
Vol. 29 no. 1 2013, pages 39–46
BIOINFORMATICS ORIGINAL PAPER doi:10.1093/bioinformatics/bts654

Sequence analysis Advance Access publication November 9, 2012

DLocalMotif: a discriminative approach for discovering local

motifs in protein sequences
Ahmed M. Mehdi1, Muhammad Shoaib B. Sehgal2, Bostjan Kobe1,3,4, Timothy L. Bailey1

and Mikael Bodén1,3,*
1Institute for Molecular Bioscience, The University of Queensland, Australia, 2Microsoft corporation, USA, 3School of
Chemistry and Molecular Biosciences, The University of Queensland, Australia and 4Infectious Diseases Research
Centre, The University of Queensland, Australia

Associate Editor: Martin Bishop

ABSTRACT

Motivation: Local motifs are patterns of DNA or protein sequences

that occur within a sequence interval relative to a biologically defined

anchor or landmark. Current protein motif discovery methods do not

adequately consider such constraints to identify biologically significant

motifs that are only weakly over-represented but spatially confined.

Using negatives, i.e. sequences known to not contain a local motif,

can further increase the specificity of their discovery.

Results: This article introduces the method DLocalMotif that makes

use of positional information and negative data for local motif discov-

ery in protein sequences. DLocalMotif combines three scoring

functions, measuring degrees of motif over-representation, entropy

and spatial confinement, specifically designed to discriminatively

exploit the availability of negative data. The method is shown to

outperform current methods that use only a subset of these motif

characteristics. We apply the method to several biological datasets.

The analysis of peroxisomal targeting signals uncovers several novel

motifs that occur immediately upstream of the dominant peroxisomal

targeting signal-1 signal. The analysis of proline-tyrosine nuclear local-

ization signals uncovers multiple novel motifs that overlap with C2H2

zinc finger domains. We also evaluate the method on classical nuclear

localization signals and endoplasmic reticulum retention signals and

find that DLocalMotif successfully recovers biologically relevant

sequence properties.

Availability: http://bioinf.scmb.uq.edu.au/dlocalmotif/

Contact: m.boden@uq.edu.au

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

Local motifs are patterns in DNA or protein sequences that

occur in a short sequence interval relative to a sequence anchor

or landmark. For example, the peroxisomal targeting signal-1

(PTS1; defined by the consensus [SAC][KRH][LA]) occurs at

the C-terminus of many proteins that localize to the peroxisome.

However, up to 12 residues found upstream of PTS1 are import-

ant for localization, but as of yet, no motif is known (Hawkins

et al., 2007; Neuberger et al., 2003). Another example is the

proline-tyrosine nuclear localization signal (PY-NLS) that is

recognized by a specific nuclear import factor Kap�2 (Lee

et al., 2006). The PY-NLS contains a highly conserved PY at

the C-terminus of the motif, but residues upstream of this motif

are required for the interaction with Kap�2. Additionally,

proteins are retained in the endoplasmic reticulum (ER) owing

to the presence of the motif [KH]DEL local to the C-terminus

(Elrod-Erickson and Kaiser, 1996). We aim to discover multiple

local motifs that co-occur with these anchors.
Existing motif discovery methods typically aim to discover

over-represented motifs in DNA and protein sequences (Austin

et al., 2007; Bailey et al., 2009; Dogruel et al., 2008; Ettwiller

et al., 2007; Linhart et al., 2008; Pavesi et al., 2004; Redhead and

Bailey, 2007; Roepcke et al., 2006; Thijs et al., 2002), but do not

usually account for positional information and negative data.

The few methods that do use sequence distance or position as

a feature operate on DNA sequences (Keilwagen et al., 2011;

Linhart et al., 2008; Narang et al., 2010; Ohler et al., 2002;

Roepcke et al., 2006; Yan et al., 2011) and are thus unsuitable

for proteins. Discriminative motif finding methods distinguish

functional motifs from randomly occurring sequence patterns

by using functionally unrelated ‘negative’ sequences in which

sought motifs are absent (or present owing to chance alone)

(Redhead and Bailey, 2007). To our knowledge, none of the

available protein motif discovery methods make use of both

types of information.
Several local motif discovery methods are designed for infer-

ring motifs that define gene regulatory networks (Ohler et al.,

2002; Roepcke et al., 2006; Vardhanabhuti et al., 2007; Xie et al.,

2007). Recently, Narang et al., (2010) developed ‘LocalMotif’ for

discovering nucleotide motifs that occur in a short sequence

interval relative to transcription start sites. They introduced a

novel scoring function to determine the spatial confinement of

a DNA motif. Using human promoter data, the authors demon-

strated that their method outperformed several other tools such

as Amadeus (Linhart et al., 2008), Trawler (Ettwiller et al., 2007),

Weeder (Pavesi et al., 2004) and MEME (Bailey et al., 2009) on

discovering transcription factor binding motifs in ChIP data.

