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ABSTRACT

Motivation: Protein signaling networks play a key role in cellular func-

tion, and their dysregulation is central to many diseases, including

cancer. To shed light on signaling network topology in specific con-

texts, such as cancer, requires interrogation of multiple proteins

through time and statistical approaches to make inferences regarding

network structure.

Results: In this study, we use dynamic Bayesian networks to make

inferences regarding network structure and thereby generate testable

hypotheses. We incorporate existing biology using informative net-

work priors, weighted objectively by an empirical Bayes approach,

and exploit a connection between variable selection and network in-

ference to enable exact calculation of posterior probabilities of inter-

est. The approach is computationally efficient and essentially free of

user-set tuning parameters. Results on data where the true, underlying

network is known place the approach favorably relative to existing

approaches. We apply these methods to reverse-phase protein

array time-course data from a breast cancer cell line (MDA-MB-468)

to predict signaling links that we independently validate using targeted

inhibition. The methods proposed offer a general approach by which

to elucidate molecular networks specific to biological context, includ-

ing, but not limited to, human cancers.
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1 INTRODUCTION

Protein signaling plays a central role in diverse cellular functions,

and aberrations in signaling are implicated in almost every aspect

of cancer biology. Indeed, an emerging literature suggests that

signaling networks may be ‘rewired’ in specific contexts, includ-

ing cancer (Lee et al., 2012; Pawson and Warner, 2007). That is,

the network may differ in a cancer cell compared with a normal

cell, for example due to genetic alterations. Yet the manner in

which genomic alterations in specific cancers are manifested at

the level of signaling networks is not currently well understood.

Elucidating signaling networks in a data-driven manner, spe-

cific to a context of interest (such as a cell line or tissue type),

requires the ability to probe post-translational modification

states in multiple proteins through time and across samples.

However, proteomic analyses on this scale remain challenging.
At the same time, the modeling of signaling connectivity poses

statistical challenges. Noise, both intrinsic and experimental, is

ubiquitous in this setting and network components may interact

in a complex, non-linear manner. Candidate networks may differ

with respect to model dimension, which in turn means that ana-

lyses that do not account for this run the risk of preferring net-

works that are over-complex, yet not predictive. This makes the

trade-off between fit-to-data and model parsimony a crucial one

in network modeling.
In this article, we present a data-driven approach to the char-

acterization of context-specific signaling networks (Fig. 1). We

exploit reverse-phase protein array technology (Tibes et al., 2006)

to interrogate dynamic signaling responses in a defined set of 20

phospho-proteins. We use directed graphical models known as

dynamic Bayesian networks (DBNs) (Friedman et al., 1998;

Murphy, 2002), to probabilistically describe relationships

between variables. DBNs have previously been applied to gene

expression data for inference of gene regulatory networks

(Husmeier, 2003; Rau et al., 2010), but to the best of our know-

ledge have not been applied to inference of protein signaling

networks. Static Bayesian networks (BNs) have previously

been employed to infer both protein signaling networks

(Ciaccio et al., 2010; Mukherjee and Speed, 2008; Sachs et al.,

2005) and gene regulatory networks (Friedman et al., 2000), but

unlike DBNs, do not incorporate an explicit time element.
We perform inference regarding network topology within a

Bayesian framework, with existing signaling biology incorpo-

rated through an informative prior distribution on networks

(following Werhli and Husmeier (2007); Mukherjee and Speed

(2008), see Fig. 1). Model averaging over network structures is*To whom correspondence should be addressed.
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used to score network features (Madigan et al., 1995), highlight-

ing those links that are common to many, relatively high-scoring

topologies. The calculations required for model averaging are

performed exactly. This is done by exploiting a connection be-

tween variable selection and network inference (Murphy, 2002),

echoing work in undirected graphical models (Meinshausen and

Bühlmann, 2006).
An empirical Bayes approach is used to objectively weight the

contribution of the prior relative to proteomic data. This is

related to the approach proposed by Werhli and Husmeier

(2007) in which full Bayesian inference for the prior weighting

is performed using Markov chain Monte Carlo (MCMC). We

perform a simpler maximum marginal likelihood empirical Bayes

analysis, but do so within an exact framework that is computa-

tionally fast at the moderate data dimensions that are typical of

phospho-proteomic data.
We follow recent work (Grzegorczyk and Husmeier, 2011;

