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ABSTRACT

Motivation: Recent advances in technology have dramatically

increased the availability of protein–protein interaction (PPI) data and

stimulated the development of many methods for improving the sys-

tems level understanding the cell. However, those efforts have been

significantly hindered by the high level of noise, sparseness and highly

skewed degree distribution of PPI networks. Here, we present a novel

algorithm to reduce the noise present in PPI networks. The key idea of

our algorithm is that two proteins sharing some higher-order topo-

logical similarities, measured by a novel random walk-based proced-

ure, are likely interacting with each other and may belong to the same

protein complex.

Results: Applying our algorithm to a yeast PPI network, we found that

the edges in the reconstructed network have higher biological rele-

vance than in the original network, assessed by multiple types of in-

formation, including gene ontology, gene expression, essentiality,

conservation between species and known protein complexes.

Comparison with existing methods shows that the network recon-

structed by our method has the highest quality. Using two independ-

ent graph clustering algorithms, we found that the reconstructed

network has resulted in significantly improved prediction accuracy of

protein complexes. Furthermore, our method is applicable to PPI net-

works obtained with different experimental systems, such as affinity

purification, yeast two-hybrid (Y2H) and protein-fragment complemen-

tation assay (PCA), and evidence shows that the predicted edges are

likely bona fide physical interactions. Finally, an application to a human

PPI network increased the coverage of the network by at least 100%.
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1 INTRODUCTION

Recent advances in high-throughput techniques, such as yeast

two-hybrid (Y2H) and tandem affinity purification, have enabled

the production of a large amount of protein–protein interaction

(PPI) data (Gavin et al., 2006; Krogan et al., 2006; Tarassov et

al., 2008; Yu et al., 2008). These PPI data can be modelled by

networks, where nodes in networks represent proteins and edges

between the nodes represent physical interactions between pro-

teins. These networks, together with other high-throughput

functional genomics data, are offering unprecedented opportu-

nities for both biological and computational scientists to under-

stand the cell at a systems level (Przulj, 2011). For example,

global analysis of PPI networks has revealed important connec-

tions between topology and function (Han et al., 2004; Jeong

et al., 2001; Yu et al., 2007). PPI networks have also been used

for predicting gene functions, functional pathways or protein

complexes, with both supervised and unsupervised methods

(Asthana et al., 2004; Bader and Hogue, 2002; Chua et al.,

2006; Friedel et al., 2009; King et al., 2004; Lee et al., 2008;

Sharan et al., 2007; Ulitsky and Shamir, 2009; Wang et al.,

2007a; Wang et al., 2010). Furthermore, much effort has been

devoted recently towards incorporating PPI networks to obtain a

better mechanistic understanding of complex diseases and to im-

prove the diagnosis and treatment of diseases (Chuang et al.,

2007; Hannum et al., 2009; Hidalgo et al., 2009; Ideker and

Sharan, 2008; Kim et al., 2011).
However, the growing size and complexity of PPI networks

poses multiple challenges to biologists. First, PPI networks often

have a high false-positive rate and an even higher false-negative

rate (Huang et al., 2007). Second, PPI networks are typically

sparse, partially because of the high false-negative rate, which

places a hurdle for algorithms that rely on neighbour informa-

tion, for example, in gene function prediction (Chua et al., 2006;

Sharan et al., 2007). Third, PPI networks are known to have

skewed degree distribution, meaning that they have more than

expected quantity of hub genes. Such hub nodes can often reduce

the performance of existing graph theoretic algorithms (e.g. for

predicting protein complexes) that were often designed for net-

works with relatively uniform degree distributions.
In this article, we present a novel method to improve the qual-

ity of a given PPI network by computationally predicting some

new interactions and removing spurious edges. It is worth noting

that our idea is purely based on the topology of the network,

with no additional biological information involved. This ensures

that our algorithm can be easily combined with other algorithms

that have already been developed for predicting protein com-

plexes or performing PPI-based studies. There are also several

studies that attempt to combine additional biological informa-

tion, such as gene ontology and gene expression, with PPI net-

work for protein complex prediction (Asthana et al., 2004;

Ulitsky and Shamir, 2009; Wang et al., 2010). It should be

straightforward to use our method in these approaches, by repla-

cing the PPI network with our reconstructed PPI network.

