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ABSTRACT

Motivation: Cell sizes and shapes are a fundamental defining
characteristic of all cellular life. In bacteria like Escherichia
coli, the machinery that determines cell length is complex and
interconnected, spanning extracellular cues, biosynthesis and cell
division. Few tools exist to study cell lengths in a population. We
have developed and tested three automated image analysis routines
on growing E.coli cultures to simultaneously measure cell lengths
and nucleoid numbers in populations of bacteria. We find population
profiles changing with culture density—higher density of culture leads
to fewer long cells. Additionally, lab strains mutant for recA show a
correlation between the number of nucleoids and cell length.
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Supplementary Information: Supplementary data are available at
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1 INTRODUCTION
Cell shape, size and its regulation are a fundamental property
of cellular organisms. Escherichia coli is a rod-shaped bacterium
and multiple genetic factors have been isolated over the years
that affect its shape and size (reviewed in Osborn and Rothfield,
2007). Cell size in E.coli can be characterized as cell length and
width. While width has been observed to be more or less constant,
length of the bacteria has been shown to vary even in cells in
the same environment and of the same age (Cullum and Vicente,
1978). For instance, the proportion of long cells has been shown to
decrease with increasing cell density (Maclean and Munson, 1961).
Decreasing temperature caused increased cell volume (Shehata and
Marr, 1975) while more recently cell lengths were observed to
decrease at 22˚C compared with 37˚C (Trueba et al., 1982). The
filamentous phenotype corresponding to elongated E.coli cells has
been generated by inhibition, mutation or deletion of penicillin
binding proteins, cell scaffolding proteins Mre and Mbl, cell division
proteins FtsZ and MinCDE and nucleoid occlusion (reviewed in
Goehring and Beckwith, 2005; Lutkenhaus, 2007). However, the
population variability in such length measurements has been lacking.

Thus, reproducible quantification of cell sizes and subcellular
structures is important to address combinations of effects of
genetic and environmental factors on cell phenotype. Recent studies
examining bacterial cell lengths have used cell sorters and particle
analyzers to measure bacterial cell size (Julià et al., 2010) and cell
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cycle stage (Allman et al., 1991). However, these methods lack
spatial information about the cells or their subcellular structures.
Microscopy and image analysis appear to be the optimal solution.
Guberman et al. (2008) have estimated the accuracy of cell division
in E.coli to be 2.9% by measuring the SD in the pinch position
as a fraction of cell length in phase contrast images. Using green
fluorescent protein (GFP) expressing cells, the SD of cell width
was estimated as 6.6% (Männik et al., 2009). More recently, a
high-content image analysis tool has been applied to measuring
the E.coli cell length variability and MinD oscillations (Sliusarenko
et al., 2011). The methods used works well on phase contrast and
fluorescence images, but not on differential interference contrast
(DIC) images.

Bacterial genomic DNA that is compacted in the cell is referred
to as the ‘nucleoid’, distinguishing it from the membrane-bound
nucleus found in eukaryotes. Nucleoids form an important part of
the cell division machinery, as has been seen recently seen in their
role in determining the positioning of the FtsZ ring necessary for
equational division in E.coli (Bernhardt et al., 2005). In Bacillus,
incomplete DNA replication causes filamentation of cells (Bernard
et al., 2010) by ‘nucleoid occlusion’, i.e. the steric hindrance of the
cell division machinery by nucleoids.

We have developed an algorithm to detect cell lengths in DIC
microscopy images of populations of E.coli laboratory strains grown
in liquid batch culture. We combined this with automated detection
of nucleoids in fluorescence images. We confirmed with previous
findings that the proportion of long cells decreases with increasing
culture density. Additionally, the lab strain DH5α with attenuated
recombinase activity shows a linear correlation between cell length
and nucleoid numbers. We hypothesize that a higher rate of
replication fork stalling in such strains results in the inhibition of
cell division, while cell elongation continues leading to longer cells.
The algorithm presented here demonstrates our ability to detect and
quantify cell length variability in E.coli and relate it to the variability
in nucleoid numbers. Changing properties like nutrient availability
per cell appears to affect this population variability, in a manner
consistent across strains.