Rau et al., 2010) in using a continuous formulation, thereby

avoiding lossy thresholding of data. We use a variant of the

Bayesian prior known as the ‘g-prior’ (Zellner, 1986) to obtain

a closed-form score (marginal likelihood) for the networks; in

contrast to the widely used ‘BGe’ score (Geiger and Heckerman,

1994) this gives an analysis that is essentially free of user-set

parameters and invariant to data rescaling. Further, we permit

interactions between parents through product terms.

A number of authors, including Sachs et al. (2005) and Bender

et al. (2010), have used statistical approaches to explore signaling

network topology; this article is in this vein. However, we note

that statistical network inference approaches typically use linear

models that are a coarse approximation to the underlying chem-

ical kinetics. When network topology is known, ordinary

differential equations (ODEs) offer a powerful framework for

modeling signaling. Our work complements ODE-based appro-

aches by providing a tractable way to explore large spaces of

candidate network topologies in a data-driven manner. In prin-

ciple, statistical network inference can be explicitly based on bio-

chemically plausible ODE models. However, due to severe

computational constraints such approaches are currently limited

to investigating only a handful of hypothesized networks (Xu

et al., 2010) and not the large number of possible networks con-

sidered here. A recent study (Bender et al., 2010) also proposes
a method for inference of cancer signaling networks from

reverse-phase protein array time-series data after external per-
turbation of network components. This work is similar in

spirit, but differs methodologically in that it uses DBNs,
Bayesian model averaging, and network priors to incorporate

existing biological knowledge.
Thus, we combine protein array technology with dynamic net-

work inference to shed light on signaling networks in samples of
interest. We apply these approaches to the breast cancer cell line

MDA-MB-468. MDA-MB-468 is an adenocarcinoma, originally
from a 51-year-old patient, belonging to the well-characterized

basal breast cancer subtype (Neve et al., 2006); the line is

EGFR amplified and PTEN, RB1, SMAD4 and p53 mutant.
We learn a network model that is specific to this line; focusing

on an individual cell line allows us to generate hypotheses that are
coupled to a specific well-defined genomic context and are readily

testable. We predict a number of known and unexpected signaling
links which we validate using independent inhibition experiments.

2 METHODS

We use DBNs to model signaling networks (Fig. 1). In this section, we

describe the models and inferential approach used. A full technical de-

scription is presented in Supplementary Text; further details can be found

in Hill (2012), while related regression methodology is discussed in Hill

et al. (2012). All computations were performed in MATLAB R2009a.

2.1 Dynamic Bayesian networks

DBNs (Murphy, 2002) are a type of statistical model for time-varying

data, in which dependence between variables is described by a directed

graph. The nodes of the graph represent variables under study and the

edges represent probabilistic relationships between the variables. DBNs

can be regarded as static BNs ‘unrolled’ through time, with each variable

now represented at multiple time points (Fig. 1 and Supplementary Fig.

S1). DBNs are capable of modeling feedback loops whereas, since the

graphs must be acyclic, BNs are unable to do so (Supplementary Fig. S1).

Further, when edges are restricted to be forwards in time only, the net-

work structure of a DBN is fully identifiable. This is in contrast to BNs,

Fig. 1. Data-driven characterization of signaling networks. Reverse-phase protein arrays interrogate signaling dynamics in samples of interest. Network

structure is inferred using DBNs, with primary phospho-proteomic data integrated with existing biology, using informative priors objectively weighted

by an empirical Bayes approach. Edge probabilities then allow the generation and prioritization of hypotheses for experimental validation
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for which graph structures are identifiable only up to certain equivalence

classes.

