
Vol. 28 no. 24 2012, pages 3274–3281
BIOINFORMATICS ORIGINAL PAPER doi:10.1093/bioinformatics/bts618

Structural bioinformatics Advance Access publication October 23, 2012

Fast protein structure alignment using Gaussian overlap scoring

of backbone peptide fragment similarity
David W. Ritchie1,*, Anisah W. Ghoorah1,2, Lazaros Mavridis3 and Vishwesh Venkatraman4

1Inria Nancy, 615 Rue du Jardin Botanique, 54600 Villers-lès-Nancy, 2Université de Lorraine, LORIA, 54506 Nancy,
France, 3University of St. Andrews, St. Andrews KY16 9AJ, Scotland, UK and 4Norwegian University of Science and
Technology, Høgskoleringen 5, Trondheim, Norway

Associate Editor: Anna Tramontano

ABSTRACT

Motivation: Aligning and comparing protein structures is important for

understanding their evolutionary and functional relationships. With the

rapid growth of protein structure databases in recent years, the need

to align, superpose and compare protein structures rapidly and accur-

ately has never been greater. Many structural alignment algorithms

have been described in the past 20 years. However, achieving an

algorithm that is both accurate and fast remains a considerable

challenge.

Results: We have developed a novel protein structure alignment

algorithm called ‘Kpax’, which exploits the highly predictable covalent

geometry of C� atoms to define multiple local coordinate frames in

which backbone peptide fragments may be oriented and compared

using sensitive Gaussian overlap scoring functions. A global alignment

and hence a structural superposition may then be found rapidly using

dynamic programming with secondary structure-specific gap penal-

ties. When superposing pairs of structures, Kpax tends to give tighter

secondary structure overlays than several popular structure alignment

algorithms. When searching the CATH database, Kpax is faster and

more accurate than the very efficient Yakusa algorithm, and it gives

almost the same high level of fold recognition as TM-Align while being

more than 100 times faster.

Availability and implementation: http://kpax.loria.fr/.

Contact: Dave.Ritchie@inria.fr.

Supplementary information: Supplementary data are available at

Bioinformatics online.

Received on May 19, 2012; revised on October 4, 2012; accepted on

October 14, 2012

1 INTRODUCTION

Aligning and comparing protein structures is important for
understanding their evolutionary and functional relationships

(Hasegawa and Holm, 2009; Sierk and Kleywegt, 2004). By

quoting Lewis Carrol’s Red Queen character (it takes all the
running you can do, to keep in the same place), Holm et al.

(2008) recently alluded to the computational challenge of search-
ing increasingly large protein structure databases. Today, 4 years

later, with some 80 000 protein structures in the Protein
Databank and with the number of new structures being solved

growing exponentially (Berman, 2008), the need to compare the

3D structures of protein molecules rapidly and reliably has never

been greater. Efficient pattern matching algorithms such as

FASTA (Lipman and Pearson, 1985) and BLAST (Altschul

et al., 1990) are now standard tools for searching nucleotide and

amino acid sequence databases. Dynamic programming (DP) al-

gorithms provide a rapid way to find the optimal global

(Needleman and Wunsch, 1970) or local (Smith and Waterman,

1981) alignments of pairs sequences. However, there is still no

generally accepted standard for how to align and compare two

similar protein structures (Sippl and Wiederstein, 2008).
This discrepancy arises because the additional complexity of

working in 3D space makes structure alignment considerably

more difficult than sequence alignment. For example, two

common and closely related measures of structural similarity

are the number of residue equivalences and the root mean

squared deviation (RMSD) between the corresponding C�
atoms. However, while it is often possible to improve one at

the expense of the other, it is difficult to optimize these two

quantities simultaneously (Zemla, 2003). Furthermore, because

RMSD values tend to be dominated by long-distance pairs, it

can be useful to restrict RMSD-based similarity measures to se-

lected ‘core’ residues (Sierk and Kleywegt, 2004). But this then

raises the question of precisely which residues should be con-

sidered as core residues. Consequently, different similarity scor-

ing schemes can assign different sets of ‘optimal’ residue

equivalences (Hasegawa and Holm, 2009).
Despite such difficulties, many practical structural alignment

algorithms have been described (Taylor et al., 2001), and the

number of recent publications is growing rapidly (Hasegawa

and Holm, 2009). These algorithms can often be classified ac-

cording to how they use the internal geometries of proteins to

calculate interatomic distances (Holm and Sander, 1993; Taylor

and Orengo, 1989; Zhou and Tang, 2005; Zhu and Weng, 2005)

or cliques of distances (Malod-Dognin et al., 2010), interatomic

C� vectors (Chew et al., 1999; Ortiz et al., 2002), or triplets of C�
atoms (Venkateswaran et al., 2011), torsion angles (Charpentier

et al., 2005; Jung et al., 2011; Täubig et al., 2006; Tung et al.,

2007), or combinations of distances and angles (Shen et al., 2010;

Ye et al., 2004). Geometric-hashing (Kifer et al., 2011) and

Voronoi tessellation techniques have also been used to calculate

pose-invariant measures of structural similarity (Ilyin et al., 2004;

Sacan et al., 2008).

Different algorithms may also be distinguished according to

whether and how they use secondary structure elements (SSEs) in

the similarity scoring function or whether they match SSEs as*To whom correspondence should be addressed

3274 � The Author 2012. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/28/24/3274/247565 by guest on 13 M
arch 2024



structural units (Gibrat et al., 1996; Kawabata and Nishikawa,
2000; Kolbeck et al., 2006; Krissinel and Henrick, 2004;
Lu, 2000; Shindyalov and Bourne, 1998; Szustakowski and

Weng, 2000; Zhang et al., 2010). For example, Sheba finds an
initial superposition using a DP scoring matrix that combines
sequence homology, secondary structure similarity, solvent ac-

cessibility and polarity to obtain an initial superposition which is
then optimized using DP to maximize the number of close C�–C�
distances. The method of Jung and Lee (2000), ProSup (Lackner

et al., 2000) and TM-Align (Zhang and Skolnick, 2005) identify
short seed fragments to give initial superpositions which are then
optimized in similar ways. Yet other approaches define and

match higher-order structural alphabets (Konagurthu et al.,
2008; Lo et al., 2007; Razmara et al., 2012; Stivala et al., 2009;
Tyagi et al., 2007; Yang and Tung, 2006) or fragments that might

subsequently be re-assembled (Budowski-Tal et al., 2010; Pandit
and Skolnick, 2008). Most algorithms treat proteins as
rigid-body objects, but a few can take into account structural
flexibility (Salem et al., 2010; Ye and Godzik, 2003), permuta-

tions of structural motifs (Chen et al., 2006; Ilyin et al., 2004;
Sabarinathan et al., 2010; Sippl and Wiederstein, 2012;
Szustakowski and Weng, 2000) and even composite alignments

involving multiple chains (Sippl and Wiederstein, 2012).
However, almost all of these approaches are prohibitively expen-
sive if the aim is to search large protein structure databases.

