + 2 * 2 = 30 when using α =
25 and allowing two mismatches; SRPKM = 1 when FusionMap detects one
seed read for the fusion junction in a dataset with 33 million mappable reads.

Step 3: fusion junction searching and rescue mapping: FusionMap
searches possible fusion junction position(s) based on the consensus of
mapped fusion positions from seed reads. It only considers fusion junctions
with a distance larger than 5000 bp by default. FusionMap creates a
pseudo fusion transcript/sequence library by extracting and extending both
fusion source sequences and concatenating them into a single pseudo
transcript/sequence reference. It dynamically builds the reference index
based on the pseudo fusion library and aligns unmapped possible fusion
reads to this pseudo reference. Reads mapped in this step are considered as
rescued reads (Fig. 1) providing additional support for the detected fusion
junction. By default, FusionMap only reports fusion candidates with at least
one rescued fusion read (Table 1).

Step 4: aggregation of fuzzy fusion junctions: Because nucleotides at the
edges of two fusion sources might be similar, as well as the allowance
for mismatch and gap during the alignment (see one example in the
Supplementary Fig. S2), FusionMap may detect multiple optimal cut
positions on the seed read and then report a set of fuzzy junctions close to the
true one. Usually, these junctions are only differed by losing (gaining) a few
(usually 1–5) base-pairs on one fusion edge and gaining (losing) the equal
amount of base-pairs on the other fusion edge. In order to reduce redundancy,
FusionMap aggregates these junctions and reports the one having the most
seed reads, or having the most rescued reads if their numbers of seed reads are
the same. The seed and rescued reads belonging to the same fuzzy junction
set are also aggregated for the final fusion report.

For each fusion junction, FusionMap counts the number of supportive
reads with distinct mapped locations. By default, FusionMap only reports
fusion candidates with at least two distinct fusion reads, removing potential
false positives resulted from the PCR amplification of the same read.

Step 5: advanced filtering: Detected fusion candidates can go through
this optional step to further filter out potential false positives. We have
prepared a blacklist for genes and gene pairs. The current gene blacklist
includes mitochondrial and ribosomal genes according to Gene Ontology
(GO), and pseudogenes according to three sources: Ensembl annotations,
Entrez Gene Database and HUGO Gene Nomenclature Committee (HGNC).
Fusion candidates involving genes included in this blacklist will be removed.
The current gene pair blacklist includes the gene family definition according
to HGNC and the paralog gene pairs from Ensembl BioMart (Smedley et al.,
2009). Fusion candidates formed by gene pairs that are paralogs or from the
same gene family will be removed.

3 RESULTS

3.1 Evaluation of FusionMap on simulated datasets
We evaluated the performance of FusionMap on paired-end RNA-
Seq datasets from simulation. The simulation used H1 human
embryonic stem cells (hESCs) as backgrounds, which were not
expected to harbor any fusion transcripts. Two background datasets
(2×75 nt) were downloaded from NCBI Sequence Read Archive
(SRA) under accession no. SRR065491 and SRR066679, which
were generated by the ENCODE Caltech RNA-Seq project (Birney
et al., 2007; Raney et al., 2010). We simulated two datasets P1 and P2
based on SRR065491 and SRR066679, respectively (Table 2). Each
dataset contained 75 nt paired-end reads from 50 simulated fusion
transcripts and they were mixed with the background reads. The
number of reads generated per fusion depended on the RPKM values
of the genes forming the fusion transcript, and their insert fragment
size was equal to the median insert size in the corresponding
background dataset.

We aligned both datasets to human genome assembly hg19 and
a splice junction library using Bowtie (version 0.12.5) (Langmead
et al., 2009) allowing two mismatches. The splice junction library
was generated based on RefSeq gene models. After this regular
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Table 2. Simulated RNA-Seq datasets

Dataset Background
(H1-hESC 2×75 nt)

Median
insert
size

#Background
reads

#Simulated
reads

#Fusion
reads

#Total
Reads

Alignment statistics

#Mappable
reads

#Uniquely mapped and
paired reads

#Unmapped
Reads

P1 SRR065491 400 bp 78652192 179086 70414 78831278 52839838 38195304 25991440
P2 SRR066679 158 bp 49179164 114418 8600 49293582 36734289 32193918 12559293

Fusion reads are reads generated from fragments covering fusion junction.

alignment, unmapped reads were supplied as the input to run
FusionMap, using the following parameter combinations: the
minimum end length of a seed read α = 20,25 or 30, the maximum
hits of a read end β = 1,2 or 5 and the penalty for noncanonical
splice pattern G = 2 or 4.