In the present setting, the graph represents a signaling network and its

topology is the object of inference. Let p denote number of proteins under

study and T denote number of time points sampled. DBNs associate a

random variable with each of the p components at each time point. Let

these pT variables be denoted by Xt
i . To facilitate inference over large

spaces of candidate network structures, we make several simplifying as-

sumptions. Following Friedman et al. (1998) and Husmeier (2003), we

make (first-order) Markov and stationarity assumptions: each variable at

a given time is conditioned only on variables at the previous time point,

with the conditional probability distribution being time independent.

Moreover, this first-order dependence may be sparse, with each compo-

nent at time t depending on only a subset of components at time t–1. The

sparsity pattern is described by the edge structure of the network and the

above assumptions result in this structure being fixed in time. This results

in a relatively simple, parsimonious model in which a graph G, with two

vertices for each protein, representing adjacent time points, is sufficient to

describe the pattern of dependence (Fig. 1). Following related work in

gene regulatory networks (Husmeier, 2003; Rau et al., 2010), we permit

only edges forward in time. This guarantees acyclicity of G, removing the

need for computationally expensive acyclicity checks during inference and

facilitating exact inference as described below.

The DBN graph G permits factorization of the ‘global’ joint probabil-

ity distribution over all variables (the likelihood) into a product of ‘local’

conditional distributions,

pðXjG, f�igÞ ¼
Yp
i¼1

YT
t¼2

pðXt
i jX

t�1
�G ið Þ, �iÞ ð1Þ

where X denotes the complete data, �G ið Þ � f1, . . . , pg is the set of par-

ents of protein i in graph G, Xt
�G ið Þ ¼ fX

t
j jj 2 �G ið Þg is a corresponding

data vector including only those variables in �GðiÞ and f�ig are parameters

that fully define the conditional distributions. (We note that the marginal

distributions pðX1
i Þ are suppressed in Equation (1) because they do not

depend on G.)

2.2 Network learning

We take a Bayesian approach to inference regarding graphG, focusing on

the posterior distribution over graphs PðGjXÞ. From Bayes’ rule, we have

PðGjXÞ / pðXjGÞPðGÞ. The term pðXjGÞ is the marginal likelihood and

the term P(G) is a prior distribution over graphs that allows for the

incorporation of existing signaling biology into inference (‘network

prior’).

2.2.1 Marginal likelihood The marginal likelihood is obtained by

integrating out model parameters f�ig from the likelihood (Equation (1)).

This has the effect of accounting for model complexity by penalizing

complex models with many parameters and thereby helps to avoid

over-fitting of the model to the data (Denison et al., 2002). The condi-

tionals pðXt
i jX

t�1
�G ið Þ, �iÞ constituting the likelihood are taken to be

Gaussian. These describe the dependence of child nodes on their parents

and can be thought of as regression models, with parents and child cor-

responding to covariates and response, respectively. We take these ‘local’

models to be linear-in-the-parameters, but allow interactions through

products of parents; that is, we allow dependence on products of parents

as well as parents themselves. The models are fully saturated, including

products of distinct parents up to all parents. For example, if

�GðiÞ ¼ 1, 2, 3f g then the mean for variable Xt
i is a linear combination

of the three parents Xt�1
j , the three possible pairwise products of parents

Xt�1
j Xt�1

k and the product of all parents Xt�1
1 Xt�1

2 Xt�1
3 . For each protein i,

let Bi denote a design matrix, with columns corresponding to each parent

of i, and products of distinct parents up to and including the product over

all parents.

The regression coefficients, forming a vector �i, and variance �2i , con-

stitute parameters �i. Following Kohn et al. (2001), we use the reference

prior pð�2i Þ / �
�2
i for variances and a Normalð0, n�2i ðB

T
i BiÞ

�1
Þ prior for

regression coefficients, where n is sample size. For the model above, if we

have m time courses each consisting of T time points, then n¼m(T – 1).