As well as the diverse geometric and symbolic representations
listed above, algorithms based on sophisticated algebraic
approaches have also been described, including Lagrangian con-

tact map optimization (Andonov et al., 2008), eigenvector ana-
lysis (Shibberu and Holder, 2011) and Fourier correlation
techniques (Mavridis et al., 2012). Recent improvements to the

contact map optimization approach using integer linear pro-
gramming (Andonov et al., 2011; Wohlers et al., 2010) can
now find provably optimal structural alignments in favourable

cases. However, as before, such techniques are currently too ex-
pensive to search large structural databases.
Here, our aim is to meet the need for a general purpose struc-

tural alignment algorithm that is sufficiently fast to support ad
hoc queries against large structural databases while also being
sufficiently sensitive to provide high quality (but not necessarily

optimal) pair-wise alignments. Our overall approach is motivated
by the basic observation that the four covalent bonds of each C�
atom have a highly predictable tetrahedral geometry, which

could be used to superpose arbitrary pairs of C� atoms and
their covalent partner atoms using least-squares fitting. Thus,
armed with the corresponding 3D fitting matrix, the relative pos-

itions of neighbouring up-stream and down-stream residues
could easily be compared and scored.
However, rather than using explicit least-squares fitting, which

is a computationally expensive operation and which requires the
coordinates of two sets of atoms, we note that a similar (but not
strictly identical) transformation can be achieved by individually

translating each C� atom to the coordinate origin and by aligning
two of its covalent bonds with the coordinate axes. In other
words, applying such a transformation will allow the backbone

peptide fragment associated with each C� position to be placed in
a standard, or canonical, orientation. In the context of database
search, this is clearly advantageous because it allows each struc-

ture to be pre-processed separately in linear time.

From this starting point, we calculate a similarity score for

putative pairs of backbone fragments using a sum of products

of Gaussian functions centred on the C� positions within each

fragment and on a small number of further ‘virtual’ atom pos-

itions that encode the apparent centre of mass (COM) of each

protein, as described below. We then use these Gaussian overlap

scores to construct a DP scoring matrix with SSE-dependent gap

penalties which allows an optimal set (according to our scoring

function) of equivalent residues to be found and superposed ef-

ficiently. A particular feature of a scoring function based on

sums of Gaussians is that it implicitly favours close contacts

without necessarily needing to exclude long-range pairs.

Although we implemented SSE-dependent gap penalties initially

to improve database retrieval performance, we find that using

such penalties together with our Gaussian scoring function tends

to produce alignments with smaller numbers of aligned residues

but with somewhat tighter 3D overlays of SSEs than the other

alignment algorithms studied here.
It should be noted that Taylor and Orengo (1989) first demon-

strated the utility of using local coordinate systems. They con-

structed a local coordinate frame for each residue using N-C and

C�-H bond vectors, but crucially they used it only to compare

patterns of intra-molecular vectors rather than inter-molecular

distances. Although later approaches that use internal torsion

angles such as Yakusa (Charpentier et al., 2005) and SABIC

(Shen et al., 2010) share a similar insight to our approach, the

inter-molecular scoring functions in these algorithms can only

compare one angle or one distance for each pair of residues. In

contrast, for each position along a backbone, our Gaussian scor-

ing function can be used to score the similarity of two local

backbone fragments by comparing the positions of up to three

residues in each direction along the chain. Hence, we also use

Gaussian overlap scores to define the secondary structure of

each residue according to its similarity to a model �-helix or

�-sheet. On a contemporary workstation, our multi-threaded al-

gorithm can calculate thousands of structural alignments per

second. Hence we named it ‘Kpax’ (being short for ‘thousands

of protein alignments by canonical C� coordinate centres per

second’).

2 METHODS

The Kpax similarity score for a pair of residues i and j has the form:

Kij ¼ wlK
local
ij þ wsK

spatial
ij þ wbK

blosum
ij , ð1Þ

where each K is a normalized score with a value between zero and one,

and each w is a weight factor in the same range and normalized such that

wl þ ws þ wb ¼ 1:0. The first term gives a measure of the local similarity

of a pair of residues when calculated in a common coordinate frame. The

second term measures their spatial similarity with respect to the relative

position of the COM of a protein (also calculated in the same frame).

These two terms are described in more detail below. The final term is the

Blosum62 amino acid similarity score, in which each pair-wise score has

been scaled onto the above range. Here, we set wb¼ 0 in order to consider

only structure-based alignments.

2.1 Constructing local C� coordinate frames

Here, we set up a local 3D coordinate system for each amino acid residue

by using the coordinates of its C�, C and N backbone atoms to construct

3275

Fast protein structure alignment

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/28/24/3274/247565 by guest on 13 M
arch 2024



a 3D transformation matrix, K, defined as a sequence of transformations

consisting of (i) a translation that locates the C� atom at the origin, (ii) a

rotation that places the C atom on the negative z axis, and (iii) a further

rotation about the z axis that places the N atom in the xz plane with a

positive x coordinate. For the 19 common non-glycine L-amino acid resi-

dues, applying K will place the C� and H� atoms on the positive and

negative y sides of the xz plane, respectively. For glycine, applying K will

locate the H� and H� symmetrically on either side of the xz plane.

However, none of the above backbone atoms play any subsequent role

in our scoring function because their local-frame coordinates are almost

invariant.

Figure 1 shows how fragments of a theoretical �-helix and �-strand

from the CCP4 fragment library (Cowtan, 2008) may be located in a

canonical orientation at the origin using the K-transform. Using a differ-

ent residue to calculate the K-transform would shift each fragment by the

corresponding number of peptide units along its principal secondary

structure axis. For an infinitely repeating polyalanine �-helix or

�-strand, applying the K-transform for each residue would give an indis-

tinguishable result. On the other hand, given a suitable scoring function,

it is natural to suppose that near the coordinate origin, similar but

non-identical SSEs could be brought into close register by applying a

suitable local frame shift of one structure relative to the other.