The ‘spatial confinement score’ (Narang et al., 2010) does not

adequately deal with sparse data. With few samples, the spatial

confinement score is high at singular counts. To make matters

worse, at low numbers of samples under observation, the method*To whom correspondence should be addressed.
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for determining statistical significance is inaccurate (Wilks,

1938). LocalMotif is therefore incapable of distinguishing

between real and spurious, low-count motifs.

In this article, we develop a new method inspired by

LocalMotif (Narang et al., 2010) that works for the 20-symbol

amino acid alphabet enabling protein motif discovery. It uses

negative data enabling discriminative motif discovery, and statis-

tically identifies local motifs at realistically low counts. Our new

method DLocalMotif discovers motifs in a set of protein

sequences that are aligned relative to a defined landmark. We

use three scoring functions, namely motif spatial confinement

(MSC), motif over-representation (MOR) and motif relative

entropy (MRE). To deal with spurious matches, we use pseudo

counts for probabilities in the scoring functions. (Maximum a

posteriori estimates tend to reasonable values when there is

little data.) The scoring functions collectively establish whether

a motif is enriched in a constrained sequence interval in the posi-

tive dataset relative to the negative dataset. To uncover only

significant, spatially confined motifs, P-values are determined

by a (corrected) binomial test of motif location within matched

sequences. We believe that DLocalMotif is the only tool for

discovering local motifs in protein sequences. We expect that

several methods, including Trawler and Amadeus, could be

reworked to operate on proteins, but the efficiency and accuracy

are yet unknown.
We use synthetic datasets to characterize the accuracy of our

method and to compare it with alternative methods. The results

indicate that DLocalMotif has superior accuracy on protein

sequences largely because of its ability to use positional informa-

tion and negative data. In addition, DLocalMotif finds the most

favourable position of each discovery. We apply our method to

several biological datasets and uncover novel motifs that

co-occur with a variety of protein localization signals.

2 MATERIAL AND METHODS

2.1 Motif description language

A local motif is a tuple M¼ (K, d, R) where K is a ‘consensus’ string of k

symbols from the 20-amino acid alphabet A, d is an integer representing

the maximum accepted Hamming distance, i.e. the number of mis-

matches, between the consensus and a ‘matched’ string (both of length

k) and R is a range [r1,r2] specifying all accepted starting positions of the

motif in a sequence (making it ‘local’).

Our objective function, F(M, X) is a function of a local motif M and

a set of sequences X2 {S,U}, each of length L. X is divided into positive

and negative sequence sets, S and U, respectively, with sizes

NX¼NSþNU. The objective function decomposes into three

sub-functions described in the subsections later in the text.

Each sequence is aligned to a universal ‘anchor’ position. Specifically,

we designate b1¼ 1 to indicate the first position of the sequence that can

contain a match to a motif and b2¼L - kþ 1 the final position for

a match. s[i,iþ k� 1] is a k-symbol string of any sequence s2X, starting

at i, where i 2 [b1,b2], i.e. any valid subinterval.

We define match(s, K, d, i) to be true if and only if

Hðs½i, iþ k� 1�,KÞ � d, where H(.,.) is the Hamming distance

between two strings. We similarly define countðs,K, d, ½i1, i2�Þ

jfi 2 ½i1, i2�jmatchðs,K, d, iÞgj to be the number of instances that match

K in the interval [i1,i2] of s2X. We define matchðs,K, d, ½i1, i2�Þ to be

true if countðs,K, d, ½i1, i2�Þ � 1.

We define i� ¼ argminiHðs½i, iþ k� 1�,KÞ. Whenmatchðs,K, d, ½i1, i2�Þ

is true, we use matchðs,K, d, ½i1, i2�Þj to access the jth symbol in the

‘matched’ string s½i� þ j� 1, i� þ jþ k� where j 2 f1, . . . , kg.

2.1.1 Problem formulation The discriminative local motif finding

problem is an extension of the local motif finding problem (Narang et al.,

2010). Suppose that instances of an unknown string K, subject to a

user-specified maximum of d mismatches, are enriched within a confined

interval R in positive sequences relative to negative sequences. Our goal is

to establish the parameters of M¼ (K, d, R) leveraging the differences

between positive and negative instances. Below we describe the functions

to objectively score parameter values.

2.1.2 MSC MSC measures a motif’s enrichment ‘inside’ an interval

R, relative to any other position in a sequence.

For a given string K (subject to d mismatches), we define the set

S� ¼ fs 2 Sjmatchðs,K, d, ½b1, b2�Þg to be all positive sequences with at

least one match. We denote the number of sequences in this set as

N�S ¼ jS
�j.

For the same string, consider for each sequence s2S*, a Bernoulli trial

where we find the string either inside or outside an interval R. The prob-

ability of picking an occurrence of K subject to d inside an interval [i1,i2] is

P½i1, i2�ðsÞ ¼ countðs,K, d, ½i1, i2�Þ=countðs,K, d, ½b1, b2�Þ. We define the set

S0 ¼ fs 2 SjP½r1, r2 �ðsÞg as the sample of positive sequences whose match

is inside [r1,r2]. Note that counting a sequence as having a ‘local’ motif is

a random event. The success of this event is based on the proportion

of matches inside (as opposed to outside) the interval. The expected

sequence count is thus the sum of these probabilities
P

s2S� P½r1, r2 �ðsÞ.