To assess the performance of our algorithm, we tested it on

three yeast PPI networks obtained with different experimental

systems, and we examined the biological relevance of the results*To whom correspondence should be addressed.
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using multiple information sources, including gene ontology an-

notations, gene expression data, protein complexes, list of essen-

tial genes, conservation between species and a large collection of

known physical interactions in the BioGRID database. Results

show that the predicted PPIs have much higher functional rele-

vance than the removed ones, and they are likely bona fide phys-

ical interactions. Comparison with several existing methods

shows that the network reconstructed by our method has the

highest overall quality. Furthermore, applying two independent

graph clustering algorithms, we found that the reconstructed

network has resulted in significantly improved prediction accur-

acy of protein complexes. Finally, an application to a human PPI

network shows encouraging results.

2 METHODS

2.1 Rationale and related works

In recent years, many computational methods have been developed to

predict missing links from networks (Fouss et al., 2007; Li and Horvath,

2007; Ruan and Zhang, 2006; Radicchi et al., 2004; Tong et al., 2006),

and reviewed in (Lü and Zhou, 2011), some of which have been success-

fully applied to PPI networks. These methods basically fall into two

categories: common neighbour based and distance based. The first type

of methods is based on a simple yet effective idea—two nodes sharing

many common neighbours are likely in the same module (Li and

Horvath, 2007; Ruan and Zhang, 2006; Radicchi et al., 2004; Wang

et al., 2007a). These methods may have limited value on PPI networks

that are usually sparse. To circumvent this problem, Fang et al. (2011)

generalized the idea to consider neighbours of greater path lengths and

showed that the so-called ‘global geometric affinity’ (GGA) measurement

can help predict new PPI.

The second type of methods measures the ‘distance’ between pairs of

nodes in the network taking into consideration all alternative paths;

popular examples include two algorithms based on random walks,

namely, Euclidean commute time (ECT) (Fouss et al., 2007) and

random walk with restart (RWR) (Tong et al., 2006). ECT measures

the expected number of steps needed for a random walker to travel be-

tween two nodes as the distance between them, whereas RWR computes

the probability for a random walker starting from node i to reach another

node j. Performance of this type of methods may be significantly affected

by hub nodes that are connected to many nodes in the network. Another

method falling into this category is because of Kuchaiev et al. (2009),

where they attempted to embed a PPI network into a low dimensional

geometric space using multiple dimensional scaling (MDS), and assign

edges to pairs of nodes that have short distances in the embedded space.

While good performance was observed, this method may not work very

well in general as it may not always be easy to find an accurate geometric

embedding for a given PPI network.

In this work, we propose a novel method that can be considered as a

generalization of the simple common neighbour-based method, combin-

ing ideas from the distance-based method. We hypothesize that two

nodes having similar ‘distances’ (in the view of a random walker) to all

other nodes in the network can potentially interact with each other. This

idea is more general than the aforementioned two types of methods be-

cause it can not only predict links that are covered by the aforementioned

two types of methods but can also predict links between nodes that are

themselves far away from each other (for a random walker) and do not

share any common neighbours. The basic idea of our method consists of

three steps and is illustrated in Figure 1. First, a topological profile, which

measures the ‘distances’ between a target node and all other nodes in the

network, is calculated for each node. Second, similarities of topological

profiles are calculated between every pair of nodes. In the final step, edges

are created to connect nodes that are topologically similar. The frame-

work is general, and each step can have multiple designing choices. Here,

we propose a novel random walk procedure for computing topological

profiles, which can handle hub nodes better than the existing random

walk-based methods. We use simple ideas for the other two steps, leaving

room for future improvements.