2.2 The local frame fragment similarity score

To calculate the similarity of two backbone fragments using a smooth

scoring function, we represent the fragment centred on residue i as a

product of normalized Gaussian density functions located on n down-

stream and n up-stream C� atoms:

 i ¼ ’
�1
i ðxi�1Þ’

þ1
i ðxiþ1Þ . . . ’�ni ðxi�nÞ’

þn
i ðxiþnÞ: ð2Þ

Each individual Gaussian function has the form

’ki ðxiþkÞ ¼ Nke
��kr

2
k
=2�2

k , ð3Þ

where rk is the distance from the kth C� atom, �k is a scale factor and �k is

the Gaussian width of the k’th density function. Nk is a normalization

factor such that Z
’ki ðxiþkÞ

2dxk ¼ 1: ð4Þ

We then transform each of the 2 n C� atom coordinates of a pair of

fragments, i and j, into a common local coordinate frame using Ki and

Kj, and we calculate the local similarity score between two fragments as a

multi-term overlap integral

Klocal
ij ¼

Z
 i jdx�1dxþ1 . . . dx�ndxþn: ð5Þ

The overall scheme is illustrated in Figure 2. Assuming there is no overlap

between density functions belonging to different C� atoms and that

equivalent C� atom positions may be assigned the same Gaussian

parameters, it can be shown (Boys, 1950) that the above integral may

be simplified to give

Klocal
ij ¼ e

�
Pn
k¼�n

�kR
2
iþk, jþk

=4�2
k

, ð6Þ

where Riþk, jþk is the distance between the C� atoms at positions iþ k and

jþ k on chains A and B, respectively, and �k is a scale factor which we

currently set to unity. The summation excludes k¼ 0 because Riþ0, jþ0¼ 0

by construction. In other words, the local similarity between residues i

and j is calculated as a Gaussian sum of the squared distances between

pairs of up-stream and down-stream C� atoms.

To obtain suitable values for the parameters �k, we treat each � as the

standard deviation (SD) of a normal Gaussian distribution, and by con-

sidering each residue in turn of each domain in the CATH database (Cuff

et al., 2009), we calculated the mean and SDs of all residues at relative

positions �1 to �3 with respect to the residue under consideration to

obtain the values: �þ1¼ 1.46, ��1¼ 1.03, �þ2¼ 3.72, ��2¼ 3.54,

�þ3¼ 5.52 and ��3¼ 5.74. To apply the above scoring function to resi-

dues near the N and C termini of one or both chains, we use a simple

wrapping scheme in order to maintain the total number of terms in

Equation (6). For example, when i¼ 1, there are no residues with negative

offsets, and so the contribution from ’þ1i to ’þni is doubled in Equation

(6). When i¼ 2, the contributions from ’þ1i and ’�1i are calculated using

Equation (6), but the contribution from ’þ2i to ’þni is doubled, and so on.

A similar scheme is used for the C-terminal residues.

2.3 The spatial similarity score

If two protein domains which share a similar fold are superposed, their

COMs will often be close together. Thus, if a protein’s COM is trans-

formed into the local frame of each residue, it follows that residues which

are well aligned will ‘see’ the COM in similar positions in space (although

consecutive residues will see the COM in quite different positions). In

particular, the COM will appear in approximately the same location only

for every fourth residue of an �-helix, and every second residue of a

�-sheet. To exploit this property in a similar way to the local frame

fragment scoring function, we transform the COM into the local frame

of each residue, and we place a virtual atom (VA) at a distance of 2 Å

from the origin on the direction vector of the transformed COM. This is

illustrated in Figure 3. Thus, each VA represents and encodes the local

frame spatial direction of a protein’s COM. Then, in analogy to Equation

(6), the spatial similarity score is calculated as a product of Gaussian

overlap integrals

Kspatial
ij ¼ e

�
Pn
k¼�n

�kR
2
iþk, jþk

=4�2
k

, ð7Þ

Fig. 2. Calculating local pair-wise similarity scores. The local-frame dis-

tribution of all C� coordinates from the CATH database (left) is used to

calculate the Gaussian width, �k, for each up-stream and down-stream

residue position. For a given pair of residues, i and j, the ‘K-score’ is

calculated as a product of Gaussian overlap integrals (Equation 6) using

the local frame pair-wise C� distances (right)

Fig. 1. Constructing a local coordinate frame about a tetrahedral C�
coordinate centre. The C� atom is placed at the origin, the C atom on

the negative z axis, and the N atom in the positive x region of the xz plane

3276

D.W.Ritchie et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/28/24/3274/247565 by guest on 13 M
arch 2024



where Riþk, jþk is the distance between the VAs at positions iþ k and

jþ k, and the summation excludes k¼ 0 as before. Each �k is considered

as the SD of a Gaussian distribution of the VA coordinates. Hence, VAs

were placed on all of the residues of the CATH database and the SDs

were calculated from the resulting distributions to give �þ1¼ 2.43,

��1¼ 2.17, �þ2¼ 4.13, ��2¼ 3.93, �þ3¼ 5.74 and ��3¼ 5.58.

2.4 Assigning secondary structure elements

By placing the centre residue of a theoretical model of an �-helix and a

�-strand at the local coordinate origin, Equation (6) provides a

straight-forward way to detect the SSE type of a given residue by calcu-

lating its local-frame similarity to each model fragment. Here, we use the

five-residue template files theor-helix-5.pdb and theor-strand-5.pdb from

the CCP4 fragment library (Cowtan, 2008), and for each residue in a

given structure we assign type � to residue i if K�i, 34K�i, 340:1, we

assign � if K�i, 34K�i, 340:1, and we assign � (i.e. loop or coil) otherwise.

Any singleton � or � residues within a � region are re-assigned to �.

2.5 Dynamic programming structural alignments

The optimal ‘pose-invariant’ alignment for two chains, A and B, of length

NA and NB is calculated by first initializing a DP matrix of dimension

ðNA þ 1Þ � ðNB þ 1Þ usingD0, j ¼ Di, 0 ¼ 0:0, and by filling the remaining

elements using

Dij ¼ maxðDi�1, j�1 þ Kij,Di, j�1 � PA
i ,Di�1, j � PB

j Þ, ð8Þ

where Kij is the similarity score for residues i and j (Equation 1) and Pi is

the penalty for introducing a gap between residues i and i�1. Since a

typical C�–C� distance is about 3.8 Å, we set �¼ð�þ1 þ ��1Þ=2¼ 1.245 Å

and we calculate the gap penalty unit, �, using � ¼ e�3:8
2=4�1:2452 ’ 0:1: In

other words, the gap penalty is derived directly from the physical length

scale of one peptide unit.