We denote the number of sequences in this sample as N0S ¼ jS
0j.

We define c1 ¼ ðN
0
S þ z�MSCÞ=ðN

�
S þ zÞ. z ¼ 1=�MSC is a pseudo count,

and �MSC ¼ ðr2 � r1Þ=ðL� kþ 1Þ is the (uniform) prior probability of

observing a string within the interval [r1,r2].

To qualify c1 using known negatives, we similarly define the sets U*

and U0, on basis of the set U, for sequences with matches anywhere and

with local matches, respectively (analogous to S* and S0). Their counts

are referred to as N�U and N0U, respectively. Analogous to c1, let

c2 ¼ ðN
0
U þ z�MSCÞ=ðN

�
U þ zÞ.

MSC is defined as the Kullback–Leibler (KL) divergence (D) between

c1 and c2 (see Equation 1).

MSCðM,XÞ ¼ Dðc1jjc2Þ ¼ c1 log
c1
c2
þ ð1� c1Þ log

ð1� c1Þ

ð1� c2Þ
ð1Þ

Note that, in the absence of a negative dataset, c2 equals �MSC.

2.1.3 MOR MOR is a statistical measure of the abundance of motif

instances in positive sequences relative to a background.

e1 ¼ ðN
�
S þ z�MORÞ=ðNS þ zÞ is the proportion of sequences in S that

match K subject to dmismatches at any position. z ¼ 1=�MOR is a pseudo

count, and �MOR is the prior probability of finding a match in the

sequence, calculated as follows.

Let 0.05k be the (uniform) prior probability of finding a match at one

position in a sequence. Then �MOR ¼ Pð�one siteÞ ¼ 1� Pðzero

siteÞ ¼ 1� ð1� 0:05kÞL�kþ1. e2 ¼ ðN
�
U þ z�MORÞ=ðNU þ zÞ is the propor-

tion of sequences in U that match the string K subject to d mismatches,

at any position.

The MOR of M is measured as the Kullback–Leibler divergence

between e1 and e2 (Equation 2).

MORðM,XÞ ¼ Dðe1jje2Þ ¼ e1 log
e1
e2
þ ð1� e1Þ log

1� e1
1� e2

ð2Þ

Note that, in the absence of negative dataset, e2 is �MOR.

2.1.4 MRE MRE is a measure of the information-theoretic content

of a motif, relative to a background distribution. To capture the

functional importance of residues in a motif, we measure MRE using
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background frequencies taken from the negative data. We first generate

a probability matrix PM (Equation 3).

PMða, jÞ ¼
nða, jÞ þ z�MRE

N0S þ z
ð3Þ

PMða, jÞ is the probability of observing a in the jth position of the

motif, i.e. nða, jÞ ¼ fs 2 S0j jmatchðs,K, d, ½r1, r2�Þj ¼ agj. z ¼ 1=�MRE is a

pseudo count, and �MRE ¼ 0:05 is the (uniform) prior probability of

observing an amino acid a 2 A.

The MRE is calculated as in Equation 4.

MREðM,XÞ ¼
Xk
j¼1

X
a2A

PMða, jÞ log
PMða, jÞ

qa
ð4Þ

where qa represents the probability of observing an amino acid a in the

negative data irrespective of position.

2.1.5 The objective function F(M,X) The objective function

F(M,X) incorporates three different characteristics of a motif by a

simple geometric combination of the aforementioned scores (see

Equation 5).

FPRODðM,XÞ ¼MSCðM,XÞMORðM,XÞMREðM,XÞ ð5Þ

We also explored an objective function, which sums all three scores as

shown in Equation 6.

FSUMðM,XÞ ¼MSCðM,XÞ þMORðM,XÞ þMREðM,XÞ ð6Þ

DLocalMotif tries to find M and its interval of occurrence R that

maximizes our objective function F(M, X). Note that in the absence

of negative data, we resort to a uniform background.

2.1.6 Positional weight matrix For searching in novel and

unaligned sequences, we present the discovered motif in the form of a

positional weight matrix (PWM). We construct the PWM, WM as the

‘log-odds’ of the position-specific probability and a zero-order back-

ground probability of the amino acid a at position j as established

from matchingM against S0 (see Equation 7, which refers to Equation 3).

WMða, jÞ ¼ log
PMða, jÞ

qa
ð7Þ

2.1.7 Statistical significance of motif Narang and colleagues

computed P-values for each score individually. The authors used Wilks’

theorem, presented the likelihood ratio test statistics and estimated

P-values as area under the tail of the �2 distribution. However, Wilks’

theorem makes inaccurate assumptions for computing likelihood ratio if

the numbers of samples are low (which they tend to be for protein

sequences). We use a distinct approach to alleviate such concerns and

to focus specifically on spatially confined motifs.

For each sequence in X¼ {S,U}, we perform a Bernoulli trial as

described in Section 2.1.2. We determine the probability of picking a

local string K (subject to d mismatches) in S* and U*, by c1 and c2,

respectively (where ‘local’ means inside [r1,r2]). We note that 1� c1 and

1� c2 is the probability of picking a non-local string in S* and U*,

respectively.

