
Vol. 28 no. 22 2012, pages 2996–2997
BIOINFORMATICS APPLICATIONS NOTE doi:10.1093/bioinformatics/bts538

Structural bioinformatics Advance Access publication August 31, 2012

CSB: a Python framework for structural bioinformatics
Ivan Kalev1,*, Martin Mechelke1, Klaus O. Kopec1, Thomas Holder1, Simeon Carstens1 and
Michael Habeck1,2,*
1Department of Protein Evolution, Max Planck Institute for Developmental Biology, Spemannstrasse 35 and 2Department
of Empirical Inference, Max Planck Institute for Intelligent Systems, Spemannstrasse 38, 72076 Tübingen, Germany

Associate Editor: Anna Tramontano

ABSTRACT

Summary: Computational Structural Biology Toolbox (CSB) is a cross-

platform Python class library for reading, storing and analyzing biomo-

lecular structures with rich support for statistical analyses. CSB is

designed for reusability and extensibility and comes with a clean,

well-documented API following good object-oriented engineering

practice.

Availability: Stable release packages are available for download from

the Python Package Index (PyPI) as well as from the project’s website

http://csb.codeplex.com.

Contacts: ivan.kalev@gmail.com or michael.habeck@tuebingen

.mpg.de

Received on July 10, 2012; revised on August 6, 2012; accepted on

August 24, 2012

1 INTRODUCTION

The Python programming language is becoming an increasingly

popular choice in research. With its comprehensive numerical

libraries and dynamic type system, Python facilitates rapid ap-

plication development. But although rapid prototyping is very

practical for experimenting with new techniques or features, sys-

tematic use of ad hoc scripting often turns into a burden prevent-

ing efficient code reuse. This problem is solved with the use of

continuously developed, well-abstracted and tested software

libraries. Productivity in building solid, reliable and extensible

bioinformatics applications could therefore significantly benefit

from the practice of using library code.

Here, we introduce the public release of CSB, a Python library

designed for solving problems in the field of computational struc-

tural biology. CSB improves over existing libraries such as

Biopython (Cock et al., 2009) with its granular, consistent and

extensible object model and also provides new features like a

comprehensive statistical API and support for new abstractions

and file formats. This project is a quickly growing class library

for structural bioinformatics, providing clean object-oriented

APIs for working with biological macromolecular structures,

sequences, sequence profiles and fragment libraries, and also a

significant amount of statistical modules, including many prob-

ability distributions and samplers. We put a strong emphasis on

quality and reliability achieved through continuous attention to

good software design and best practices in test engineering.

2 CORE LIBRARY

CSB consists of several highly branched, hierarchical Python

packages. The core library is roughly divided into bioinformatics

(csb.bio.*) and statistics (csb.statistics.*).

The csb.bio namespace hosts a number of packages that de-

fine all fundamental biological abstractions of the library. For

example, csb.bio.sequence defines the AbstractSequence and

AbstractAlignment objects and also provides some standard

implementations of these abstractions, such as Sequence,

SequenceAlignment and StructureAlignment. As suggested by

its name, csb.bio.hmm deals with HHpred and its profile

HMMs (Söding, 2005), while csb.bio.fragments contains objects

describing protein structure fragment libraries. The package

csb.bio.structure implements essential CSB objects like

Structure, Chain, Residue and Atom.

The Structure class illustrates examples of CSB’s design phil-

osophy. Structure instances are hierarchical objects, implement-

ing the composite pattern. Each level in this hierarchy is

represented by a class, derived from the base AbstractEntity.

Every entity thus exposes a standard set of operations such as

AbstractEntity.transform(), which automatically propagate

down the tree when invoked at arbitrary level. Users are free

to define their own, pluggable AbstractEntity implementations.
Another aspect of the core library is our I/O API for a broad

variety of biological file formats (csb.bio.io). For example,

csb.bio.io.hhpred is the first publicly available Python module

to date for working with HHpred’s HMM and result files

(Söding, 2005). Another module, csb.bio.io.mrc, implements ob-

jects for processing cryo-electron microscopy maps, while

csb.bio.io.clans provides I/O for CLANS (Frickey and Lupas,

2004). Reading and writing PDB files is done using our PDB

API, which is part of csb.bio.io.wwpdb. It is worth mentioning

that the default PDB parser in CSB differs significantly from

existing solutions such as Biopython. StructureParser reads and

initializes all residues from SEQRES (if available), rather than

the ATOM fields in the file. ATOM records are subsequently

mapped to the residue objects using a simple and fast alignment

algorithm. Therefore, Chain objects in CSB always contain

the complete primary structure of the PDB chain, as defined

by the SEQRES fields. This feature eliminates the need to

relate the PDB atoms back to the real sequence of the protein

in question—a process which is often difficult and error-prone.

When benchmarked over the complete PDB database, our

SEQRES mapping algorithm fails for about 250 structures.

This is frequently an indication of a PDB format issue. In this*To whom correspondence should be addressed.

2996 � The Author 2012. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/28/22/2996/239703 by guest on 20 M
arch 2024

http://csb.codeplex.com


case, the parser would raise a characteristic exception upon

which the client can switch to an ATOM-based parsing mode.