2.2 Random walk with resistance

Let GðV,EÞ be an undirected graph representing a PPI network, with V

the set of nodes and E the set of edges (for convenience, a self-loop is also

added for each node). For v 2 V, let NðvÞ ¼ fu 2 V jfv, ug 2 Eg be the set

of neighbours of v and dðvÞ ¼ NðvÞ
�� �� the degree of v.

The simple random walk for one node on a graph G is a walk on G

where the next node is chosen uniformly at random from the set of

neighbours of the current node. Formally, when the random walker is

at node i, the probability for her to move in the next step to the neighbour

j is Pij ¼ 1=dðiÞ for fi, jg 2 E and 0 otherwise. Assume that a random walk

is initiated at a node v. Let qðkÞv, i be the probability for the random walker

sitting at node i at a discrete time point k. Then, at time point kþ 1, the

probability for the random walker taking the path from node i to node j

can be calculated as

f
ðkþ1Þ
v, ij ¼ q

ðkÞ
v, iPij, ð1Þ

and the probability for the random walker to reach node j at time point

kþ 1 can be calculated as

q
ðkþ1Þ
v, j ¼

X
i

f
ðkþ1Þ
v, ij : ð2Þ

It is important to note that, under some mild conditions, with this

simple random walk, the probability to reach node j, qv, j, converges to

the same value regardless of the starting point v (Lovász, 1993).

Therefore, the stationary probability distribution obtained from the

simple random walk cannot be used directly to measure distance between

nodes. To provide a measurement of the distance between two nodes in a

network, several modifications have been proposed. For example, ECT

measures the expected number of hops needed to travel between two

nodes in the simple random walk (Fouss et al., 2007), whereas RWR

attempts to bias the random walk to stay close to the starting node by

teleporting the random walker to the starting node with a certain prob-

ability (Tong et al., 2006).

Here, we describe a random walk algorithm, named random walk with

resistance (RWS), based on two key ideas: (i) we bias the random walker

towards staying close to the starting point by adding a small amount of

Compute
topological
profiles for
each node

Compute topological
similarities between nodes

Reconstruct
network by 
linking nodes 
with high 
similarities

Topological similarity 
between node 6 and node 8

Topological profiles for node 6 and node 8

Original network

Reconstructed network

Fig. 1. Basic idea of our method
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resistance on each edge of the network, and (ii) we introduce a condition

to discourage the random walker from roaming into new territories via

hub nodes, by adding additional resistance for a random walker to over-

come when meeting a new node that she has never visited before. The

algorithm can be best described as a modification to the simple random

walk algorithm. Basically, we replace Equation (1) by

f
ðkþ1Þ
v, ij ¼

maxð0, q
ðkÞ
v, iPij � �Þ, if q

ðkÞ
v, j40;

maxð0, qðkÞv, iPij � �Þ, if q
ðkÞ
v, j ¼ 0 maxtðq

ðkÞ
v, tPtjÞ � �;

0, otherwise:

8><
>:

ð3Þ

The probability of reaching node j at time point kþ 1 is then calcu-

lated by adding up the probabilities to enter j from all paths, and

re-normalized so that the probability vector sums to 1:

 ðkþ1Þv, j ¼
X
i

f
ðkþ1Þ
v, ij

�X
it

f
ðkþ1Þ
v, it ð4Þ

As in Equation (3), the algorithm first checks whether a destination

node, j, is new to the random walker. If not, that is, q
ðkÞ
v, j40, the random

walker will visit the node with probability qðkÞv, iPij � �. The probability will

be set to 0 if it is50. Combined with the normalization step, the purpose

of introducing the � parameter is similar to the teleporting idea in RWR

that biases the random walker to stay close to the starting node, so that

the stationary probability vectors for different starting nodes are not

always converged to the same values.