To penalize alignment gaps within regular secondary structures and to

encourage gaps in loop regions, we set Pi¼ 2� if positions i and i�1 were

both called as �, Pi¼� for both �, Pi¼ �/2 for both �, and Pi¼� other-

wise. No gap extension penalty is used here, nor is any penalty applied for

overhangs at the start or end of a chain. However, if a chain contains any

physical breaks (we assume a chain break exists if the distance between

consecutive C� atoms exceeds 1.5� 3.8 Å), we set the gap opening penalty

to zero for the two residues that border each break. Because the local

Gaussian scoring function automatically generates low similarity scores

for any residues near a physical break, this is sufficient to ensure that

chains with missing segments are handled gracefully.

By tracing through the DP matrix in the usual way, we obtain a global

alignment in which each diagonal step corresponds to a matched pair of

residues. An overall ‘K-score’ is then calculated as

KAB ¼
XNA

i¼1

XNB

j¼1

�ijKij, ð9Þ

where �ij¼ 1 if residues i and j are matched, and �ij¼ 0 otherwise.

Despite being a global structural similarity score, it is worth noting

that this penalty-free score is ‘pose-invariant’ in that it does not depend

on the orientations of the given proteins, and that for two perfectly

matching backbones it will be numerically equal to the number of aligned

residues. It is also worth noting that this score does not depend on the

order in which the chains are given, and it does not involve any

least-squares fitting calculations. Indeed, our technique of placing back-

bone peptide fragments in a canonical orientation at the coordinate origin

costs only O(N) operations per protein. Populating the DP scoring matrix

still requires OðN2Þ operations, although the form of Equations (6) and

(7) allows this cost to be reduced to essentially just two exponential func-

tion calls per matrix element.

For typical protein domains, we find that Klocal
ij and Kspatial

ij are almost

equally effective scoring functions. Therefore, by default, we use a com-

bination of both scores with weights wl¼ 0.5, ws¼ 0.5. When superposing

similar domains, the best path through the DP matrix is often near the

main diagonal. Hence, in principle, many pair-wise similarity scores never

need to be calculated. However, because the overall algorithm is so fast,

we find that the main rate limiting step comes from reading the coord-

inate data into computer memory. Therefore, we currently do not apply

any banding or lazy evaluation techniques to accelerate the DP

calculation.

2.6 Calculating and optimizing 3D superpositions

Given an alignment from the DP matrix, an initial 3D structural super-

position is calculated by least-squares fitting (Kabsch, 1976) in which the

pair-wise K-scores are used as fitting weights. This is then refined by one

further cycle of fitting with uniform weights in which the weight for any

pair of residues is set to zero if the distance between their C� atoms

exceeds 8 Å. This often produces a visually acceptable superposition.

We then optimize this initial superposition by applying further rounds

of DP and fitting using a pose-dependent Gaussian score based on pairs

of C� distances:

Gpose
ij ¼ e�R

2
ij=4�

2
pose , ð10Þ

where a Cartesian grid is used to find residue pairs within the above

distance threshold, and where no gap penalty is used in the DP matrix.

This procedure allows some additional residue pairs (e.g. in loop regions)

to be found and added to the alignment. In analogy to Equation (9), we

then define a pose-dependent Gaussian superposition score as

GAB ¼
XNA

i¼1

XNB

j¼1

�ijG
pose
ij : ð11Þ

When using �pose¼ 1.4 Å, a gap penalty of �¼ 0.1, and uniform fitting

weights, we find that applying just two rounds of Gaussian optimization

is normally sufficient to give a satisfactory superposition with a low C�
RMSD. Sippl and Wiederstein (2012) recently described a similar

Gaussian sum expression to rank alignments generated by their

TopMatch algorithm.

2.7 Searching structural domain databases

To allow efficient queries against structural databases such as CATH or

SCOP (Murzin et al., 1995), we first pre-calculate and store the up-stream

and down-stream fragment coordinates for every database residue (i.e. 6

C� and 6 VA coordinates per residue). This allows a database to be

searched rapidly using a single round of DP to calculate the K-score

similarity between the query and each member of the database.

Fig. 3. An illustration of the principle behind structural alignment using

local coordinate frame COM vectors. If two similar proteins are super-

posed, the COM vectors from equivalent aligned pairs of residues will

often be co-linear, as shown here for PDB codes 1cew and 1mol.

Conversely, a pair of similar proteins may be superposed by aligning

their COM vectors

3277

Fast protein structure alignment

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/28/24/3274/247565 by guest on 13 M
arch 2024



However, in order to rank alignments and superpositions of chains of

different lengths, Kpax uses normalized scores defined by

�KAB ¼ KAB=ðNANBÞ
1=2,

�GAB ¼ GAB=ðNANBÞ
1=2:

ð12Þ

In particular, �KAB¼ 1 and �GAB¼ 1 represent the perfect alignment and

superposition of two identical backbones, respectively. Except for queries

involving highly populated domain families such as the immunoglobulins,

often only a relatively small number of database structures will superpose

well onto the query. Hence, Kpax calculates 3D superpositions and

G-scores only for the top 300 structures with the best K-scores.

2.8 Implementation details and availability

Kpax has been implemented in the C programming language using

thread-safe programming techniques. Hence all database searches are

multi-threaded by default. The program and some command scripts for

building CATH and SCOP databases on Linux systems are available at

http://kpax.loria.fr/. Databases of user-defined collections of PDB files

may be built in a similar way. However, Kpax currently assumes that

each PDB file contains just one chain, and it only considers the first

model of any multi-model structures. PDB files of the structures used

in the following sections are also available from the above address.

3 RESULTS AND DISCUSSION

3.1 Comparing SSE assignments with Stride and DSSP

Figure 4 shows an example of the SSE assignments obtained

using the Kpax template-matching procedure (Section 2.4) in

comparison with the SSEs calculated by DSSP (Kabsch and

Sander, 1983) and Stride (Frishman and Argos, 1995).

Supplementary Figure S1 shows a colour version of this figure

along with a further nine examples. These figures show that our

algorithm often assigns quite similar � and � SSEs to Stride and

DSSP, although there are often some small differences around

the start and end positions of each SSE. Also, as expected, Kpax

does not distinguish specific types of turn from random coil re-

gions. Nonetheless, because the main aim here is to provide

SSE-dependent alignment gap penalties, the above procedure

allows the secondary structure environment of each residue to

be estimated rather well and very rapidly without requiring ex-

ternal software.