Following Geiger and Heckerman (1994), we assume prior parameter

independence. Then, integrating out parameters yields the following

closed-form marginal likelihood:

pðXjGÞ/
Yp
i¼1

1þnð Þ
�ð2j�G ðiÞj�1Þ=2 XþTi Xþi

�
�

n

nþ 1
XþTi Bi B

T
i Bi

� ��1
BT
i X
þ
i

��n
2

ð2Þ

where Xþi ¼ X2
i , . . . ,XT

i

� �T
.

This formulation has attractive invariance properties under rescaling

of the data (for details, see Kohn et al. 2001) and, in contrast to the

widely used ‘BGe’ score (Geiger and Heckerman, 1994), has no free,

user-set parameters. However, we note that it requires inversion of

matrix BT
i Bi, which is not guaranteed to be invertible or well-conditioned,

especially when graph in-degree j�GðiÞj is large and n relatively small. In

this work, a restriction on in-degree (see below) helps to avoid these

numerical issues. However, if necessary, conditioning of BT
i Bi is improved

by ridge regularization. In our experiments below, regularization is

invoked only for the combination of interaction terms with larger

parent set sizes; see Supplementary Text for further details.

2.2.2 Network prior and empirical Bayes We follow Mukherjee

and Speed (2008) and use a prior of the form PðGÞ / expð�fðGÞÞ, where �

is a strength parameter, weighting the contribution of the prior, and f(G)

is a real-valued function over graphs, scoring the degree to which graphs

concord with our prior beliefs. We use available signaling maps, obtained

from online resources and the literature, to define a set of a priori ex-

pected edges E* and let fðGÞ ¼ � EðGÞnE�
�� ��, where E(G) is the set of edges

contained in G. That is, f(G) is the number of edges in G that are not

included in our expected edge set E*. Therefore, our prior does not ac-

tively promote any particular edge, but rather penalizes unusual edges

(see also Section 4). We set the prior strength parameter � using an ob-

jective, empirical Bayes approach. Specifically, this is done by empirically

maximizing the quantity pðXj�Þ ¼
P

G pðXjGÞPðGj�Þ, which can be done

efficiently within the exact inference framework used here (see below and

Supplementary Text for further details).

2.2.3 Exact inference by variable selection We are interested in

calculating posterior probabilities of edges e¼ (a, b) in the graph G. The

posterior probability of the edge is an average over the space of all pos-

sible graphs G (Madigan et al., 1995),

PðejXÞ ¼
X
G2G

1 e2Gf gPðGjXÞ: ð3Þ

where PðGjXÞ is the posterior distribution over graphs.

For DBNs with p vertices in each time slice, the size of the graph space

is 2p
2

, hence growing super-exponentially with p. This precludes explicit

enumeration of the sum in Equation (3) for even small-to-moderate p.

However, since the DBNs used here have only edges forward in time and

are therefore guaranteed to be acyclic, we can exploit a connection be-

tween network inference and variable selection (Murphy, 2002) for effi-

cient and exact calculation of posterior edge probabilities. In brief (full

details appear in Supplementary Text), instead of averaging over full

graphs G as in Equation (3), we consider the simpler problem of variable

selection for each protein. That is, for each protein i, we score subsets of

potential parents �ðiÞ � 1, . . . , p
� �

. Model averaging is then performed in

the variable selection sense, i.e. by averaging over subsets of parents

rather than over full graphs. If the network prior P(G) factorizes into a
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product of local priors over parents sets �GðiÞ for each variable, then

posterior edge probabilities calculated by averaging over parent sets

equal those calculated by averaging over the (much larger) space of

graphs. (We note that, while this equivalence holds for edge probabilities,

it does not hold for arbitrary graph features.)

Motivated by the fact that typically only a small number of key up-

stream regulators are likely to be critical for any given signaling compo-

nent, and following related work in gene regulation (Husmeier, 2003), we

enforce a maximum in-degree constraint and only consider up to dmax

proteins jointly influencing a target. The size of the space of parent sets

then becomes polynomial in p, enabling exact calculation of posterior

edge probabilities. For the experiments reported below, we set

dmax ¼ 4. Results reported below agreed closely with both an increased

maximum in-degree of dmax ¼ 5 and the results of MCMC-based infer-

ence with no restriction on in-degree (Supplementary Fig. S2), showing

that results did not depend on the in-degree restriction.