To assess the performance of FusionMap, we counted the numbers
of false/true positives and calculated sensitivity/specificity at varied
cutoffs on the number of seed reads (Supplementary Materials). In
both datasets, FusionMap achieved high sensitivity and specificity
in fusion detection using the parameters {α = 25,β = 1} (Fig. 2A
and 2B). α and β are two important parameters in determining
FusionMap’s sensitivity and specificity. At the same cutoff on the
number of seed reads, the specificity was reduced and the sensitivity
was increased when we decreased the minimum end length of the
seed read (α) or allowed more alignment hits for each read end
(β) (Supplementary Fig. S5). We also assessed the performance
of FusionMap without the advanced filtering step, and the results
showed that the specificity decreased a little. It demonstrated that
the great majority of high specificity was achieved through the fusion
alignment of junction-spanning reads.

We next evaluated the impact of parameter G on the fusion
detection accuracy. Because the maximum alignment penalty is 2
(number of mismatches plus the gap penalty) for a 75 nt read, fusion
junctions with canonical splice patterns were favored by setting
G = 2 and became the only choice for FusionMap detection by
setting G = 4. Thus the specificity was improved in dataset P1 and
P2 by increasing G from 2 to 4 (Fig. 2A and 2B). Moreover, since
it is possible that the fusion junction may not have the canonical
splice patterns, we used the same simulation scheme to get an
additional dataset (named P3) with breakpoints in the middle of
exons (see Supplementary Materials). We found that the majority
of simulated fusion genes (42 out of 50) were detected using
{α = 25,β = 1,G = 2}, and the sensitivity was slightly impaired
using G = 2 comparing to that from G = 0 (Supplementary Fig. S6A).

We assessed the accuracy of fusion breakpoint detection by
calculating the distance between the genomic coordinates of
detected and simulated breakpoints. Among breakpoints detected for
simulated fusion genes using G = 2, close to 70% matched the exact
positions in dataset P1 and P2 (Fig. 2C and 2D). We further examined
the breakpoints with the genomic distance larger than five base-
pairs and found the majority of them were actually close (<5 bp)
to the simulated positions at the transcript levels. The detected and
simulated breakpoints were in two adjacent exons but far away at the
genomic level, which caused the aggregation step to fail to combine
them into one. In fact, for the fusion gene with multiple detected
junctions, if we only chose the one with the maximum number of

A B

C

E

D

Fig. 2. Performance of FusionMap on simulated RNA-Seq datasets. (A and
C): dataset P1; (B and D): dataset P2. (A and B): number of false and true
positives in results using varied parameter combinations. (C and D): detection
accuracy of breakpoint positions measured by the distance between simulated
and detected positions. (E): estimation of RPKM values for simulated fusion
genes using the number of seed reads or SRPKM values. The ratios were
calculated for each fusion gene based on results using three α values and
{β=1,G=2} in both datasets.

seed reads, >96% of them matched the exact positions in dataset
P1 and P2. Moreover, when using G = 4, FusionMap detected one
fusion junction per fusion gene, and the detection accuracy reached
100% (the red bar in Fig. 2C and 2D).
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We also assessed the accuracy in the simulated dataset with fusion
breakpoints in the middle of exons (dataset P3). The results showed
that FusionMap detected one fusion junction per fusion gene, and
>70% junctions matched the simulated positions and 100% were
within ±5 bp range (Supplementary Fig. S6B). In dataset P3, the
breakpoint detection accuracy was slightly impaired by setting G = 2
comparing to that from G = 0 since FusionMap favored the canonical
splice sites if the simulated breakpoint was close (1–2 bp) to these
sites.