3.2 Comparison with CE, Sheba and TM-Align

As a first test of the Kpax alignment algorithm, we compared its

performance with CE, Sheba and TM-Align using the 10 ‘diffi-

cult’ pairs of structures from Fischer et al. (1996) that were first

used as a reference benchmark by Shindyalov and Bourne (1998)

and later by several other groups (Lackner et al., 2000; Novotny

et al., 2004; Shen et al., 2010; Shibberu and Holder, 2011).

Table 1 indicates that all of these algorithms can calculate

good alignments for these structures, although the variation in

some of the numbers of aligned residues and RMSDs suggests

that these examples still appear to be difficult to align consist-

ently. On the other hand, Supplementary Figure S2 confirms

graphically that each algorithm gives rather similar 3D superpos-

itions for each pair of folds. This demonstrates the difficulty of

trying to compare different structure alignment algorithms dir-

ectly using such raw numerical measures. Nonetheless, it is worth

noting that the Kpax superpositions have RMSDs that are lower

than CE and TM-Align in all cases, and which are generally

comparable with, but slightly worse than, those of Sheba.

Furthermore, the final column of Table 1 (column ‘Kpax-K’)

shows that using just one round of DP with the pose-invariant

K-scores provides a fast way to calculate a good initial super-

position. This shows that the K-score is identifying many equiva-

lent residues for each pair of structures without requiring any

iteration or least-squares fitting.
To understand better the differences between the selected

alignment methods, Supplementary Table S1 lists for each pair

of methods the individual and average C� RMSD differences

between the computed positions of each superposed structure

when calculated with respect to a common reference structure.

This table shows that, on average, the 3D superpositions pro-

duced by Kpax resemble most closely those of TM-Align (with

an average C� RMSD of 1.31 Å), and indeed that the Kpax and

TM-Align superpositions are more similar than the superpos-

itions calculated by all other pairs of algorithms (CE/Sheba:

2.77; CE/TM-Align: 2.05; CE/Kpax: 2.21; Sheba/TM-Align:

2.04; Sheba/Kpax 2.70 Å RMSD). The largest individual differ-

ence between Kpax and TM-Align is seen in the first pair (PDB

codes: 1fxi/1ubq), in which the superposed positions of the ubi-

quitin domain (1ubq) differ by 3.83 Å RMSD. Figure 5 shows

the TM-Align and Kpax overlays for this case. A large colour

version of this image is shown in Supplementary Figure S3.

Visual inspection of these figures shows that Kpax produces a

tighter overlay of the main �-helix and the three large �-strands
in this pair than TM-Align.

3.3 Comparing the local and spatial scoring functions

To investigate the strengths and weaknesses of the Kpax scoring

functions, we compared the performance of Kpax’s local, spatial

and local-plus-spatial scores with TM-Align using six low se-

quence identity pairs of domains identified previously by Sippl

and Wiederstein (2008) and six further pairs from Gerstein and

Levitt (1998). Table IV of Mavridis et al. (2012) gives some re-

sults from CE, SSM, Dali and 3D-Blast for these examples.
Although we consider these pairs to be more challenging than

those of Fischer et al., Table 2 shows that both TM-Align and

the combined Kpax scoring function find full-length superpos-

itions in all twelve cases (see Supplementary Figs S4 and S5 for

images of the 3D superpositions). As in Table 1, Kpax produces

alignments with lower RMSDs but also with lower numbers of

aligned residues than TM-Align for the majority of cases. In

terms of trading between RMSD and number of aligned resi-

dues, these results reaffirm the tendency for Kpax to produce

Fig. 4. Cartoon representations of the SSE assignments calculated by

Stride, DSSP and Kpax for ubiquitin (PDB code: 1ubq).

Supplementary Figure S1 shows nine further examples

3278

D.W.Ritchie et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/28/24/3274/247565 by guest on 13 M
arch 2024



superpositions towards the low RMSD, or ‘tight’, end of the

number/RMSD performance metric.
On the other hand, Table 2 also shows that the individual local

and spatial functions (tabulated ‘Kpax-L’ and ‘Kpax-S’, respect-

ively) both fail to find the full alignment for the pair d1mtyb_/

d1ryta1, and the spatial function fails for one further pair

(d1lt3a_/d1efya2). The first of these cases involves correctly

matching the 4-helix bundle of rubrerythrin (d1ryta1) within

the larger 9-helix bundle of the methyl monooxygenase hydro-

xylase (d1mtyb_). This is clearly difficult for both scoring func-

tions because locally all helices will look the same, and because

spatially the COMs of these different-sized domains will not

closely coincide in a good overlay. Similarly, for the second

pair, the different positions of their COMs with respect to their

correctly aligned �-barrels probably explains why the spatial

scoring functions fails in this case. Nonetheless (and somewhat

surprisingly for the helix bundle case, d1mtyb_/d1ryta1), these

examples show that using the combined Kpax score appears to

overcome the weaknesses in the individual scoring functions.

The last column of Table 2 shows that, as before, Kpax gen-

erally gives quite similar overlays to TM-Align. However, the

final example involving a pair of �-propellers (SCOP codes:

d4aaha_/d1gofa3) has a large RMSD difference of 11.6 Å

between the Kpax and TM-Align superpositions. Figure 6

shows these superpositions graphically, and Supplementary

Figure S6 provides a large colour version of the same figure.

From close visual inspection of these figures, we believe the tigh-

ter Kpax alignment to be superior despite the smaller calculated

number of aligned residues.