2 METHODS
Bacterial strain: the strains used in the study were Escherichia coli K12
(MG1655), HB101 and DH5α grown in Luria Bertani (LB) rich liquid broth
at 37◦C with shaking.

Sample preparation: an inoculum of a single colony of E.coli in 10 ml LB
was grown at 37◦C, with shaking at 170 r.p.m., overnight. A 1:100 dilution of
this saturated culture was grown in LB and incubated at 170 r.p.m. and 37◦C.
For staining the nucleoids, 0.1 µg/ml of 4′, 6-Diamidino-2-phenylindole

2944 © The Author 2011. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/27/21/2944/216944 by guest on 20 M
arch 2024



[17:47 7/10/2011 Bioinformatics-btr501.tex] Page: 2945 2944–2948

Population length variability in E. coli

dihydrochloride (DAPI, Sigma-Aldrich) was added to an aliquot and grown
further for 15 min. The cells were resuspended in 1:4 (vol/vol) of methanol
and the sample was placed on a glass microscopy slide (Medicos Appliances
Centre, Pune, India) and allowed to dry. The sample was mounted using 2 µl
of mountant [20 mM Tris, pH 8, 0.5% N-propyl gallate (Sigma-Aldrich),
90% glycerol] and used for microscopy.

Microscopy: an epifluorescence Zeiss Axio Imager Z1 (Carl Zeiss,
Germany) upright microscope with EC Plan-Neofluar 40× lens of numerical
aperture of 0.75 was used. Images were acquired using the Zeiss Image
acquisition program (Axiovision version 4.8) in the DIC and fluorescence
modes. The filter cube sets for DAPI excitation and emission were used for
fluorescence measurements based on a mercury short arc lamp light source
(X-Cite Series 120, Lumen Dynamics Inc., Canada).

Image processing: three strategies were used for image analysis of E.coli
DIC images, based on either (i) previously described methods of automated
edge detection (Gonzalez et al., 2004) or (ii) in-house developed shadow and
(iii) gradient detection methods as described in Section 3. All algorithms
were implemented in MATLAB version 7, R14 (Mathworks Inc., MA,
USA) in combination with the Image Processing Toolbox. Algorithms were
compared to manual (averaged over three people) detection (a comparison
with membrane labeled FM4-64 labeling demonstrates it to be a good
measure of accuracy, Supplementary Fig. S1).

3 RESULTS

3.1 Algorithm
3.1.1 Edge detection Based on MATLAB ImageProcessing
Toolbox (Mathworks Inc., MA, USA) recommended procedures
(Gonzalez et al., 2004), we detected cells using the Canny Edge
Detector (Canny, 1986), followed by dilation, hole-filling and border
clearing (Fig. 1A, i–iv). The segmented cell regions were then
subjected to a skeletonization routine, which thinned the elongated
structures to a 1-pixel wide contour. This was used for quantification
of lengths (Fig. 1A, v).

3.1.2 Shadow detection The topographic appearance of the DIC
image shows a prominent dark shadow as seen in the 2D images. The
shadow was detected by histogram equalization to enhance contrast,
median filtering, followed by a 2D wiener filter and an optimized

Fig. 1. The detection of cell length by the methods tested is applied to
a representative DIC image of bacteria (i). (A) Edge detection generates
binary edge information (ii), which by dilation (iii) and hole filling (iv)
and thinning results in skeletons and cell lengths (v). (B) Shadow detection
works by contrast enhancement (ii), smoothing (iii), thresholding to generate
a binary image (iv) and object detection (v) for length measurement.
(C) Gradient detection works by contrast enhancement (ii), smoothing by
filtering (iii), combined XY-gradient detection (iv) and thinning to produce
a skeleton (v) and cell length. The scale bar corresponds to 4 µm.

intensity threshold (Fig. 1B i–iv). Inbuilt object detection (Fig. 1B,v)
was used to extract perimeter (P) and minor axis (l) lengths for
closed objects in the binary image. From this, the length (L) of the
bacterium was determined by L=P/2−π ·l/2, assuming a sphero-
cylindrical geometry (Fig. 1B). This method is used to account for
the deviations from a rigid rod.