If the node j is new to the random walker, then an additional param-

eter, �, is introduced to discourage the random walker from visiting the

new node, unless there is at least one path for v to enter j with sufficiently

large probability. The main motivation for this step is to reduce the

impact of hub nodes in the random walk process. Imagining that without

the � parameter, a random walker reaching a hub node will be able to

travel, with the same probability, to all other nodes that are connected

with the hub nodes, which may or may not be functionally related to the

starting node. In contrast, with our algorithm, given the same scenario,

the random walker would selectively prefer the nodes that are not only

connected to the hub nodes but are also connected with the starting node

via some alternative paths not involving the hub nodes. (See

Supplementary Fig. S1 for a toy example).

In our experiment, � is set to Vj j= Ej j2 and � is set to 1= Ej j. This choice

is based on an analysis of the minimum and average value of fv, ij on each

edge. Empirically, we have found that these two values perform well on

multiple, both biological and non-biological, networks. Variations of

these two values within a constant multiple do not significantly change

the results.

The aforementioned procedure is applied iteratively for each starting

node. A random walker is considered to have reached its stationary dis-

tribution when the change of its probability to arrive at any node is less

than a small cut-off value. In our experiment, all nodes converged in 5–20

iterations, which only took a few minutes on a personal computer.

2.3 Calculating topological similarity

After applying the aforementioned random walk procedure to the

network, we have a Vj j � Vj j probability matrix, denoted as

� ¼ h i, ji Vj j� Vj j, where  i, j represents the probability for a random

walker started at node i to reach node j at convergence.

To magnify the difference between probability vectors from different

nodes, we first obtain the median vectorH from all the vectors, where the

j-th element ofH is defined asHj¼median ( i¼1� Vj j, j). This median prob-

ability vector is similar to the stationary probability vector for the simple

random walk. We then calculate the Vj j � Vj j offset matrix �, where

�ij¼�ij�Hj.

Finally, we calculate the Pearson correlation coefficient between each

pair of rows or columns of the offset matrix as a measurement of topo-

logical similarity, Cij, between nodes. Empirically, we have found that

using columns of the offset matrix as topological profiles, that is, letting

Cij¼pcc(�1� Vj j, i, �1� Vj j, j), works slightly better than rows. Informally

speaking, a row vector represents the information passed from a node

to all nodes in the network, whereas a column vector represents the in-

formation that a node receives from the network; therefore, the latter is a

more accurate way of describing the position of the node in the network.

2.4 Reconstructing PPI network

Finally, a network is reconstructed from the topological similarity matrix

by connecting pairs of nodes whose similarity is above a certain thresh-

old. Although more sophisticated methods are possible (e.g. Ruan, 2009),

in this article, we choose to implement a simple strategy for easy evalu-

ation and fair comparison to other methods: we simply pick a cut-off

value so that the number of edges can be kept the same as in the original

network. We will show that this simple strategy worked well. In Section 4,

we discuss some future plans in improving cut-off selection, which should

further improve the quality of the reconstructed network, and particu-

larly, reduce the false-negative rate of PPI networks.

3 RESULTS AND DISCUSSION

For evaluation, we applied our algorithm to three yeast PPI

networks obtained from different technologies: tandem-affinity

purification (Krogan et al., 2006), Y2H (Yu et al., 2008) and

protein-fragment complementation assay (Tarassov et al.,

2008). In Sections 3.1–3.3, we discuss results on the Krogan

dataset, which is the largest, and in Sections 3.4 and 3.5, we

present some comparative analysis of the three datasets. In

Section 3.6, we present an application to a human PPI network.

3.1 Reconstructed PPI network has better functional

relevance

We performed a random walk on the Krogan PPI network,

which covers 2708 genes with 7123 edges, and derived a modified

PPI network by choosing 7123 potential connections with the

highest similarities (see Section 2). Within the modified network,

2870 (40%) edges are new (and the same number of edges in the

original network has been removed). To evaluate the functional

relevance of the newly predicted edges, we resort to several types
of sources, including gene ontology, gene expression, essentiality,

known protein complexes and conservation of interactions in

other species. To facilitate discussion, we call the group of

edges present in the original network ‘before’ group, and that

in the modified network ‘after’ group. Furthermore, ‘new’ edges

designate the edges that are in ‘after’ but not ‘before’ group,

‘removed’ edges are ‘before’ but not ‘after’. Finally, those present

in both ‘before’ and ‘after’ are called ‘confirmed’. We also gen-

erated random networks with a randomly rewiring procedure
that preserves the degree of each node (Ruan and Zhang, 2008).