3.4 CATH database search comparison

As a final and more demanding test, we compared the ability of

Kpax, TM-Align and Yakusa to retrieve structural homologues

from CATH using a diverse set of structural queries. We chose

TM-Align because in our opinion (based on a preliminary com-

parison of several structural aligners) it is one of the best struc-

ture aligners available, and we chose Yakusa because it was

specifically designed for rapid database searching. For this test,

Table 2. Structural alignment results for 12 low sequence identity pairsa

SCOP domains Kpax-Lb Kpax-Sc Kpaxd TM-Align �-RMSDe

d1euda1/d1ccwa_ 79 (2.2) 78 (2.1) 79 (2.2) 103 (3.3) 1.1

d1euda2/d1ccwa_ 79 (2.9) 93 (2.4) 94 (2.3) 101 (3.1) 1.3

d1euda1/d1euda2 70 (2.9) 72 (3.1) 72 (3.1) 99 (3.4) 2.4

d1gt8a4/d1mo9a1 132 (1.8) 130 (1.8) 141 (2.2) 165 (3.0) 0.5

1te2B02/1zolA02f 60 (2.2) 61 (2.2) 62 (2.1) 67 (2.9) 0.3

d1lt3a_/d1efya2 69 (2.6) 34 (3.4)g 63 (2.7) 103 (3.7) 3.2

d1amfa_/d3mbpa_ 151 (2.2) 159 (2.9) 161 (2.7) 217 (3.5) 1.5

d1vdca2/d2tmda2 99 (1.5) 103 (1.9) 103 (1.9) 115 (2.3) 0.6

d1sqca1/d1cema_ 200 (2.5) 210 (2.5) 210 (2.5) 288 (3.6) 1.3

d1nal1_/d1qbaa3 119 (3.7) 125 (3.6) 132 (3.7) 229 (4.9) 5.0

d1mtyb_/d1ryta1 26 (2.3)g 38 (2.0)g 100 (2.6) 142 (2.4) 2.9

d4aaha_/d1gofa3 207 (3.3) 197 (3.6) 178 (3.9) 336 (5.4) 11.6

aListed are the number of residues aligned by each method with the corresponding

C� RMSD in parentheses.
bLocal scoring (weights: wl¼ 1.0, ws¼ 0.0) plus grid search.
cSpatial scoring (weights: wl¼ 0.0, ws¼ 1.0) plus grid search.
dLocal-plus-spatial scoring (wl¼ 0.5, ws¼ 0.5) plus grid search.
eThe C� difference in the coordinates of the moving domain between the Kpax and

TM-Align superpositions (calculated using ProFit: http://www.bioinf.org.uk/soft-

ware/profit/).
fThese are CATH domains.
gThese are cases in which the expected full length alignment was not found.

Table 1. Superposition performance comparison for the 10 ‘difficult’

pairs of structures from Fischer et al. (1996)a

PDB codes CEb Shebac TM-Alignd Kpaxe Kpax-Kf

1fxiA/1ubqA 64 (2.8) 49 (2.1) 63 (2.6) 45 (2.0) 31 (2.8)

1tenA/3hhrB 87 (1.9) 82 (1.4) 87 (1.8) 84 (1.7) 48 (3.1)

3hlaA/2rheA 85 (3.5) 62 (2.2) 80 (3.1) 66 (2.7) 41 (3.9)

2azaA/1pazA 85 (2.9) 74 (2.0) 86 (2.8) 69 (2.3) 64 (3.5)

1cewI/1molA 81 (2.3) 74 (1.8) 82 (2.3) 69 (1.9) 63 (4.0)

1cidA/2rheA 98 (3.0) 83 (1.8) 100 (2.9) 76 (2.2) 56 (4.2)

1crlA/1edeA 220 (3.9) 139 (2.1) 235 (4.4) 156 (2.5) 93 (4.3)

2simA/1nsbB 297 (3.3) 235 (2.1) 312 (3.8) 255 (2.7) 201 (3.7)

1bgeB/2gmfA 109 (4.6) 81 (2.1) 111 (4.0) 77 (2.7) 68 (3.8)

1tieA/4fgfA 117 (3.0) 93 (1.7) 117 (2.8) 100 (2.4) 84 (3.8)

Average time (s) 1.88 0.48 0.13 0.07 50.001

aListed are the number of residues aligned by each method, along with the corres-

ponding RMSD in parentheses. Calculation times were measured on a 2.8-GHz

quad-core Intel Xeon workstation.
bCalculated using jCE (Prlić et al., 2010).
cSheba version 4.0.1 (Jung and Lee, 2000).
dTM-Align version 20120126 (Zhang and Skolnick, 2005).
eGrid-optimized superposition using the G-score (Equation 11).
fUnoptimized superposition obtained directly from the pose-invariant K-score

alignment (Equation 9).

Fig. 5. The structural alignments calculated by TM-Align and Kpax for

the pair 1fxiA/1ubqA. Arrows highlight particularly tight regions of the

Kpax alignment compared with the TM-Align alignment. SSEs are

drawn using Stride assignments. See Supplementary Figure S3 for a

large colour version

Fig. 6. The structural alignments calculated by TM-Align and Kpax for

the pair d4aaha_/d1gofa3. Arrows mark especially tight regions of the

Kpax alignment. See Supplementary Figure S6 for a large colour version

3279

Fast protein structure alignment

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/28/24/3274/247565 by guest on 13 M
arch 2024



we selected 213 CATH families for which each family has at least

10 members, and we used CATH’s representative structure for

each family as the query. These families have an average of 30.7
members, and the query structures have an average of 160 resi-

dues. Here, we treat any structure having the same four-digit
CATH code as the query as a ‘positive’ instance, and all other

structures as ‘negative’ instances. We then measured the ability

of each algorithm to retrieve structures having the same CATH
code as the query by plotting the rate of true positives against the

rate of false positives as the ranked list of matching structures is
traversed. The area under the curve (AUC) of such receiver-

operator-characteristic (ROC) plots may be used as a single
objective measure of performance (Fawcett, 2006).

Figure 7 shows the aggregate ROC curves obtained for each
algorithm by vertically averaging each set of 213 ROC curves.

This figure shows that TM-Align gives the best overall perform-
ance, with an average AUC of 0.976, closely followed by Kpax

with an AUC of 0.966. Yakusa gives an average AUC of 0.915.

Closer examination of the individual curves (not shown here)
indicated that the slightly better performance of TM-Align in

this test comes from its ability to superpose more distantly
related structures. For example, TM-Align achieves AUC

40.99 for 140 of the queries, compared with 102 for Kpax, and

just 56 for Yakusa. On the other hand, Kpax is extremely effi-
cient compared with existing structural alignment algorithms.

For example, on a 2.8-GHz quad-core workstation, the above
calculations took 46 h using TM-Align compared with 2.2 h for

Yakusa, and just 22.5min for Kpax. Furthermore, using only the
pose-invariant K-scores without calculating superpositions takes

just 13.5min and gives an almost indistinguishable ROC curve to

the superposition search. This corresponds to an average rate of
2980 structural alignments per second. In contrast, from the

timing results of a previous study (see Table IV of Mavridis
et al., 2012), we estimate that performing the above database

searches using CE, SSM, Dali and our own 3D-Blast algorithm
would require approximately 286, 454, 1322 and 2012

CPU-hours, respectively. Thus, Kpax offers a useful way to

keep ahead of the Red Queen.
Although Kpax allows large domain structure databases such

as CATH and SCOP to be searched rapidly, only a single global
alignment and superposition is reported for each pair of com-

pared structures. In the future, we would like to use Kpax to
search the entire PDB directly. However, if the aim is to detect

sub-structure matches e.g. when comparing a single small

domain with large multi-domain structures, we expect that the

spatial scoring function will be less useful than the local similarity

score. Additionally, it will require further work to be able to

handle arbitrary PDB files, which might contain multiple struc-

tures and conformations, and which would therefore require

additional processing to collect and report multiple possible

structural alignments.