The number of seed reads covering the fusion junction is a
function of sequencing depth and read length. SRPKM is the number
of seed reads normalized by number of mappable reads in the whole
NGS dataset and also by the adjusted seed region length. It provided
a measure close to the RPKM value of the fusion gene or transcript
(Fig. 2E), and facilitated the comparison of abundances of fusion
products both between samples and between different read lengths.

3.2 Comparison with FusionSeq
We compared FusionMap with FusionSeq (ver. 0.6.1) (Sboner
et al., 2010) on simulated datasets P1 and P2. FusionSeq contains
a detection module to identify fusion candidates based on inter-
transcript paired-end reads, a filtration cascade module to remove
spurious candidates and a junction-sequence identifier to detect the
exact sequence at breakpoints. We applied the detection module to
uniquely aligned read pairs from the Bowtie alignment outputs. In
the detection step, we set the cutoff for the minimum number of
inter-transcript paired-end reads to be either 2 or 4. In the filtering
steps, we noticed that the abnormal insert size filter had a major
effect on the result if the inner distance between read pairs was
large, e.g. in dataset P1. Thus, we ran three filtering workflows with
abnormal insert size P-value cutoff of 10−3, 10−6 or without the
insert size filter (See workflow scripts in Supplementary Materials).

To make a fair comparison, we further cleaned the fusion
reports from FusionSeq using FusionMap’s advanced filter. Then
the numbers of false/true positives were counted at varied cutoffs
on the DASPER score (the difference between the observed and
analytically calculated expected supportive paired-end reads) which
was generated by FusionSeq. As shown in Figure 3A and 3B,
FusionMap achieved better sensitivity and specificity in both
datasets, particularly in dataset P2. Because each read pair was
generated from a long-sequence fragment (∼158 bp in P1 and
∼400 bp in P2), a fusion event was detected through junction-
spanning read in FusionMap if the junction was in the middle of
one read, and was detected through inter-transcript paired-end reads
in FusionSeq if the junction was in the inner part between the two
reads. In Figure 3C and 3D, we illustrated the number of seed reads
detected by FusionMap using α = 25 and that of inter-transcript
read pairs detected by FusionSeq, separately, against the number
of simulated fragment covering the fusion junction. Based on the
regression coefficients, the ratio between the number of seed reads
and inter-transcript read pairs were close to the theoretical values:
(75−25∗2)∗2/(400−75∗2)≈0.2 in dataset P1 and (75−25∗2)∗
2/(158−75∗2)≈6 in dataset P2. FusionMap achieved substantially
higher sensitivity than paired-end approach when the inner distance
was small.

Both FusionMap and FusionSeq were run on a 64-bit machine
with Intel Xeon E5640 (2.66 GHz, two Quad Cores and eight threads
in total) and 12 GB RAM.As shown in Table 3, FusionMap ran faster

A B

C D

Fig. 3. Comparison of FuionMap with FusionSeq on simulated datasets.
(A and C): dataset P1; (B and D): dataset P2. (A and B): number of false and
true positives detected by two methods. The lines representing the parameter
changes for abnormal insert size filter in FusionSeq are overlapped in dataset
P2. (C and D): the scatter plot of the number of simulated versus detected
fusion reads by both methods. Y -axis represents the number of seed reads for
FusionMap or the number of inter-transcript read pairs for FusionSeq. The
regression lines were computed based on least trimmed squares regression
(LTS) on 90% of data points for FusionSeq and FusionMap separately.

Table 3. Computational complexity of fusion detection

Dataset Method Performance

Time Peak memory

P1 FusionMap (v1.41) 55 min 6 GB
FusionSeq (v0.6.1) >15 h 5 GB

P2 FusionMap (v1.41) 45 min 6 GB
FusionSeq (v0.6.1) >8.5 h 4 GB

Based on a 64-bit machine with Intel Xeon E5640 (2.66 GHz, two Quad Cores) and
12 GB RAM.

than the FusionSeq workflow but required more memory to cache
the human genome reference during the alignment.