3 RESULTS

3.1 Simulation study

A simulation study was performed using 20 proteins, 8 time

points and 4 complete time courses per protein (this mimicked

the biological study reported below). Data-generating graphs

were created using a random, Erdös-Renyi-like approach config-

ured to ensure that the graphs differed substantially from the

prior graph used (for each graph 10 out of total 30 edges were

not in the prior graph, while the prior graph had 54 edges not in

the data-generating graph). Data were generated from a given

graph by ancestral sampling (through time), using a Gaussian

model with interaction terms. Full details appear in Supplemen-

tary Text.
Knowledge of the true data-generating graph allowed us to con-

struct average receiver-operating characteristic (ROC) curves

from inferred posterior edge probabilities (Fig. 2). Along with net-

work inference for DBNs, as described above (‘DBN, network

prior, þint’ in Fig. 2), we also show results using DBNs without

interaction terms (‘�int’) and/or with a flat prior over graphs (‘flat

prior’); baseline correlational analysis (thresholded absolute cor-

relation coefficients between variables at adjacent time points;

‘correlations’); variable selection through ‘1-penalized regression

(‘Lasso’; Tibshirani, 1996); and several previously proposed net-

work inference approaches for time-course data [including

Gaussian graphical models (‘GGMs’; Opgen-Rhein and

Strimmer, 2006], a non-Bayesian DBN approach [‘DBN

(non-Bayesian)’; Lèbre, 2009] and a non-parametric Bayesian ap-

proach using Gaussian processes (‘Gaussian processes’; Äijö and

Lähdesmäki, 2009); see SupplementaryText for full details]. Aver-

age area under the ROC curve (AUC�SD) for DBN inference

with informative and flat priors were 0.93�0.03 and 0.84�0.05,

respectively (Supplementary Fig. S4). The network prior provides

gains in sensitivity and specificity, even though by design of the

simulation experiment there is non-trivial disagreement between

the data-generating and prior graphs.

3.2 Synthetic yeast network study

Ancestral sampling above can be viewed as simulating from a

discretized system of linear ODEs. However, linear ODEs are a

crude approximation to real biological systems, motivating fur-

ther validation using either non-linear ODE simulations or,

ideally, real data. We took the latter approach, using a recent

biological system due to Cantone et al. (2009). Cantone et al.

constructed a gene regulatory network in yeast, comprising five

genes and six regulatory interactions, and obtained time-course

expression data from the synthetic system. Since the true network

is known by design, network inference performance can be dir-

ectly assessed; we applied this approach here. In order to inves-

tigate the effect of including prior information, we formed prior

graphs that only partially agreed with the true network (see

Supplementary Text for full details).
Table 1 shows AUC scores obtained for the same methods

appearing in Figure 2. The network prior leads to gains despite

differing substantially from the true network. We also see that

inclusion of interaction terms yields improved performance. Only

the Gaussian processes method performs comparably to the pro-

posed DBN approach, but it is more computationally intensive

(DBN: 1.5 s; Gaussian processes: 160 s).

3.3 Network model for breast cancer cell line

MDA-MB-468

We used DBNs to model network topology using a combination

of proteomic data, from cell line MDA-MB-468, and existing

knowledge of signaling topology, incorporated using an inform-

ative prior distribution over network structures. Time courses

were performed at eight time points, under four growth condi-

tions, for 20 phospho-proteins. The network prior is shown in

Supplementary Figure S3 (see Supplementary Text for full details

of experimental protocol and biological information encoded in

the prior). Empirical Bayes selection of the prior strength re-

sulted in a value of � ¼ 3 (Supplementary Fig. S5). Figure 3a

shows the inferred network.
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Fig. 2. Simulation study. Average ROC curves. True-positive rate (for

network edges) plotted against false-positive rate across a range of edge

probability thresholds. Simulated data were generated from known graph

structures by ancestral sampling. Graph structures were created to be in

only partial agreement with the network prior (Supplementary Fig. S3).