As interacting proteins are likely involved in similar biological

processes, they are expected to have similar functional annota-

tions in gene ontology and similar gene expression patterns
across diverse conditions. Therefore, we measure the functional

relevance between any pair of genes that are connected by an

edge using the semantic similarity between the GO terms anno-

tated with the proteins, using a popular method (Wang et al.,

2007b; Yu et al., 2010). Results shown are based on the ‘molecu-

lar function’ branch of Gene Ontology. Using ‘biological pro-

cess’ yielded similar values, and ‘cellular localization’ resulted in
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slightly lower but consistent values (Supplementary Fig. S2).

We also measured the Pearson correlation coefficient between

the gene expression profiles of every pair of genes, using the

yeast stress response microarray data (Gasch et al., 2000). We

used the average similarity of the pairs of nodes connected by an

edge in a certain group to represent the functional relevance of

that edge group. As shown in Figure 2a, the after group has a

higher functional relevance than the before group based on both

GO and gene expression. Moreover, the confirmed group has the

highest functional similarity compared with the other groups,

and the removed group is far lower than the new group. The

standard error of these average measurements are all 510�5;

therefore, these differences are highly significant. Further inves-

tigation showed that the GO-based similarity is 40:95 for 36%

and 32% of the edges in the confirmed and new groups, respect-

ively. In contrast, only 7% of removed edges have a GO-based

similarity 40:95 (Fig. 2b).
Next, we used essential genes to compare different edge

groups. The list of essential genes in yeast is retrieved from the

Saccharomyces Genome Database (Dwight et al., 2004). As two

interacting proteins may belong to the same protein complex,

they tend to have the same essentiality. In other words, if one

is (not) essential, the other is also expected to be (not) essential.

As shown in Figure 2a, the percentage of the removed edges that

share the same essentiality is actually lower than that of the

randomly generated edges, which suggests that the removed

edges are probably connecting genes in different complexes

(also see Section 3.2). In contrast, the measurement for the

new edges is close to that of the confirmed PPIs.

We also looked at the conservation of the edges in other spe-

cies. We downloaded conserved PPIs between yeast and four

species including Caenorhabditis elegans, fly, mouse and human

from InteroLogFinder (http://www.interologfinder.org/) (Wiles

et al., 2010). As shown in Figure 2c, a considerable fraction of

confirmed edges are conserved in at least two other species.

Although a small fraction of the removed edges are conserved

in one or two species, they are rarely conserved in more than two

species. In comparison, the new edges tend to be more conserved

than the removed edges, although not as much as the confirmed

ones. The conservation analysis also suggests that the predicted

edges are bona fide physical interactions rather than functional

links (see also Section 3.5).
Finally, it has been shown that genes with high connectivity in

the PPI network tend to be more essential, but it is also known

that connectivity and essentiality (percentage of genes that are

essential) are only weakly correlated (Jeong et al., 2001). For

example, Figure 1d shows that although the essentiality of

genes is generally increasing for genes with low to intermediate

degrees, the essentiality of genes with the highest degrees is rela-

tively lower than expected by their degrees. Besides several pos-

sible explanations, it may be that some of the proteins with the

highest degrees may be ‘sticky’ in the sense that they may seem to

interact with many proteins under the experimental protocol, but

these interactions do not exist in reality because the protein is
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poorly expressed or not co-expressed with the proteins they can

potentially interact with. It can be seen that in the reconstructed

network, essentiality and degree have a much better correlation

(Fig. 2d).

In summary, using multiple independent sources of evidence,

we have shown that the new edges have clearly higher functional

relevance than the removed ones. These results suggest that our

algorithm can indeed reduce the noise in PPI network and im-

prove the network quality.