3.1.3 Gradient detection In order to improve the detection of the
3D perspective shadow of DIC images, after contrast enhancement
and smoothing (Fig. 1C i–iii), a pixel-wise gradient in X (δxi,j) and
Y (δyi,j) is calculated from the difference between a pixel and the
values of neighbours. The neighbouring pixel value is an average of
n neighbours and the gradients are:

δxi,j =
∣∣∣Ii,j −

〈
I(i:i+n,(j+1):(j+n+1)

)〉∣∣∣
and

δyi,j =
∣∣∣Ii,j −

〈
I((i+1):(i+n+1),j:j+n

)〉∣∣∣
The indices i and j are the coordinates of a pixel, and n is the size
of the averaging mask. The value of n was optimally set to n=3
(Supplementary Fig. S2). The two gradient images were made binary
by a threshold (τ) to obtain two binary-images Dx and Dy where

Dx

{
0,δxi,j >τ

1,δxi,j ≤τ
and Dy

{
0,δyi,j >τ

1,δyi,j ≤τ

These were combined to obtain a binary image Dxy, where
∣∣Dxy

∣∣=
|Dx|×

∣∣Dy
∣∣ (Fig. 1C, iv). These binary contours were thinned to

obtain skeletons, which correspond to length of the cell (Fig. 1C, v).
Objects with a length below a threshold of 1.5 µm were removed.

3.1.4 Cell crossing-over detection Occasional crossing-over of
bacteria was observed in the images (Supplementary Fig. S3A).
To avoid overestimating lengths, a pixel-wise branch detection
method was developed. Using the skeletonized image as an input,
neighbouring pixels and their location were detected using a
deconvolution filter. End points of the skeleton are those pixels
with only one local neighbour in a neighbourhood of 8 (Moore’s
Neighbourhood). Branched structures were defined as skeletons with
more than two end points. Using an end point as the initial location,
the algorithm steps pixel-wise by detecting successive neighbours
and calculating a running average of the angle of the skeleton
(〈θS〉). At branch points, the angle of each neighbour is calculated
(θN ) where N =2−7. That neighbour is chosen that minimizes the
difference δθN =|θN −〈θS〉|. In case multiple neighbours have the
same value for δθN , a random choice is made. The process results
in as many skeletons as end points (Supplementary Fig. S3B). The
skeleton with the lowest SD of the mean angle is finally selected
(Supplementary Fig. S3C), while the others are discarded.

3.1.5 Length frequency and phenotypic noise The data obtained
from image analysis were plotted as frequency distribution of cell
length. The prominent feature of the data is its long tail, which was
fit to an exponential function f (L)=A·eλ. Although other functions
such as lognormal could fit the entire distribution, the optimized
length threshold of our detection algorithm (1.5 µm) could lead to
artefacts with respect to very short cells. The exponential function
provides us a measure of the population length distribution of long
cells. We also calculate the intrinsic phenotypic noise (Ozbudak
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Fig. 2. (A) Images of E.coli cells from DH5α strains showing a population
of cells both long and short fixed on a slide. (B) The false positives (FP), false
negatives (FN), true positives (TP) and true negatives (TN) were quantified
for the three algorithms in comparison with manual detection. The ratios
of the algorithm:manual detection of (C) numbers of cells (Na/Nm) and
(D) lengths (La/Lm) are plotted.

et al., 2002) as ηL = σ2
L〈L〉 , where 〈L〉 is the mean length and σ2

L is the
variance.

