DoseSim: A tool for pharmacokinetic/pharmacodynamic analysis and dose reconstruction

Brad Reisfeld, Jaime H. Ivy, Michael A. Lyons, Jesse M. Wright, Justin L. Rogers, and Arthur N. Mayeno

1Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO 80523
2School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523
3Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523

ABSTRACT

Summary: Assessing and improving the safety of chemicals and the efficacy of drugs depends on an understanding of the biodistribution, clearance, and biological effects of the chemical(s) of interest. A promising methodology for the prediction of these phenomena is physiologically-based pharmacokinetic/pharmacodynamic modeling, which centers on the prediction of chemical absorption, distribution, metabolism, and excretion (pharmacokinetics) and the biological effects (pharmacodynamics) of the chemical on the organism. Strengths of this methodology include modeling across multiple scales of biological organization and facilitates the extrapolation of results across routes of exposure, dosing levels, and species. It is also useful as the foundation for tools to (i) predict biomarker levels (concentrations of chemical species found in the body that indicate exposure to a foreign chemical) given a chemical dose or exposure, (ii) reconstruct a dose given the levels of relevant biomarkers, and (iii) estimate population variability. Despite the importance and promise of PBPK/PD-based approaches to forward and reverse dosimetry, there is currently a lack of user-friendly, freely-available implementations that are accessible and useful to a broad range of users. DoseSim was developed to begin to fill this gap.

Availability: The application is available under the GNU General Public License from http://scb.colostate.edu/dosesim.html.

1 INTRODUCTION

The rational design of drugs and drug dosing regimens, and the risk and safety assessment for environmental toxicants, depend on an understanding of the pharmacokinetics and pharmacodynamics (PK/PD) of the chemicals of interest. A methodology that is increasingly used for PK/PD analyses is physiologically-based pharmacokinetic (PBPK) modeling (Reisfeld et al. 2007). PBPK models integrate information across multiple time and spatial scales through the specification of biological, biochemical, and physiological information at the tissue, organism, and population levels. These models can then be used to predict the ADME (absorption, distribution, metabolism, and excretion) and potential biological effects of chemicals to the exposed individual. Moreover, through the use of appropriate parameter values, these models have the ability to extrapolate across doses, routes of administration, and species.

The prediction of ADME and biodistribution of the chemical and its metabolites given an applied dose or exposure is often known as forward dosimetry. The reverse case, in which biomarker levels are used to estimate the applied dose or exposure, is often known as dose reconstruction or reverse dosimetry (Lyons et al. 2008).

Despite the increasing use of forward dosimetry and dose reconstruction in risk and safety assessment, few tools are available to conduct both types of analyses in an integrated manner. Moreover, the tools that are available are generally difficult to use by non-technical users and/or are proprietary.

To fill this gap, we developed the software framework DoseSim. The principal design objectives for this application were that it would (i) allow the user to perform forward dosimetry, forward dosimetry with Monte Carlo, and dose reconstruction analyses, (ii) be easy to use for non-technical people, (iii) facilitate simple analyses and viewing of results without the need for additional software packages, (iv) allow alternative chemical-specific models to be used in this general framework, and (v) be freely available to the scientific and regulatory communities.

In this paper, we describe the implementation, structure, and features of DoseSim. DoseSim:OP, a specific application package (DoseSim plus a specialized PBPK/PD module focused on the analysis of binary mixtures of organophosphorus (OP) insecticides) is presented in Supplementary Information.

2 METHODS

DoseSim comprises a computational engine, a specific PBPK/PD model, and a GUI layer. The computational engine behind the
Save and export the range of results along with mean values. Simulation results displayed in a variety of formats, including plots.

Once parameters and simulation sets have been input, the "Experiment" menu driven GUI for MCSim is then used to assign the type of simulation and enter relevant parameters (or parameter distributions) through a tab-based interface. The user selects the type of simulation and enters parameters following the procedure: Begin a new Experiment and enter relevant parameters: The user selects the type of simulation and enters relevant parameters (or parameter distributions) through a tab-base interface (Fig. 1). Run the experiment: Once parameters and simulation sets have been input, the Experiment, which may comprise multiple simulations, is selected and run. View the results: Following completion of the simulation, results can be inspected and simulation results displayed in a variety of formats, including plots for Monte Carlo simulations that display the envelope of the entire range of results along with mean values. Save and export the results: Following the simulations, results can be saved to the native XML format or exported to csv (comma-separated value) format for postprocessing, visualization, and archiving with other tools.

3 DISCUSSION

Comparison to Existing Software

To our knowledge, there are no other software applications that fit the design objectives and needs noted earlier. A non-exhaustive list of applications that can be programmed to do at least forward dosimetry (+ MC) and dose reconstruction simulations include the following: acsLX (http://www.acslx.com/): proprietary software, command-line and GUI based. MATLAB (http://www.mathworks.com/products/matlab/index.html): proprietary software, command-line based, a selection of toolboxes for various types of analyses can be purchased from the vendor or downloaded from various repositories. MCSim (https://www.gnu.org/s/mcsim/mcsim.html): GNU General Public License, command-line based.

The underlying PBPK/PD models, generally consisting of systems of ordinary differential equations, were first written in the domain specific language of MCSim (Bois, 2009) and were then compiled to C and linked to relevant libraries using MCSim utilities.

The DoseSim GUI and interface layer to MCSim were written in ISO/IEC2003 C++, making use of the wxWidgets library (v2.8.11). Statistical analyses of the simulation output were enabled using functions in the GNU Scientific Libraries and plotting functionality was implemented using wxMathPlot. The various property sheets for parameter input are stored as XML and are automatically updated to accommodate changes in the underlying model structure. Project files are serialized as XML that can be modified outside of the GUI if desired.

Acknowledgements

We thank Frederic Bois for help with MCSim-related issues.

Funding: This work was supported by the United States Environmental Protection Agency [grant number R833451].

References