3.2 Reconstructed PPI network improves accuracy of

protein complex prediction

We investigated whether the improved PPI network can also

improve the prediction accuracy of protein complexes. We

applied two network clustering algorithms to the original and

modified PPI networks, and compared the predicted complexes

with the MIPS known protein complexes (Mewes et al., 2006),

which included 767 proteins in 170 known complexes after inter-

secting with the PPI network. Markov Clustering Algorithm

(MCL) is a well-known graph clustering algorithm and has

been shown to outperform other protein complex prediction al-

gorithms in two independent evaluation studies (Brohee and van

Helden, 2006; Vlasblom and Wodak, 2009). HQcut is a commu-

nity discovery algorithm developed by one of the co-authors,

based on the optimization of a so-called modularity function

(Ruan and Zhang, 2008). For MCL, we set the inflation param-

eter to 1.8 as suggested by others (Brohee and van Helden, 2006).

HQcut does not require any user-tuned parameters. To measure

the accuracy of the prediction, we used the Fowlkes–Mallows

index for comparing clustering (Fowlkes and Mallows, 1983;

Meila, 2005). Formally, let A be the list of gene pairs that fall

into the same complex in the set of predicted complexes and B

that in the set of known complexes, the prediction accuracy is

measured by A \ Bj j=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aj j � Bj j

p
, where Aj j denotes the cardin-

ality of the set A. As shown in Figure 3a, the prediction accuracy

is significantly improved for both MCL and HQcut, demonstrat-

ing that the improvement is general. Moreover, as the MIPS

database of known protein complexes only covers 530% of

the proteins in the PPI network, we measured the average pair-

wise functional similarity using gene ontology semantic similarity

and co-expression (see Section 3.1) between every pair of nodes

that are predicted to be in the same complex. Again, it is shown

that the results are improved significantly in the modified net-

work for both MCL and HQcut (Fig. 3a).
To further investigate why the reconstructed network can

result in better prediction accuracy of protein complexes, we dir-

ectly compared different edge groups for the fraction of edges

that are connecting genes in the same known complex

(in-complex) versus those that are in different known complexes

(between-complex). Indeed, as shown in Figure 3b, the new edges

have much higher in-complex probability and lower between-

complex probability compared with the removed edges, whereas

the confirmed edges have the highest in-complex probability and

lowest between-complex probability. Therefore, it is likely that

the reconstructed PPI network can be combined with any exist-

ing protein complex prediction algorithm and improves its ac-

curacy. Figure 4 shows the changes to the PPI network relevant

for two known protein complexes. The prediction for the Arp2/3

complex is improved in the after network, because connectivity is

increased within the complex, and many between-complex edges

are removed. Interestingly, for the anaphase-promoting complex

(APC) complex, our algorithm not only removed several external

edges and added many in-complex edges but also predicted inter-

actions between a non-member protein, MND2 and the complex

members. It turns out that MND2 is indeed a member of the

APC complex (Hall et al., 2003).

3.3 Comparisons with previous methods

We compared our algorithm with four existing methods, namely,

ECT (Fouss et al., 2007), RWR (Tong et al., 2006), MDS

(Kuchaiev et al., 2009) and GGA (Fang et al., 2011). The ECT

and RWR methods are well known in data mining and network

analysis communities, whereas the MDS and GGA methods

were recently proposed to improve the quality of PPI networks

(see Section 2.1). As all four algorithms calculate some

topology-based similarity scores for pairs of nodes, and then

use different (ad hoc) approaches to determine cut-offs, for a

fair comparison, here, we simply took the top 7123 pairs of

genes having the highest scores as the predicted PPIs. Table 1
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Fig. 3. Evaluation of our method based on protein complexes. In (a), the
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shows the change to the network introduced by each method. We

then compared the functional relevance of the reconstructed PPI

networks. As shown in Figure 5, the PPI network reconstructed

by our method has the highest GO similarity, highest fraction of

in-complex edges and lowest fraction of between-complex edges.