3.3 Fusion gene discovery in K562 cell line
We further applied FusionMap to two published NGS datasets
(named A and B) that sequenced the K562 CML cell line. Dataset A
contains 14 million 76 nt single-end reads sequencing the captured
cDNA fragments that were specific to 467 cancer-related genes
(Levin et al., 2009). Dataset B contains 160 886 pairs of 38 nt
reads from a targeted gDNA-Seq study which used M-Bcr [the
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A

B

C

Fig. 4. Detected fusion junctions for BCR-ABL1 in K562 cell line. (A):
fusion junctions detected at the transcript level in datasets A. (B): detected
fusion junctions at the genomic level based on 14 junction-spanning reads
in dataset B. (C): The scatter plot of chromosomal coordinates of discordant
read pairs (grey) and fusion junction-spanning reads (black) linking gene
BCR and ABL1.

major breakpoint cluster region (Quintas-Cardama and Cortes,
2009)] as an anchor and applied Anchored chromosome paired-end
tags (ChromPET) technique to capture the genomic sequence of
BCR-ABL1 fusion gene in the K562 cell line (Shibata et al., 2010).

For dataset A, we applied FusionMap using {α = 25,β = 1,G = 2}
directly on the whole dataset since it is a single-end dataset. For
dataset B, we aligned reads to the human genome hg19 using
Bowtie (Langmead et al., 2009) allowing two mismatches. A
paired-end fusion report was generated based on read pairs with
two ends uniquely aligned to different genes. We next applied
FusionMap using {α = 17,β = 1,G = 0} to the unmapped reads to
detect fusion junctions. We set α = 17 which allowed five possible
cutting positions for a 38 nt read.

FusionMap detected BCR-ABL1 as the top fusion junction at
the transcript level in dataset A and it was the sole genomic
fusion candidate with more than two supportive seed reads in
dataset B. (Fig. 4A and B; Supplementary Table S1). In dataset
A, we identified 1003 junction-spanning reads connecting the end
of exon 14 in BCR to the beginning of exon 2 in ABL1 at the
transcript level. In dataset B, which was from a gDNA-Seq study, we
identified 114 pairs of reads linking chr22:23,632,261-23,632,725
in BCR and chr9:133,607,163-133,607,530 in ABL1, according to
the middle positions of mapped reads on human genome hg19
(Fig. 4C). It indicated that the genomic breakpoint in BCR is on
the 3′ side near chr22:23,632,725 and the breakpoint in ABL1 is
on the 5′ side near chr9:133,607,163. Before the aggregation step,

FusionMap detected six fuzzy junctions supported by 14 junction-
spanning reads, which showed that the breakpoint of BCR was in
chr22:23,632,737-23,632,742 and the breakpoint of ABL1 was in
chr9:133,607,147-133,607,152 (Fig. 4B and C). The 5 bp junction
window was caused by the same ‘GAGTG’ sequence in the region
connecting two genes. The genomic fusion breakpoint was in the
intron region right after the 14th exon in BCR and in the intron
region between exon 1a and 1b in ABL1. The result indicated that
exon 1b of ABL1 had been skipped during the transcription of BCR-
ABL1 fusion gene. The detected fusion junctions were in complete
agreement with the breakpoints reported previously (Levin et al.,
2009; Shibata et al., 2010).

In dataset A, we also detected 164 junction-spanning reads
connecting the end of exon 29 in NUP214 to the beginning of
exon 2 in XKR3 and two additional junctions: NUP214 (exon 29)-
XKR3 (exon 3) and NUP214 (exon 29)-XKR3 (exon 4) with 4 and
9 supporting reads. One more fusion junction, NUP214 (exon 27)-
XKR3 (exon 2), can be detected with three supporting fusion reads
if we used α = 15 instead of 25 and relaxed filters on fusion read
numbers. These detected fusion junctions are in agreement with
previous results (Levin et al., 2009). The detected junction positions
of NUP214-XKR3 were all on known exon boundaries, indicating
that these fusion transcripts were alternative splicing isoforms of the
NUP214-XKR3 fusion gene.

Moreover, in dataset A, FusionMap also detected SNHG3/RCC1-
PICALM, PRIM1-NACA, NCKIPSD-CELSR3 and SLC29A1-
HSP90AB1 fusion genes (Supplementary Table S1). The inner
distances between two breakpoints on the genome are ∼19 Kb
in PRIM1-NACA, ∼21 Kb in NCKIPSD-CELSR3 and ∼15 Kb in
SLC29A1-HSP90AB1. They are close neighbors on the genome and
are likely to be fusion transcripts caused by read-through events.