We compared the performance of RegularStructureParser

with PDB I/O modules from alternative libraries: Biopython,

PyCogent (Cielik et al., 2011) and the Cþþ based Open

Structure (Biasini et al., 2010). As expected, OpenStructure was

the fastest and parsed 4000 PDB entries with 0.09 s per structure.

CSB is positioned between Biopython (0.19 s) and PyCogent

(0.43 s) with 0.32 s per structure, which suggests that the

SEQRES mapping feature comes with an acceptable perform-

ance overhead.

Our library also hosts a collection of statistical models in the

csb.statistics namespace. Among these models are standard uni-

and multivariate probability distributions such as the Normal

and the Gamma distribution and also more exotic distributions

such as the multivariate normal inverse Gaussian distribution

used to model multivariate heavy-tailed data. Several estimators

based on maximum likelihood and Gibbs sampling are imple-

mented. Moreover, we provide a general framework for Markov

chain Monte Carlo simulation and implementation of standard

schemes such as random walkMetropolis Hastings, Hamiltonian

Monte Carlo (Duane et al., 1987) and replica-exchange

Monte Carlo (Swendsen and Wang, 1986). Methods to analyze

Monte Carlo output are also provided such as, for example, a

non-parametric histogram reweighting scheme for the estimation

of free energy differences (Habeck, 2012).

3 CSB APPLICATIONS

CSB comes with a simple framework for writing console appli-

cations (csb.apps). These applications could be seen as short

protocols built on top of the core library and consuming its

APIs. Each release is bundled with a number of pre-installed,

open-source applications. For example, csb.apps.hhfrag provides

HHfrag, a CSB application for building dynamic fragment

libraries (Kalev and Habeck, 2011). BFit is another app, which

performs robust superposition of protein structures (Mechelke

and Habeck, 2010). Every release package also contains

EMBD, an application for sharpening of cryo-electron micros-

copy maps (Hirsch et al., 2011) using non-negative deconvolu-

tion and Promix, an application implementing Gaussian mixture

models for identifying rigid domains in structure ensembles

(Hirsch and Habeck, 2008).

4 DEVELOPMENT

One of the key design goals of CSB is providing clean, extensible,

object-oriented APIs with accompanying API documentation.

This project puts a strong emphasis on quality, achieved through

systematic use of abstraction, strong encapsulation, separation of

responsibilities and refactoring with classic design patterns.
Our development team has adopted a continuous integration

model. The reliability of the production code is controlled by

CSB’s built-in high-coverage unit test framework. Stable builds

will be gradually released to the public domain, and nightly

builds can be obtained upon request. Portability is also a

design goal, so CSB works without modification on every

major platform (Windows, Linux and Mac) and any modern

Python interpreter (version 2.6 or higher, including Python 3).

Funding: Contract research ‘Methoden in den Lebenswis-

senschaften’ of the Baden-Württemberg Stiftung, by Deutsche

Forschungsgemeinschaft (DFG) grant HA 5918/1-1 and by the

Max Planck Society.

Conflict of Interest: none declared.

REFERENCES

Biasini,M. et al. (2010) OpenStructure: a flexible software framework for computa-

tional structural biology. Bioinformatics, 26, 2626–2628.

Cielik,M. et al. (2011) Abstractions, algorithms and data structures for structural

bioinformatics in PyCogent. J. Appl. Crystallogr., 44 (Pt 2), 424–428.

Cock,P.J. et al. (2009) Biopython: freely available Python tools for computational

molecular biology and bioinformatics. Bioinformatics, 25, 1422–1423.

Duane,S. et al. (1987) Hybrid Monte Carlo. Phys. Lett. B, 195, 216–222.

Frickey,T. and Lupas,A. (2004) CLANS: a Java application for visualizing protein

families based on pairwise similarity. Bioinformatics, 20, 3702–3704.

Habeck,M. (2012) Evaluation of marginal likelihoods using the density of states.

In Lawrence,N. and Girolami,M. (eds.) Proceedings of the Fifteenth

International Conference on Artificial Intelligence and Statistics (AISTATS)

2012. Vol. 22, La Palma, Canary Islands. JMLR:W&CP 22.

Hirsch,M. and Habeck,M. (2008) Mixture models for protein structure ensembles.

Bioinformatics, 24, 2184–2192.

Hirsch,M. et al. (2011) A blind deconvolution approach for improving the reso-

lution of cryo-EM density maps. J. Comput. Biol., 18, 335–346.

Kalev,I. and Habeck,M. (2011) HHfrag: HMM-based fragment detection using

HHpred. Bioinformatics, 27, 3110–3116.

Mechelke,M. and Habeck,M. (2010) Robust probabilistic superposition and com-

parison of protein structures. BMC Bioinformatics, 11, 363.

Söding,J. (2005) Protein homology detection by HMM–HMM comparison.

Bioinformatics, 21, 951–960.

Swendsen,R.H. and Wang,J.-S. (1986) Replica Monte Carlo simulation of spin

glasses. Phys. Rev. Lett., 57, 2607–2609.

2997

Python framework

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/28/22/2996/239703 by guest on 20 M
arch 2024