In fact, our algorithm is the only method that shows consistent

improvement over the original network using all four criteria.

For example, RWR improved GO similarity scores and the frac-

tion of in-complex edges, but at the same time reduced the

co-expression scores and increased between-complex edges.

GGA resulted in lower co-expression scores. The network recon-

structed by ECT has slightly higher co-expression than the net-

work reconstructed by our method, but its GO similarity score is

much lower than the original network, and it has a decreased

fraction of in-complex edges and an increased fraction of

between-complex edges. MDS resulted in degraded functional

relevance scores according to all measurements except

between-complex edges.

3.4 Applicability to other types of PPI networks

We also applied our method to two other datasets, obtained by

Yu et al. (2008) and Tarassov et al. (2008), using Y2H and

protein-fragment complementation assay (PCA), respectively.

Although the affinity purification (AP) technique used in

Krogan et al. (2006) is designed to capture co-complex member-

ships, Y2H and PCA directly detect binary interactions and were

shown to have higher false-negative rate but lower false-positive

rate than AP (Yu et al., 2008; Tarassov et al., 2008).

The original Yu and Tarassov networks cover 1278 and 1124

genes with 1641 and 2513 edges, respectively, excluding

self-interacting edges. With our method, we were able to replace

(predict and remove) 706 (43.0%) and 1203 (47.9%) of the edges

for the two networks, respectively. As shown in Figure 6, the

evaluation results based on Gene Ontology for these two datasets

and the evaluation results based on co-expression for the Yu data

set are consistent with those for the Krogan dataset, confirming

the general applicability of our method to PPI networks regard-

less of the experimental systems used to infer them. On the other

hand, the differences between the predicted and removed edges

are smaller in Yu/Tarassov data than in Krogan data. In fact, for

the Tarassov data, the removed edges have slightly better

co-expression than the predicted ones; nevertheless, both are

lower than the confirmed edges and significantly higher than

the randomly predicted ones. These deviations from the

Krogan dataset likely reflect the lower false-positive rate of the

Y2H and PCA data compared with AP data (Tarassov et al.,

2008, Yu et al., 2008). As our results consistently showed that the

removed edges have much higher functional relevance than

random predictions, chances are that many of the removed

edges are not really false positives—they just tend to contain

more false-positive edges than the confirmed group of edges.

To reiterate, we chose to keep the original number of edges in

the predicted networks to facilitate an unbiased comparison of

different approaches, as otherwise changing parameters may sig-

nificantly alter and bias the evaluation outcomes. In practice,

because of the high false-negative rate in PPI networks, especially

for Y2H and PCA based networks, one would prefer to choose a

lower similarity threshold to make more predictions and remove

fewer edges than we have done here. As mentioned in Section 2

and later in Section 4, we are aware of and are developing better

ways to select cut-offs to improve the coverage of PPI networks,

which will be presented elsewhere.
Similarly, as in Krogan data, the predicted edges in Yu/

Tarassov data have higher co-essentiality than the removed

edges, suggesting that the predicted ones are more likely to be

in-complex than the removed ones. On the other hand, although

the confirmed edges in Krogan data have high co-essentiality,

those in the Yu/Tarassov data have much lower co-essentiality,

indicating that a large portion of between-complex edges in

these two datasets are preserved by our algorithm. As shown

in Yu et al. (2008), Y2H and PCA usually detect more
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Fig. 4. Subnetworks for (a) Arp2/3 protein complex and (b) APC protein

complex. The subnetworks contain interactions among known members

(dark) of MIPS protein complexes and their direct neighbours (light) in

the original Krogan PPI network (left) or the reconstructed network with

our method (right)

Table 1. Changes to network statistics by different algorithms

Network property RWS RWR ECT MDS GGA

Number of nodes/edges before 2708/7123 2708/7123 2708/7123 2708/7123 2708/7123

Number of nodes/edges after 2549/7123 2708/7123 2016/7123 2241/7123 2173/7123

Number of replaced edges 2870 (40.3%) 2795 (39.2%) 5671 (79.6%) 5468 (76.8%) 4712 (66.2%)
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between-complex edges than AP. Our algorithm nicely preserved

this property.