Results shown are averages obtained from 25 iterations. See text for full

details of simulation and for description of methods shown. (For ‘Lasso’,

curve produced by thresholding absolute regression coefficients, while

marker ‘X’ is single graph obtained by taking non-zero coefficients to

be edges)
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3.3.1 Robustness analysis We investigated the robustness of
results reported to specification of the network prior (Fig. 3b and

c). We investigated changes to prior strength � by comparing re-

sults over various � values, plus prior alone (i.e. no data; with

� ¼ 3) and data alone (i.e. flat prior). Results using various

values of � differed somewhat from data alone and markedly

from prior alone suggesting that inference did not simply recap-

itulate the prior but rather integrated prior and data. Robustness

to specification of the prior graph was investigated by perturbing

the prior graph and comparing inferred posterior edge

probabilities to those reported above (see Supplementary Text

for details). Results were robust to changes in the prior graph:

e.g. changing one-third of the edges (25 out of 74 edges; ‘Structural

Hamming Distance’ equal to 50) gave edge probabilities that

showed a correlation of 0:88� 0:03 with those reported (mean

Pearson correlation � SD; calculated from 25 perturbed prior

graphs). We also found that results were not overly sensitive to

data perturbation and that the sparse models learned satisfied

predictive checks; see Supplementary Text and Figure S8.

3.3.2 Experimental validation Many of the edges inferred re-
capitulatepreviouslydescribed(directandindirect) links(including

MAPK! p90RSKp andAKT! p70S6Kp). A number of other

edges were unexpected. We experimentally tested some of these

predictions by inhibitor approaches. Edges were selected on the

basis of posterior probability, biological interest and availability

of selective inhibitors bywhich to perform validation experiments.

The edge MAPKp ! STAT3p(S727) appears with a high

posterior probability of 0.98. This suggests the possibility of

crosstalk between the MAPK and JAK/STAT pathways. To in-

vestigate this link, we used a MEK inhibitor (MEKi) and moni-

tored the response of MAPKp and STAT3p(S727) (Fig. 4a).

Inhibition successfully reduced MAPK phosphorylation (paired

t-test comparing the average difference between the 0 uM and 10

uM time courses gave P-value P ¼ 5� 10�4; all P-values re-

ported below were calculated in an analogous manner): since

MAPK is directly downstream of MEK, this showed that the

inhibitor was effective. Moreover, in line with model predictions,

we observed a corresponding decrease in STAT3p(S727)

(P ¼ 3:3� 10�4). We note that the MEK to MAPK link does

not appear in the inferred model; the MEKi data reported here

suggest this is a false negative.

The network model predicts a previously described edge AKTp

! p70S6Kp and, of greater interest, two unexpected links AKTp

Fig. 3. Data-driven signaling topology in the breast cancer cell line MDA-MB-468. Reverse-phase protein arrays were used to interrogate the

phospho-proteins shown in (a), including key components of AKT, MAPK and STAT pathways, through time. DBNs were used to integrate the

data with a network prior, derived from existing biology (Supplementary Fig. S3). Prior strength � was set objectively using an empirical Bayes approach,

resulting in � ¼ 3 (see text and Supplementary Fig. S5). (a) Edges represent probabilistic relationships between proteins, through time. Edge labels

indicate corresponding (posterior) probabilities (calculated exactly; edge thickness proportional to probability; all edges with probability �0.4 shown;

strikethroughs ‘/’ indicate edges not expected under the network prior; Supplementary Figure S6 shows heatmap of all 400 posterior edge probabilities;

list of proteins (and antibodies) given in Supplementary Table S1). (b) Sensitivity to prior strength. Results were compared over a range of values of �

plus the flat prior (i.e. � ¼ 0) and prior only. Heatmap shows Pearson correlations between edge probabilities for pairs of prior regimes. Results were not

sensitive to precise value of � and differed markedly from prior alone. (c) Sensitivity to prior graph. The prior graph was perturbed and results obtained

compared with those reported (see Supplementary Text for details). Correlation (as in (b)) is shown as a function of number of edge changes in the prior

graph (‘Structural Hamming Distance’, see Supplementary Fig. S7 for error bars)