We calculate the cumulative binomial probability as

pBIN ¼
PN�S
�¼N0

S

N�S
�

� �
c�2ð1� c2Þ

N�S��. We report the P-value corrected for

multiple tests p ¼ 1� ð1� pBINÞ
T where T ¼ ðL� kþ 1Þðr2 � r1ÞNS,

the total number of motifs evaluated (Chatfield, 1989).

2.2 Search algorithm and implementation

We do not use an exhaustive enumeration strategy because of its

computational demands. For a given value of d, and a range

of k 2 N�1, DLocalMotif uses a greedy enumeration: DLocalMotif

finds all non-redundant k-mers occurring in positive sequences in

sequence intervals with start positions R¼ [r1,r2] where

r1 2 f1, . . . ,L� kþ 1g, r15r2 � r1 þ �, where � is user specified.

Technically, � represents tolerance to local motif shifts. In the extreme,

if no shift is accepted (�¼ 0), a sequence profile of the alignment would

suffice to identify the motif. At the other extreme, the motif can shift

arbitrarily over the sequence (�¼L� kþ 1), meaning that no guidance

is provided by an alignment.

From candidate motifs in different sequence intervals, the method

constructs a consensus string and subsequently a PWM, both of which

are used to evaluate the objective function. As the candidate motifs are

being scored in different position intervals, a list of top m scores is

maintained at each position, where m can be set depending on available

memory, here we chose m¼ 50 in our default setting.

If two motifs overlap by 25% (o:p � 0:25 as defined by Equation 8)

and share some common instances, DLocalMotif discards the lower

scoring motif. Finally, the best motifs (according to the objective func-

tion) and their optimal PWMs are reported. Importantly, motifs without

statistical support (with corrected P40.001) are simply discarded.

In Supplementary Section 4.1, we vary the number sequences and

sequence length to illustrate how processing time is influenced.

We implemented the DLocalMotif algorithm using the Java program-

ming language. The program is freely available in the form of jar files at:

http://bioinf.scmb.uq.edu.au/dlocalmotif/. The user can adjust different

parameters to discover motifs and locations, including (i) length of

motif (default k¼ 4–11); (ii) maximum number of local motifs to be

discovered (default 10); (iii) number of allowable mismatches (default

d¼ k� 3); and (iv) motif shift (default �¼ 4). The algorithm presents

discovered motifs and identifies their location, the three individual

scores (MOR, MRE and MSC) and the combined score.

2.3 Datasets

2.3.1 Synthetic datasets Consider motif discovery problems falling

between two extremes: On the one extreme, sequences are highly enriched

with a particular motif, but motifs are not spatially confined. Such

problems can be addressed by available motif discovery methods. The

other extreme has sequences with only weakly enriched motifs, but when

they occur, they are spatially confined in relation to a landmark. We do

not expect traditional motif discovery methods to handle such problems

well. DLocalMotif is specifically designed to address the latter type of

problem.

Inspired by the study of DEME (Redhead and Bailey, 2007), we con-

structed two datasets that present discovery problems that lay between

these extremes. Each dataset contains 50 uniformly generated amino acid

sequences each of length L (varied from 30 to 200). We inserted instances

of local motifs each with d mutations in t% of sequences (t% varies

between 10–100%), in an interval R¼ [r1,r2] relative to each

C-terminus. We further generated data according to motifs with �� 4

varied uniformly when applicable. It has been shown previously that

MEME and DEME perform equally well with up to three point muta-

tions in planted motifs (Redhead and Bailey, 2007). In the synthetic

datasets, we uniformly chose d to have up to a maximum of three

point mutations. Other variables (r1 and t) were also selected uniformly.

For each length, we generated 50 datasets. Additional details of synthetic

dataset construction are provided in (Redhead and Bailey, 2007).

Negative random problem: Unique local motif instances were

implanted in positive data sequences as aforementioned. The negative

dataset was generated from a uniform distribution, thus negatives do

not contain any useful information. The local motif can thus be identified

with or without discrimination.

Decoy motif problem: Positive and negative sequences have one or

more local motifs in common. The positive sequences contain one

unique local motif. The negatives thus contribute by identifying motifs
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that are not unique to the positives, leaving only one motif to be

discovered discriminatively.

2.3.2 Biological datasets To evaluate the ability of DLocalMotif

to discover local motifs, we studied five biological datasets, assembled

using standard data curation practices. Details about each of the datasets

can be found in the Supplementary Material.

PTS1: The PTS1 dataset contains known peroxisomal protein

sequences with actual peroxisomal targeting signals at their C-termini

(positives), and non-peroxisomal proteins with PTS1-like C-termini

(negatives). As discussed further in Section 3, several studies have

suggested that there are additional, complementary ‘signals’ upstream

to the PTS1, and we expected DLocalMotif to be able to find them.