4 DISCUSSION
The FusionMap method described in this article allows us to align
fusion junction-spanning reads to references and can, therefore, fully
utilize NGS data to characterize fusion genes at base-pair resolution.
The method achieves the following three goals in computational
detection of fusion genes using NGS data.

First, FusionMap performs a sensitive and complete search of
fusion junction-spanning reads without relying on any additional
information. It has the same detection power in both single-
and paired-end NGS datasets. In paired-end datasets, the fusion
report from junction-spanning reads is complementary to that from
discordant read pairs. Moreover, as shown by dataset P2, fusion
detection based on junction-spanning reads is more powerful than
the paired-end approach when the inner distance between read pairs
is short. In theory, for a set of 75 nt paired-end reads generated
from a 400 bp fragment library, the ratio between the number
of junction-spanning reads and discordant read pairs is close to
75*2/(400-75*2) = 0.6. The ratio will increase when the usable
read lengths increase with new sequencing techniques or reagents
(Illumina, 2010), making FusionMap more useful and effective.

Second, FusionMap can be applied to both gDNA-Seq and RNA-
Seq datasets. Compared to gDNA-Seq datasets, RNA-Seq is more
complicated to detect fusion genes due to the implication of exon–
exon junctions. In gDNA-Seq fusion junctions detected are the
actual fusion positions in the genome, while junctions detected in
RNA-Seq are more likely to be splice junctions rather than genomic
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fusion positions. Therefore, FusionMap increases the specificity by
adopting the noncanonical splice pattern penalty G for RNA-Seq
datasets. SRPKM is a normalized measure across different read
length and different samples. Its calculation mimics the RPKM
calculation for each gene. In RNA-Seq datasets, the SRPKM for each
fusion junction provides the relative abundance of fusion transcript
isoforms.

Third, FusionMap reports the exact junction sequences, which
characterize fusion genes at base-pair resolution. Based on the
junction sequence, researchers can design primers to confirm the
fusion transcript by RT-PCR or the fusion breakpoint on the genome
using genomic PCR. Furthermore, detected junction sequences in the
gDNA-Seq dataset might be useful to investigate the mechanism of
homologous recombination that creates the fusion product, like the
5 bp junction window of the ‘GAGTG’ sequence in BCR-ABL1 in
dataset B.

Among the advantages of our method, FusionMap is independent
from any mapping method used for regular alignment. It can be
applied directly to the whole dataset but would take less time if it
uses unmapped reads after the regular alignment. In this article, we
showed the performance of FusionMap on unmapped reads after
the Bowtie alignment. We also tried FusionMap based on TopHat
(version 1.0.14) (Trapnell et al., 2009) outputs, and got almost the
same results in datasets P1 and P2. However, in dataset A, if we
used TopHat for regular alignment, the three read-through fusion
genes were missing in FusionMap’s result because they were close
neighbors on the genome (<50 Kb) and were identified as novel
splice junctions by TopHat.

Moreover, FusionMap is not limited to a single dataset, but rather
can be applied to multiple NGS datasets in a single run. It provides
an easy way to detecting recurrent fusion events by grouping fusion
junctions by rows in one table.

The main limitation of FusionMap is its reliance on long read
lengths. FusionMap successfully detects the true genomic fusion in
dataset B (gDNA-Seq dataset with 38 nt reads for K562 CML) with
high specificity, mainly because it is a targeted sequencing dataset for
BCR-ABL1 only. In order to achieve high sensitivity and specificity,
read lengths ≥75 nt are preferred in whole genome/transcriptome
sequencing datasets. FusionMap will benefit from longer read length
and deeper coverage.

We also noticed that the current version of FusionMap requires
longer computing time than existing splice aligners. It is our plan
to improve the search strategy for fusion junctions by adopting the
current detection methods for splice junctions (Au et al., 2010; Wang
et al., 2010), extending base by base following a hit of a potential
seed read. The modification will speed up the fusion alignment step.

5 SOFTWARE
FusionMap is implemented in C# and runs under Windows (or Linux
using MONO). It can run in both 32- and 64-bit modes. The 64-bit
mode performs much faster but it requires at least 6 GB RAM.
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