Table 1. Synthetic yeast network study. Inference methods

assessed on time-series gene expression data generated

from a synthetically constructed gene regulatory network

in yeast (Cantone et al., 2009). Results shown are area

under the ROC curve (AUC). See text for description of

methods shown. [The regimes using a network prior are

mean AUC�SD over 25 prior network structures. Prior

networks were generated to be in partial agreement with

the true, underlying network structure (see text for

details).]

Method AUC

DBN, network prior, þint 0.82� 0.04

DBN, flat prior, þint 0.75

DBN, network prior, �int 0.74� 0.04

DBN, flat prior, �int 0.67

Correlations 0.39

Lasso 0.50

GGM 0.44

DBN (non-Bayesian) 0.43

Gaussian processes 0.75
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! MEKp and AKTp! cJUNp. The former suggests possible
crosstalk between the AKT and MAPK pathways, and the latter

suggests crosstalk between the AKT and JNK/JUN pathways.
We tested these links using an AKT inhibitor (AKTi; Fig. 4b).

Phosphorylation of p70S6K was reduced by AKTi
(P ¼ 5� 10�3), validating the edge predicted (and verifying the

effect of the inhibitor). We also observe a clear decrease in MEKp
levels P¼ 1.8� 10�3) and an increase in JNKp levels (P¼ 0.047).

Furthermore, we see dose dependence, with the effects changing
monotonically with dose of the inhibitor. This provides independ-

ent evidence in favor of the existence of crosstalk in both cases
(JNK is known to be directly upstream of cJUN).

4 DISCUSSION

Network inference in general, and model averaging in particular,
are often viewed as computationally burdensome. Certainly, this

can often be the case (e.g. for static BNs with many nodes).
However, for the DBNs employed here, using the approaches

described above, network inference is relatively efficient and,
for datasets of moderate dimensionality, arguably fast enough

for routine exploratory use. For example, empirical Bayes ana-
lysis and inference of posterior edge probabilities for the 20 vari-

ables in our cancer study took under 20 s (on a standard
single-core personal computer).
We took account of known signaling biology by means of a

prior distribution on networks, weighted objectively using

empirical Bayes. The use of a prior incorporates existing know-

ledge in a ‘soft’ probabilistic manner that can be over-ridden by

data. In contrast to hard constraints, this does not preclude dis-

covery of unexpected edges. This is an important feature in the

cancer setting since cancer-specific networks may be rewired and

therefore differ from the general biology upon which the prior is

built. Indeed, the network model yielded unexpected links that

were validated by targeted inhibition. We verified empirically

that results reported were not overly sensitive to prior specifica-

tion or data perturbation.

The network prior employed here is asymmetric in the sense

that it only penalizes edges that are not in the prior network

(‘unexpected edges’). This is motivated by the observation that

for context-specific networks and data obtained under specific

growth conditions (as is the case here) some edges in a prior

network based on canonical signaling may not be relevant, e.g.

some pathways may simply be inactive due to experimental con-

ditions or rewiring. In contrast, due to structural specificity, en-

tirely novel kinase–substrate pairs are arguably less likely to

arise. Werhli and Husmeier (2008) propose a more general

prior with two hyperparameters controlling penalization of un-

expected edges and non-edges, respectively. Applying this prior

to the cancer data, using empirical Bayes to set both hyperpara-

meters, we found that the hyperparameter for unexpected

non-edges was set to zero, reducing the prior to the asymmetric

form used in this work (and hence giving identical results).