The initial dataset contained 124 positive sequences and 182 negative

sequences identified by Hawkins et al. (2007). We updated the dataset

with more recent peroxisomal and non-peroxisomal protein sequences in

Uniprot, using the same approach as that of Hawkins and colleagues

(see Supplementary Material). We extracted 15 residues upstream the

PTS1 (or PTS1-like) C-terminus and applied 30% redundancy reduction.

The final dataset contained 209 positive and 240 negatives.

ER retention signal: The classical ER retention signal is known to

occur at the C-termini of proteins and influences their retention in the

ER, possibly in concert with additional signals. We used the C-terminus

as an anchor to align sequences and used DLocalMotif to discover

retention motifs.

We first filtered 172 proteins (from Uniprot) with evidence of

ER retention signals. We then extracted 20 residues upstream the

C-terminus to capture additional signals (Qiu et al., 2009). We finally

applied 30% redundancy reduction on the filtered sequences. The final

dataset contained 130 positive sequences. No negative data were used.

Type-1 copper proteins: The type-1 copper (blue) proteins are involved

in electron transport in various systems such as photosynthesis (Giri

et al., 2004). These proteins contain a variable-spaced motif with

conserved C-terminal glutamine or methionine residues. All positive

and negative data for type-1 copper protein were taken from PROSITE

database (Sigrist et al., 2010). We aligned all protein sequences relative to

the C-terminal residues. The final dataset contains 86 positive sequences

and 69 negative sequences.

PY-NLS: The PY-NLS is recognized by the nuclear import factor

Kap�2. Literature reports a poorly defined motif with a highly conserved

proline-tyrosine pair PY at the C-terminus of the motif (Lee et al., 2006).

We aligned all sequences relative to PY and used DLocalMotif to

discover local motifs that co-occur with this anchor.

We first constructed a non-redundant mouse nuclear [NUCPROT;

Fink et al. (2008)] and non-nuclear (from Uniprot) protein set (both

with a maximum sequence redundancy of 30% [Huang et al., 2010)].

We then identified potential PY-NLSs by matching each sequence with

defined regular expressions (REs) (Lee et al., 2006). The final dataset

contained 297 positive (nuclear proteins that match the REs) and 240

negative sequences (proteins with a known location, which is not nuclear;

sequence match the REs).

Bipartite classical nuclear localization signal: The bipartite classical

nuclear localization signal (bipartite cNLS) consists of two clusters of

basic amino acids, separated by a linker of variable length and compos-

ition (Dingwall and Laskey, 1991; Kosugi et al., 2009). We aligned all

nuclear localization signals relative to the C-termini and used

DLocalMotif to discover complementary local motifs. We expected to

at least recover the N and C termini clusters of basic residues.

We first constructed a non-redundant mouse nuclear (NUCPROT).

A sequence redundancy of 30% was also applied (Huang et al., 2010).

We then identified bipartite cNLSs by matching each sequence with

defined REs (Kosugi et al., 2009). The final dataset contained 237 positive

sequences (nuclear proteins that match REs). No negative data were used.

2.4 Statistical enrichment analysis of PTS1 motifs

For each discovered motif, we identified a group of proteins that

‘have-motif’ and a group that ‘do-not-have-motif’. We counted the

number of proteins in each group, distinguishing between proteins that

are assigned a specific property [have a specified Gene Ontology

(GO) term or taxonomy term] from those that do not.

The null hypothesis for each motif, and each assigned property, is that

the ‘have-motif’ proteins do not differ in terms of assigned property from

those of the ‘do-not-have-motif’ proteins. Fisher’s exact test establishes

a P-value, the total probability of observing data as extreme or more

extreme, given that the null hypothesis is true. From this analysis, we

identified terms that have P� 0.05. The GO terms were retrieved from

http://www.geneontology.org (January, 2012). The Taxonomy IDs were

retrieved from http://www.uniprot.org (January, 2012).

2.5 Performance metric for synthetic datasets

The synthetic problems discussed in Section 2.5.1 intend to illustrate how

well DLocalMotif discovers planted local motifs in protein-like

sequences. The top motif in each dataset is used to evaluate the prediction

accuracy. Let Ia ¼ ½r1, r2 þ k� represent the actual range used for a

planted motif M and Ip ¼ ½r
0
1, r
0
2 þ jK

0j� be the predicted range for the

top motif with consensus string K0. Similar to Narang and colleagues,

we calculated the accuracy of DLocalMotif by measuring the overlap

percentage (o.p) between the actual (Ia) and predicted (Ip) intervals

(see Equation 8).

o:p ¼
Ia \ Ip

max Iaj j, Ip
�� ��� � ð8Þ

We compare the performance of DLocalMotif with the available methods

MEME (Bailey et al., 2009), DEME (Redhead and Bailey, 2007) and

NestedMICA (Dogruel et al., 2008). All of these methods find

over-represented motifs in unaligned sequences, with no regard to spatial

arrangements of motifs. In addition, DEME and NestedMICA also

consider background data to find motifs that are discriminative.