3.1.6 Nucleoid detection Bacterial nucleoids were stained with
DAPI, a DNA binding fluorescent dye, and fixed (see Section 2,
sample preparation). Images of cells in the same field of view were
acquired in DIC and fluorescence channels. The gradient detection
algorithm was run to produce a skeleton. Since nucleoids occupy
the entire diameter of the cell, a 5-pixel wide dilated skeleton mask
was obtained from the DIC images. These coordinates were used
to generate mean intensity profiles of the DAPI image along the
cell length. This 1D intensity profile was then processed for peak
detection using a simple valley threshold. If a point is at the edge of
the valley deeper than the threshold, it is considered a peak. These
peaks correspond well with the centroids of nucleoids.

3.2 Testing the algorithms
The evaluation of the algorithms was performed on images of
bacteria obtained from a liquid broth and mounted on slides
(Fig. 2A). While all three algorithms worked comparably well on
isolated cells, using populations of cells differentiated one method
over all others.

3.2.1 Number and length comparison The number of bacteria
detected manually was considered to be the standard. The first two
methods, edge detection and shadow detection, showed higher false
negatives than the gradient method (Fig. 2B). The increase in false
positives in gradient detection is related to its extreme sensitivity to
out of focus cells that manual detection ignored. The true positives
and true negatives in turn are, respectively, highest and lowest in
gradient detection. The ratio of the number of bacteria automatically
detected in each image (Na) by the manual value (Nm) (Fig. 2C)
and the length ratios (Fig. 2D) were averaged for four images. Here
too, we noticed that gradient detection performed better than the
other two and is our method of choice. Cell counts obtained are

A B

C D

Fig. 3. (A) The frequency distribution of cell lengths for E.coli cells of strain
K12 (n = 6549), HB101 (n = 2942) and DH5α (n = 3699). (B) The mean,
mode and median of the lengths of three strains are compared. (C) The
measured frequency of log cell lengths is plotted for K12 (black squares),
HB101 (light grey triangles) and DH5α (grey diamonds) strains and the
continuous lines are the exponential fits, (D) with the two parameters A
(grey) and λ (stripes) for the three strains.

the best among the three methods tested, while cell lengths are
still comparable between edge detection and gradient detection. The
method of gradient detection is sensitive to the angle of the prism. In
all our experiments, it is tuned to produce sufficient contrast, which
generates the shadow along the length of the bacterial cells covering
half its width.

3.3 E. coli length variability within lab strains
3.3.1 Length comparison E.coli K12 (MG1655) cells showed a
frequency maximum of ∼2 µm with a sharp exponential drop for
frequencies of longer lengths. In contrast, the E.coli strains HB101
and DH5α appeared to show a greater proportion of long cells as
demonstrated by the longer tails in their distributions (Fig. 3A). We
observed a difference in the mean and median lengths for the three
strains while the mode length value was comparable (Fig. 3B). The
fit to the length distributions was a scaled exponential with two
parameters A and λ (Fig. 3C). The values for A and λ compared
across the profiles show a definitive fold-change for DH5α over
K12 (Fig. 3D). In addition, the percentage of long cells (length >8
µm) were low in K12 as expected, while DH5α and HB101 showed
higher frequencies. The values of phenotypic noise (ηL) measured
for the strains K12, HB101 and DH5α were 0.54, 2.17 and 3.43,
respectively.

3.3.2 Effect of culture density To determine if this was dependent
on cell culture density, we compared the density with the proportion
of long cells and found that this value decreases with increasing
culture density in growing cultures (Fig. 4A) of all three strains

2946

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/27/21/2944/216944 by guest on 20 M
arch 2024



[17:47 7/10/2011 Bioinformatics-btr501.tex] Page: 2947 2944–2948

Population length variability in E. coli

Fig. 4. (A) Growing cultures of three strains of E.coli K12, HB101 and
DH5α in rich medium with shaking at 37˚C were sampled for cell length.
(B) The increasing density of the culture corresponds with a decrease in the
percentage of long cells (length >8 µm) for all three strains.

(Fig. 4B). This is consistent with the previous reports for E.coli B/r
(MacLean and Munson, 1961). Thus, the difference between the
strains K12, HB101 and DH5α lies in the quantitative change in the
exponential fit to the length distributions, not in a novel distribution
type.