Approximate inference methods such as MCMC are often

used for inference in BNs and DBNs (Husmeier, 2003;

Madigan et al., 1995). In contrast, we used a variable selection

approach and sparsity constraints to calculate posterior edge

probabilities exactly, thereby removing Monte Carlo uncertainty

(and the need for associated diagnostics). The exact approach

also facilitates the empirical Bayes analysis. In high dimensions,

where the exact approach becomes intractable, the fully Bayesian

MCMC approach proposed in Werhli and Husmeier (2007) can

be used to sample from the joint posterior over networks and

hyperparameters. The variable selection approach we describe

also provides benefits for model averaging with MCMC-based

inference since it factorizes the problem and also allows compu-

tations to be trivially run in parallel.

Prior specification for Bayesian variable selection remains an

active research area (Casella et al., 2009; Forte Deltell, 2011).

The parameter prior employed here (a form of the g-prior) has

benefits but can suffer from matrix ill-conditioning. This issue

was not prominent in this work due to the use of in-degree

constraints. Alternative priors that do not suffer from

ill-conditioning, such as standard shrinkage priors or the ‘BGe’

prior, could also be used within our formulation.
The DBN model in this work makes a widely used assumption

of homogeneity of parameters and network structure through

time. However, these assumptions are likely to be unrealistic

for cellular protein signaling. The softening of these homogeneity

assumptions can lead to a rapid increase in numbers of param-

eters and/or the size of graph space, resulting in statistical (and

computational) challenges. Recently, non-homogeneous DBN

methods have been proposed in the literature that aim to ameli-

orate these effects (Grzegorczyk and Husmeier, 2011; Robinson

and Hartemink, 2010).

Fig. 4. Validation of predictions by targeted inhibition in breast cancer

cell line MDA-MB-468. (a) MAPK-STAT3 crosstalk. Network inference

(Fig. 3a) predicted an unexpected link between phospho-MAPK

(MAPKp) and STAT3p(S727) in the breast cancer cell line

MDA-MB-468. The hypothesis of MAPK-STAT3 crosstalk was tested

by MEK inhibition: this successfully reduced MAPK phosphorylation

and resulted in a corresponding decrease in STAT3p(S727). (b) AKTp

! p70S6Kp, AKT-MAPK crosstalk and AKT-JNK/JUN crosstalk.

AKTp is linked to p70S6kp, MEKp and cJUNp. In line with these

model predictions, use of an AKT inhibitor reduced both p70S6K and

MEK phosphorylation and increased JNK phosphorylation. (RPPA

data; MEK inhibitor GSK1120212 and AKT inhibitor GSK690693B at

0 uM, 0.625 uM, 2.5 uM and 10 uM; measurements taken 0, 5, 15, 30, 60,

90, 120 and 180min after EGF stimulation; average values over 3 repli-

cates shown, error bars indicate SEM)
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We predicted and validated unexpected links, suggesting exist-

ence of crosstalk between signaling pathways, as well as links
that have been previously well documented. These results suggest

that statistical approaches can usefully integrate proteomic data

with existing knowledge to infer signaling networks that are con-

text-specific; here, specific to an individual breast cancer cell line.

Our results are a first step toward characterization of signaling

network topologies in individual cancers. By applying these

approaches to many individual cancers, we could probe signaling

heterogeneity across, and even within, cancer subtypes, and

thereby shed light on therapeutic heterogeneity.
At present it is not possible to assay any more than a (usually

small) subset of proteins involved in signaling. Therefore,

data-driven studies of signaling confront a severe missing variable

problem. This necessarily limits causal or mechanistic interpret-

ation of results. For example, an inferred edge from one protein

to another may operate through one or more unmeasured inter-

mediates, and the same caveat applies also to validation by inhib-

ition. Statistical models that permit the inclusion of unobserved,

latent variables may help, but network inference with latent vari-

ablesremainschallenging(KnowlesandGhahramani,2011).Thus,

unexpected links uncovered by network modeling require further

biochemical work to clarify themechanisms involved.
The sheer complexity of cancer signaling is daunting and this

work is only a first step in the direction of network models that

are context-specific. In addition to the points raised above, im-

portant directions for future work include, among others: experi-

mental design, including adaptive selection of treatments that are

informative with respect to network topology; improved, system-

atic high-throughput validation and incorporation of explicit

chemical kinetics into large-scale network inference.
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