3 RESULTS

3.1 Evaluating P-values on randomly generated data

Motif discovery methods may uncover highly significant motifs
even when tested on random datasets (Harbison et al., 2004).
To allow the user to distinguish between spurious and biological

relevant significant motifs, before assessing the accuracy of
discoveries, we set out to illustrate that P-values assigned to
discovered motifs are statistically meaningful. We thus evaluated

P-values on random datasets. We generated random protein
sequences of different lengths, applied DLocalMotif and
extracted the motif with the minimum P-value. In particular,

we varied the length of sequences from 50 to 100 with each
experiment repeated 200 times. The results are shown as Q–Q
plots, i.e a plot between calculated and ranked P-values
(Supplementary Fig. S1). Owing to observed P-value versus

rank spread, we show that our method neither over- nor
underestimates statistical significance.

3.2 Evaluating DLocalMotif on synthetic datasets

We investigated the performance of DLocalMotif discovering
motifs in synthetic datasets containing randomly placed local
motifs. In particular, we studied the effects of varying the

length L of sequences. For comparison, we considered MEME
(Bailey et al., 2009), DEME (Redhead and Bailey, 2007) and
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NestedMICA (Dogruel et al., 2008). The performance of MEME

was based on positive data only but DEME, NestedMICA and

DLocalMotif were tested on positive and negative data. In

Figure 1, each data point represents the average o.p from

50 datasets. The overall accuracy was calculated by averaging

the o.p for all data sequences. For DLocalMotif, the accuracy

using both objective functions are reported (Equation 5y and

Equation 6z).
For the negative random datasets, DLocalMotif achieved

higher accuracy than standard algorithms with average o.p of

0.83y and 0.79z as compared with 0.15 (DEME), 0.19

(MEME) and 0.16 (NestedMICA) (see Fig. 1). MEME either

outperformed DEME or performed equally well, as DEME in

the test that has no additional information in the negative data.

NestedMICA outperformed MEME and DEME for short

sequences (30 residues).
For the decoy motif datasets, DLocalMotif outperformed

MEME, DEME and NestedMICA in terms of average overlap

percentage with an average o.p of 0.74y and 0.73z, compared

with 0.18 (DEME), 0.13 (MEME) and 0.17 (NestedMICA).

DEME and NestedMICA consider negative data and are thus

able to identify decoys. The results further illustrate the ability of

DLocalMotif to discover local motifs that discriminate between

positive and negative sequences, by identifying the motifs that

are only available in the positive data. Note that DEME,MEME

and NestedMICA perform relatively well with shorter length

sequences. However, the overall accuracy of standard algorithms

decreases significantly with the increase in the sequence length.

DLocalMotif’s ability to discover local motifs does not change

with sequence length.

It needs to be emphasized that most other protein motif

discovery tools, including MEME, DEME and NestedMICA,

are not designed for local motif discovery. We also believe that

the accuracy of NestedMICA may be improved by optimizing its

setting to each scenario, as is illustrated in previous studies

(Dogruel et al., 2008). As much as possible, we used default

parameter settings, to illustrate the typical behaviour of the

method. We do not claim that standard motif discovery

algorithms are inaccurate, rather point out that they are not

designed for discovering ‘local motifs’ in protein sequences.

When such motifs are discovered, they are discovered to an

extent that is well below that of DLocalMotif. We have shown

that DLocalMotif effectively recovers spatially confined motifs.

FPROD is slightly superior to FSUM as objective function, but

both perform well above the baseline provided by MEME,

DEME and NestedMICA. In the following, we will use the

former objective exclusively.

To check the accuracy of DLocalMotif with increasing

number of background sequences, we planted a decoy motif of

length 8. The total number of residues in each sequence (L) was

set to 100. The number of sequences in the positive dataset was

fixed to 100, whereas the number of sequences in the negative

dataset was varied from 0 to 150 and each experiment was

repeated 15 times. The results are shown in Supplementary

Figure S5. The results indicate that DLocalMotif is highly

accurate when the number of background sequences is �70%

of the number of foreground sequences. This illustrates the tool’s

ability to use negative data.
To investigate how the accuracy of DLocalMotif varies with

extent of motif shift, we performed additional tests on the decoy

motif data. We varied �2 {6,8,10,12} and ran 15 tests for each

sequence length (see Supplementary Fig. S6). DLocalMotif is less

accurate for shorter sequences (30 and 40 residues) when �¼ 12.

The accuracy is highest when � is small and close to the size of

the interval used to plant motifs. A greater � (ultimately the

length of the sequence) leads to similar performance as standard

non-local motif discovery methods (Supplementary Fig. S6).

3.3 Evaluating DLocalMotif on biological datasets

We collated five biological datasets. For the PTS1 and PY-NLS

datasets, we aimed to discover novel local motifs not found by

existing methods. Using the ER retention, bipartite cNLS

and type-1 copper protein datasets, we aimed to evaluate

DLocalMotif’s ability to recover known local motifs.

Fig. 1. Comparison of DLocalMotif, DEME (Redhead and Bailey, 2007), MEME (Bailey et al., 2009) and NestedMICA (Dogruel et al., 2008) on

(A) ‘negative random’ and (B) ‘decoy’ motif problems. Each plot shows the accuracy of discovered motifs as overlap percentage (o.p). Each data point

represents the average (�standard deviation) o.p on 50 independent runs. In all cases, DLocalMotif, DEME and NestedMICA are using positive and

negative data, whereas MEME is using positive data only
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All sequences that contain a match with each discovered motif

were used to generate sequence logos (Crooks et al., 2004).