3.3.3 Nucleoids Using the cell length and nucleoid information
from K12 (Fig. 5A) and DH5α (Fig. 5B) strains, we correlate length
with nucleoid numbers (Fig. 5C). The wild-type strain K12 shows
little or no correlation between the two, while the distribution of
DH5α cells shows a linear correlation with a slope of 2.2 (R2 =0.8).
This is the first time to our knowledge that such a correlation has
been quantified in a mutant recA1 containing E.coli strain.

4 DISCUSSION
The image analysis algorithm presented here detects cell lengths
and nucleoids in rod-shaped and filamentous bacterial populations.

A

B

C

Fig. 5. Representative inverted images show detected lengths (white
contours) in DIC images and nucleoids detected (outlined) in DAPI-stained
cells of E.coli (A) K12 and (B) DH5α. (C) The plot of nucleoid number
and corresponding cell length for K12 (black circles) (n = 278) shows little
correlation (linear fit with R2 = 0.1), while DH5α (grey dots) (n = 196)
shows a linear trend (linear fit R2 =0.8) with slope 2.2 (please refer online
for colour figures).

Automated image analysis is making it possible to relate the
microscopic subcellular details of cells to phenotypic- and
population-level properties (Sliusarenko et al., 2011). Developing
and optimizing algorithms as these therefore assumes more
importance than before. A correlative approach between the cell
morphology as observed in DIC and the DNA content has been
performed before to address the role of nucleoids in bacterial cell
division (Bernard et al., 2010; Bernhardt et al., 2005), but these
approaches use interactive methods of quantification. DIC optics
generates contrast based on gradients in the optical path length
simplifying the detection of elongated objects such as rod-shaped
bacteria. The method described here can be used on fixed cells, live
cells in liquid or on agar pads.

Some recent studies have addressed variability in cell division at a
population level, but these work best with phase contrast images, and
ignore the role of the nucleoid (Guberman et al., 2008; Sliusarenko
et al., 2011). Here we find E.coli K12 (MG1655) mean cell lengths
show a SD of 40–60% of cell length, while HB101 and DH5α show
65–80% and 70–90%, respectively. The exponential fit to the length
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frequency distribution allows us to quantify both the steepness of the
distribution and the length of the tail. The long tail and shallow decay
in length frequencies in DH5α and HB101 might be related to their
common genetic background of defective recombinase A (recA). We
speculate that since the replication fork stalling is stochastic, it will
lead to a non-Gaussian distribution of the cell lengths by increasing
the proportion of the longer cells. Thus, a RecA1 mutant strain like
DH5α that has higher probabilities of stalling has a longer tailed
distribution.

Our observation in growing liquid cultures of a decrease in percent
long cells with increasing cell density in all three strains appears
to suggest a common growth rate limited effect, independent of
mutational background. This is consistent with the previous findings
from continuous cultures (Maclean and Munson, 1961). The mutant
strains, however, appear to have a quantitative amplification of this
effect. Since cell elongation depends on nutrient availability, we can
hypothesize that higher cell densities lead to lower frequency of long
cells.

In all, it would appear to suggest such population studies in
mutant strains might shed light on the robustness of E.coli K12
length regulation. Previously, bacterial strains lacking RecA were
identified as ‘noisy’ at a gene expression level (Elowitz et al.,
2002). Here, we find phenotypic noise in terms of cell length to
also increase in the presence of a recA1 mutation. This would
appear to suggest the noise at the level of cell morphology and the
gene expression variability might be related. Additionally, this study
demonstrates how environmental factors like nutrient availability
might modulate the variability. In future, it would be interesting to
develop a theoretical model to study the consequences of replication
fork stalling, cell elongation and nucleoid occlusion on population
length variability. Additionally, experiments examining the single
cell behaviour with tracking of individual cell lineages might
yield further insights. This study allows us to begin to connect
environmental effects with single cell division and replication.
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