4 CONCLUSION

We have presented Kpax, a novel protein structure alignment

and superposition algorithm that uses multiple C� coordinate

systems and a Gaussian peptide fragment scoring scheme to pro-

vide a sensitive structural similarity score. For the pairs of struc-

tures studied here, Kpax gives similar alignment statistics to

Sheba, and it generally calls fewer aligned residues with lower

RMSDs than CE and TM-Align. However, this does not imply

low alignment quality. We have shown that the superpositions

produced by Kpax resemble more closely those produced by

TM-Align than those of CE and Sheba, and we have demon-

strated that Kpax produces tighter superpositions of SSEs than

TM-Align in several cases.
We have also shown that Kpax may be used to perform fast

and sensitive structural database searches. In our comparison

with Yakusa and TM-Align using the CATH database, we

showed that Kpax is faster and more accurate than the very

efficient Yakusa algorithm, and it gives almost the same high

level of fold recognition as TM-Align while being more than

100 times faster. Our timing estimates for CE, SSM and Dali

predict even greater speed-ups with respect to these algorithms.

These results demonstrate that Kpax is both fast and respectably

accurate in comparison with the current state of the art.

However, it still has some caveats. For example, it produces

only a single rigid global alignment for each pair of compared

structures, it cannot handle permutations or multi-structure PDB

files, and its spatial scoring function is not well suited for com-

paring protein domains that differ significantly in size.

Nonetheless, with the number of solved protein structures grow-

ing ever more rapidly, we believe the publicly available Kpax

program will provide a useful tool for high throughput compari-

sons of 3D protein structures.

ACKNOWLEDGEMENTS

We thank the Associate Editor and three anonymous referees for

several suggestions for improvements to the presentation of this

article.

Funding: Part of this work was funded by the Agence Nationale

de la Recherche, grant number ANR-11-MONU-006-02.

Conflict of Interest: none declared.

REFERENCES

Altschul,S.F. et al. (1990) Basic local alignment search tool. J. Mol. Biol., 215,

403–410.

Andonov,R. et al. (2008) An efficient Lagrangian relaxation for the contact map

overlap problem. LNCS, 5251, 162–173.

Fig. 7. Aggregate ROC comparison of Kpax, TM-Align and Yakusa

using 213 structural queries against the CATH database (version 3.4,

comprising 11 330 domains at the 35% sequence identity level)

3280

D.W.Ritchie et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/28/24/3274/247565 by guest on 13 M
arch 2024



Andonov,R. et al. (2011) Maximum contact map overlap revisited. J. Comp. Biol.,

18, 27–41.

Berman,H.M. (2008) The protein data bank: a historical perspective. Acta

Crystallogr., A38, 88–95.

Boys,S.F. (1950) Electronic wave functions I A general method of calculation for

the stationary states of any molecular system. Proc. Roy. Soc., A200, 542–554.

Budowski-Tal,I. et al. (2010) FragBag, an accurate representation of protein struc-

ture, retrieves structural neighbours from the entire PDB quickly and accurately.

Proc. Natl Acad. Sci., 107, 3481–3486.

Charpentier,M. et al. (2005) YAKUSA: a fast structural database scanning method.

Proteins: Struct. Func. Bioinf., 61, 137–151.

Chen,L. et al. (2006) Revealing divergent evolution, identifying circular permuta-

tions and detecting active-sites by protein structure comparison. BMC Struct.

Biol., 6, 18.

Chew,L.P. et al. (1999) Fast detection of common geometric substructures in pro-

teins. J. Comp. Biol., 6, 313–325.

Cowtan,K. (2008) Modified phased translation functions and their application to

molecular-fragment location. Acta Crystallogr., D54, 750–756.

Cuff,A.L. et al. (2009) The CATH classification revisited—architectures reviewed

and new ways to characterize structural divergence in superfamilies. Nucleic

Acids Res., 37, D310–D314.

Fawcett,T. (2006) An introduction to ROC analysis. Pat. Recog. Lett., 7, 861–874.

Fischer,D. et al. (1996) Assessing the performance of fold recognition methods by

means of a comprehensive benchmark. In Proceedings of the 1st Pacific

Symposium on Biocomputing. World Scientific Publishing Co, Singapore,

pp. 300–318.

Frishman,D. and Argos,P. (1995) Knowledge-based protein secondary structure

assignment. Proteins, 23, 566–579.

Gerstein,M. and Levitt,M. (1998) Comprehensive assessment of automatic struc-

tural alignment against a manual standard, the scop classification of proteins.

Prot. Sci., 7, 445–456.

Gibrat,J.F. et al. (1996) Surprising similarities in structure comparison. Curr. Opin.

Struct. Biol., 6, 377–385.

Hasegawa,H. and Holm,L. (2009) Advances and pitfalls of protein structure align-

ment. Curr. Opin. Struct. Biol., 19, 341–348.

Holm,L. and Sander,C. (1993) Protein structure comparison by alignment of dis-

tance matrices. J. Mol. Biol., 233, 123–138.

Holm,L. et al. (2008) Seaching protein structure databases with DaliLite v.3.

Bioinformatics, 24, 2780–2781.

Ilyin,V.A. et al. (2004) Structural alignment of proteins by a novel TOPOFIT

method, as a superimposition of common volumes at a topomax point. Prot.

Sci., 13, 1865–1874.

Jung,J. and Lee,B. (2000) Protein structure alignment using environmental profiles.

Protein Eng., 13, 535–543.

Jung,S. et al. (2011) Validity of protein structure alignment method based on back-

bone torsion angles. J. Proteomics Bioinform., 4, 218–226.

Kabsch,W. (1976) A solution for the best rotation to relate two sets of vectors. Acta

Crystallogr., A32, 922–923.

Kabsch,W. and Sander,C. (1983) Dictionary of protein secondary structure: pattern

recognition of hydrogen-bonded and geometrical features. Biopolymers, 22,

2577–2637.

Kawabata,T. and Nishikawa,K. (2000) Protein structure comparison using the

Markov transition model of evolution. Proteins, 41, 108–122.

Kifer,I. et al. (2011) GOSSIP: a method for fast and accurate global alignment of

protein structures. Bioinformatics, 27, 925–932.

Kolbeck,B. et al. (2006) Connectivity independent protein-structure alignment: a

hierarchical approach. BMC Bioinformatics, 7, 510.