3.3.1 Discovering motifs occurring with PTS1 Figure 2A
summarizes the logos of local motifs and their position relative

to the anchor, as discovered in the PTS1 dataset by

DLocalMotif. We found seven motifs that co-occur with PTS1,

here named Motif1-7. We validated the position of discovered

motifs using literature.
There is a high prevalence of hydrophobic residues at 5–11

upstream of the C-terminus in Motif1, Motif2, Motif6 and

Motif7, in agreement with functionally relevant observations

(Neuberger et al., 2003). It has been shown in the literature

that in Candida boidinii, basic residues are found upstream of

PTS1 (Mullen and Trelease, 2000), as observed in Motif2,

Motif4 and Motif5. Neuberger and colleagues also observed

basic residues at 1–7 upstream of PTS1. In Motif4 and Motif7,

threonine is prevalent at one and two residues, respectively

(relative to the anchor), which matches with observation of

Neuberger and colleagues.
The MOR of all discovered motifs shown in Figure 2A was

low, whereas the MSC was high. By allowing small variation in

interval length, DLocalMotif was able to discover motifs that are

unavailable to standard motif discovery tools. To investigate

whether motifs are biologically meaningful and (if so) perform

a defined function, we evaluated the statistical enrichment of

the functions of proteins containing the instances of discovered

motifs.
Supplementary Tables S2–8 show the statistical enrichment

of GO and taxonomical terms of proteins in different groups.

We generated each group by filtering proteins that contain

discovered motifs. Each motif co-occurred with PTS1 independ-

ently of other motifs. Proteins with Motif3, Motif4, Motif6 and

Motif7 are enriched with plant (peroxidase activity, Liliopsida,

Arabidopsis thali ana) and fly (Drosophila melanogaster)-related

terms, indicating that they are prevalent in these species. In con-

trast, Motif1 contains non-plants terms (D-amino-acid oxidase

activity, Cetartiodactyla). Motif6 is also prevalent in flowering

plants (Poaceae). We note that Motif2 and Motif5 occur in

proteins involved in assimilation of acetyl co-enzyme A

(acetyl-CoA), an essential process in many bacteria that proceed

via the ethylmalonyl-CoA pathway (Erb et al., 2010).
When run on the same dataset, MEME, DEME and

NestedMICA discover either one or at best two motifs similar

to Motif1 and Motif3 (see Supplementary Fig. S8).

3.3.2 Recovering known motifs in ER and copper
proteins Using Uniprot annotations to validate, DLocalMotif

successfully recovered 113 of 130 classical ER retention signals.

Using PROSITE annotations, 99 of 113 known instances of

the ER retention signals were recovered (Fig. 2B).

There are a few examples in literature where more than one

ER retention signal is present upstream of the C-terminus (Qiu

et al., 2009). Interestingly, DLocalMotif finds one motif

upstream classical ER retention motif (see Fig. 2B; Motif2).

The novel motif contains cluster of acidic residues and occurs

at a distance 19 residues upstream the ER retention motif.

Indeed, the literature suggests that proteins that are efficiently

retained in the ER are often distinguished by the presence of

acidic amino acid residues at that location (Munro and

Pelham, 1987; Yun and Eipper, 1995). Rose-John et al claimed

that an acidic residue signal (EEDDD) that occurs 14 residues

Fig. 2. Discovered local motifs in (A) PTS1 dataset (B) ER retention signal dataset (C) PY-NLS dataset and (D) bipartite cNLS dataset. The P-values for

each score are also shown. The discovered motifs are numbered according to their overall rank based on their combined score. The x-axis represents

distance relative to anchor. The logos are generated using WebLogo (Crooks et al., 2004)
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upstream the C-terminal of IL-6-PDI contributes to the effi-

ciency of ER retention (Rose-John et al., 1993).
We also tried MEME, DEME and NestedMICA on the same

data: The classical ER retention signal was recovered in each

case, but additional motifs were not found (see Supplementary

Fig. S8).
When tested on type-1 copper proteins, again taken from

PROSITE, DLocalMotif recovered 72 of 86 copper ligand

sites. We show a recovered known motif in Supplementary

Figure S7.

3.3.3 Discovering motifs occurring with PY-NLSs PY-NLSs
are recognized by the transport factor Kap�2. We used

DLocalMotif to investigate the existence of local motifs that

supplement the PY anchor that appear in almost all Kap�2
cargo. DLocalMotif discovered several novel motifs that

figured strongly upstream of the anchor (see Fig. 2C).
Motif1, Motif2 and Motif3 occur at a distance 9, 25 and 17

residues upstream the PY anchor. We found that these three

motifs correspond to zinc finger (Zf) motifs, and a manual

analysis using Pfam (Finn et al., 2010) suggested that they

belong to the C2H2 class of Zfs. Literature evidence also

suggested that Zf domains can efficiently act as NLSs and are

recognized by karyopherins (Lee et al., 2000; Saijou et al., 2007;

Yamasaki et al., 2005). We also searched the literature to find

evidence of Kap�2 interacting with Zf domains (specifically the

C2H2 class). We found that ADR1, which contains C2H2 Zf

domains, interacts with Kap104, the Kap�2 ortholog in yeast

(Stark et al., 2006). It is not known whether C2H2 domains

are necessary or sufficient for Kap104 binding.
Motif4 and Motif6 contain clusters of basic amino acids and

are found to be prevalent in the proteins that contain basic

PY-NLSs. In contrast, Motif5 and Motif7 contain many hydro-

phobic amino acids, and our manual analysis revealed that they

are prevalent in proteins that contain hydrophobic PY-NLSs.

(Two more motifs were found but are not shown owing to

space limitations).
One or at best two fragments of the Zf domain were detected

by MEME, DEME and NestedMICA (see Supplementary

Fig. S8).

3.3.4 Discovering motifs within bipartite cNLSs Here, we con-

sider the C-terminus of the bipartite cNLS motif as anchor to

improve our understanding of the variable-length linker-region

and the basic N- and C-termini clusters (Dingwall and Laskey,

1991; Kosugi et al., 2009). Studies have indicated that the linker

region contributes to nuclear localization activity (Engelmann

et al., 1996), but so far, specific motifs have not been identified.

We thus used DLocalMotif to discover motifs relevant to nuclear

import.
DLocalMotif discovered three motifs (Motif1 at C-terminus

Motif2 and Motif3 at N-terminus; see Fig. 2D). Motif2 and

Motif3 co-occur with Motif1 containing clusters of basic residues

(see Fig. 2D). Motif1 is a purely basic residue motif. Motif2 and

Motif3 are 5 and 9 residue long motifs, respectively, and also

contain basic residues.
We also ran MEME (Bailey et al., 2009), DEME (Redhead

and Bailey, 2007) and NestedMICA (Dogruel et al., 2008) on the

same dataset. These methods were able to uncover only one

motif consisting of basic residues. The spatial confinement of
the C-terminal motif is high, making both motifs easy targets
for DLocalMotif.

4 CONCLUSION

In this article, we address the motif discovery problem when

motifs are only weakly enriched overall, but biological expertise
suggests that they are confined to an approximate, but defined

position. For example, structural constraints of protein conform-
ation make fragments distant in sequence come together in space.
DLocalMotif discovers such ‘local motifs’ in a set of protein

sequences that are aligned to a predefined anchor, and their
appearance is linked to their position within the alignment.
Unlike similar current methods, DLocalMotif is specifically

designed for proteins, and to solve problems where negative
data are available.
To evaluate the performance of the proposed method, we

investigated a series of protein translocation problems where
targeting signals are assisted by additional, often spatially
related, but otherwise more subtle properties. To enable

DLocalMotif to adequately deal with sparse data, we re-designed
the scoring functions of Narang et al. by introducing pseudo
counts. We formulated three discriminative scoring features,

MSC, MOR and MRE. These features establish whether a
motif is positioned in a sequence interval in positive data and

is generally absent in negative data. The new formulation gives
a quantitative evaluation of a motif’s relevance, considering its
over-representation, relative entropy and spatial confinement.

Importantly, our search strategy removed all motifs with
non-significant spatial confinement P-values determined using
a robust binomial test of motif location.

Although DLocalMotif has many parameters that can be
tuned, we have shown that default parameters settings are effect-
ive for discovering biologically significant motifs. To examine the

performance of DLocalMotif, we planted random negative and
decoy motifs in artificial datasets. The results underscored that
DLocalMotif is able to accurately discover the location of

a planted motif’s occurrence, independently of sequence length.
The results also demonstrated that DLocalMotif will outperform
standard motif discovery algorithms, here represented by

MEME (Bailey et al., 2009), DEME (Redhead and Bailey,
2007) and NestedMICA (Dogruel et al., 2008) when motifs are

spatially confined. It is important to note, however, that stand-
ard motif discovery algorithms are not expected to discover local
motifs any better than non-local motifs, and their performance

thus degrades with the increase in sequence length.
On biological data with limited over-representation of motifs,

DLocalMotif discovered multiple local motifs. We present seven

novel PTS1 local motifs, some of which appear to be
species-distinct. DLocalMotif discovered three entirely novel
PY-NLS local motifs that overlap with C2H2 Zf domains, asso-

ciated with nuclear trafficking. We believe these motifs may
further our understanding of PY-NLS-mediated translocation.
DLocalMotif successfully recovered ER retention motifs and

the bipartite NLS, despite the absence of negative data.
Specifically in ER retention data, we found a motif consisting
of acidic residues that occurs immediately upstream the classical

ER retention signal. Literature indicates that the same motif may
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contribute to the efficiency of ER retention. With many motif

discovery tools unable to deal with large motifs with variable

linker regions, DLocalMotif offers a compromise by detecting

multiple smaller but spatially interlinked motifs.

Conflict of Interest: none declared.
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