Konagurthu,A.S. et al. (2008) Structural search and retrieval using a tableau rep-

resentation of protein folding patterns. Bioinformatics, 24, 645–651.

Krissinel,E. and Henrick,K. (2004) Secondary structure matching (SSM), a new tool

for fast protein structure alignment in three dimensions. Acta Crystallogr., D60,

2256–2268.

Lackner,P. et al. (2000) ProSup: a refined toolf for protein structure alignment.

Protein Eng., 13, 745–752.

Lipman,D.J. and Pearson,W.R. (1985) Rapid and sensitive protein similarity

searches. Science, 227, 1435–1441.

Lo,W.C. et al. (2007) Protein structural similarity search by Ramachandran codes.

BMC Bioinformatics, 8, 307.

Lu,G. (2000) TOP: a new method for protein structure comparisons and similarity

searches. J. Appl. Crystallogr., 33, 176–183.

Malod-Dognin,N. et al. (2010) Maximum cliques in protein structure comparison.

Experimental Algorithms LNCS, 6049, 106–117.

Mavridis,L. et al. (2012) Representing and comparing protein folds and fold families

using 3D shape-density representations. Proteins, 80, 530–545.

Murzin,A.G. et al. (1995) SCOP: a structural classification of proteins database for

the investigation of sequences and structures. J. Mol. Biol., 247, 536–540.

Needleman,S.B. andWunsch,C.D. (1970)A generalmethod applicable to the search for

similarities in the amino acid sequence of two proteins. J. Mol. Biol., 48, 443–453.

Novotny,M. et al. (2004) Evaluation of protein fold comparison servers. Proteins,

54, 260–270.

Ortiz,A.R. et al. (2002) MAMMOTH (matching molecular models obtained from

theory): an automated method for model comparison. Prot. Sci., 11, 2606–2621.

Pandit,S.B. and Skolnick,J. (2008) Fr-TM-align: a new protein structural alignment

method based on fragment alignments and the TM-score. BMC Bioinformatics,

9, 531.

Prlić,A. et al. (2010) Pre-calculated protein structure alignments at the RCSB PDB

website. Bioinformatics, 26, 2983–2985.

Razmara,J. et al. (2012) TS-AMIR: a topology string alignment method for inten-

sive rapid protein structure comparison. Algorithms Mol. Biol., 7, 4.

Sabarinathan,R. et al. (2010) ProSTRIP: a method to find similar structural repeats

in three-dimensional protein structures. Comput. Biol. Chem., 34, 126–130.

Sacan,A. et al. (2008) Integrated search and alignment of protein structures.

Bioinformatics, 24, 2872–2879.

Salem,S. et al. (2010) FlexSnap: flexible non-sequential protein structurea align-

ment. Algorithms Mol. Biol., 5, 12.

Shen,Y.F. et al. (2010) Protein structure alignment based on internal coordinates.

Interdiscip. Sci., 2, 308–319.

Shibberu,Y. and Holder,A. (2011) A spectral approach to protein structure align-

ment. IEEE/ACM Trans. Comput. Biol. Bioinform., 8, 867–875.

Shindyalov,I. and Bourne,P. (1998) Protein structure alignment by incremental

combinatiorial extension (CE) of the optimal path. Protein Eng., 11, 739–747.

Sierk,M.L. and Kleywegt,G.J. (2004) Déjà vu all overa again: finding and analyzing

protein structure similarities. Structure, 12, 2103–2111.

Sippl,M. and Wiederstein,M. (2008) A note on difficult structure alignment prob-

lems. Bioinformatics, 24, 426–427.

Sippl,M. and Wiederstein,M. (2012) Detection of spatial correlations in protein

structures and molecular complexes. Structure, 20, 718–728.

Smith,T.F. and Waterman,M.S. (1981) Identification of molecular subsequences. J.

Mol. Biol., 147, 195–197.

Stivala,A. et al. (2009) Tableau-based protein substructure search using quadratic

programming. BMC Bioinformatics, 10, 153.

Szustakowski,J.D. and Weng,Z. (2000) Protein structure alignment using a genetic

algorithm. Proteins, 38, 428–440.

Täubig,H. et al. (2006) PAST: fast structure-based searching in the PDB. Nucleic

Acids Res., 34, W20–W23.

Taylor,W.R. and Orengo,C.A. (1989) Protein structure alignment. J. Mol. Biol.,

208, 1–22.

Taylor,W.R. et al. (2001) Protein structure: geometry, toplogy, and classification.

Rep. Prog. Phys., 64, 517–590.

Tung,C.H. et al. (2007) Kappa-alpha plot derived structural alphabet and

BLOSUM-like substitution matrix for rapid search of protein structure data-

base. Genome Biol., 8, R31.

Tyagi,M. et al. (2007) Protein structure mining using a structural alphabet. Proteins,

11, 920–937.

Venkateswaran,J.G. et al. (2011) Protein structural similarity search by

Ramachandran codes. IEEE Trans. Comput. Biol. Bioinform., 8, 819–831.

Wohlers,I. et al. (2010) Towards optimal alignment of protein structure distance

matrices. Bioinformatics, 26, 2273–2280.

Yang,J.M. and Tung,C.H. (2006) Protein structure database search and evolution-

ary classification. Nucleic Acids Res., 34, 3646–3659.

Ye,J. et al. (2004) Pairwise protein structure alignment based on an orientation-

independent backbone representation. J. Bioinform. Comput. Biol., 2, 699–717.

Ye,T. and Godzik,A. (2003) Flexible structure alignment by chained aligned frag-

ment pairs allowing twists. Bioinformatics, 19 (Suppl. 2), ii246–ii255.

Zemla,A. (2003) LGA a method for finding 3D similarities in protein structures.

Nucleic Acids Res., 31, 3370–3374.

Zhang,Y. and Skolnick,J. (2005) TM-align: a protein structure alignment algorithm

based on TM-score. Nucleic Acids Res., 33, 2302–2309.

Zhang,Z.H. et al. (2010) deconSTRUCT: general purpose protein database search

on the substructural level. Nucleic Acids Res., 38, W590–W594.

Zhou,L.C.T. and Tang,Y. (2005) Protein structure alignment by deterministic an-

nealing. Bioinformatics, 21, 51–62.

Zhu,J. and Weng,Z. (2005) FAST: a novel protein structure alignment algorithm.

Proteins, 58, 618–627.

3281

Fast protein structure alignment

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/28/24/3274/247565 by guest on 13 M
arch 2024