3.5 Predicted edges are bona fide physical interactions

Finally, it is interesting to ask whether the edges predicted by our

algorithm are bona fide physical interactions or simply

functional interactions. To answer this question, we validated

the edges predicted by our algorithm on the three yeast datasets

using the physical interactions present in the BioGRID database

(Stark et al., 2011). It is known that different PPI assay tech-

niques have different characteristics and produce complemen-

tary, largely disjoint, results (Tarassov et al., 2008; Yu et al.,

2008). We, therefore, classified the PPIs in BioGRID into four

categories according to the experimental systems: AP, Y2H),

PCA and other. Note that each PPI in BioGRID may have

been captured by multiple experiments and, therefore, appear

in multiple categories. The three datasets we used, Krogan, Yu

and Tarassov, were generated by the first three systems, respect-

ively, and are all present in the BioGRID database. To ensure

fair comparison, before evaluating results for a particular dataset

(e.g. Krogan), BioGRID entries from the corresponding publi-

cation were removed (as otherwise the validation rate for the

confirmed or removed group for the Krogan dataset would be

100%).
Table 2 shows the number and fraction of edges in different

groups validated by BioGRID, using all physical interactions

(column ‘All’) or using edges detected by specific experimental

systems (columns ‘AP’, ‘Y2H’, ‘PCA’ and ‘other’). When all

physical interactions are considered, for all three datasets, the

confirmed edges always have the highest validation rate com-

pared with the other edge groups. The validation rates for pre-

dicted/removed edges are lower than that of the confirmed ones

but significantly higher than the random ones (51% in all

cases). For Krogan data, the predicted edges have a much

higher validation rate than the removed ones, whereas for

Tarassov and Yu data, the validation rates for the predicted

edges are similar as or lower than that for the removed ones.

These results suggest that the predicted edges in all three data-

sets are likely bona fide physical interactions, and reconfirm

that the removed ones are not necessarily false-positive results,

especially for Y2H and PCA-based data, which are known to

have lower false-positive rate than AP (Tarassov et al., 2008;

Yu et al., 2008). Therefore, it may be preferred to have a lower

cut-off to increase the coverage of PPI networks, as discussed in

Section 3.4. Overall, Krogan data has the highest percentage of

validated predictions (36.0% or 1033/2870), compared with Yu

and Tarassov data, which have 9.2% (65/706) and 11.2% (135/

1203) predicted edges validated by BioGRID, respectively (but

see later in the text). As the BioGRID PPI data may still have a

high false-negative rate, the real validation rate is likely

underestimated.
We also validated our results using the BioGRID PPIs within

each specific category. Interestingly, it seems that the different

characteristics in different experimental systems are carried over

to the predicted edges. For example, the predicted edges for

Krogan data are mostly validated by the AP-based interactions

in BioGRID. Moreover, although Y2H only covers 12.6% of

edges in BioGRID, it accounts for 53.9% (35/65) of the validated

predictions in Yu data. Similarly, PCA only contributes 7.1% of

the edges in BioGRID, but accounts for 17.0% (23/135) of the

validated predictions in Tarassov data. Therefore, the relatively

low validation rate for the Yu and Tarassov data can be partially

explained by the insufficient presence of Y2H and PCA data in

the BioGRID database.
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(a) Yu et al., 2008 and (b) Tarassov et al. 2008, evaluated by functional

relevance scores based on gene ontology, gene expression and gene
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3.6 Application to human PPI network

Finally, we apply our method to predict novel interactions in the

human PPI network downloaded from the Human Protein

Reference Database (HPRD, version 9) (Keshava Prasad et al.,

2009). The largest connected component of this network contains

9205 nodes and 36 720 edges. We first tried to use the idea to

retain the same number of edges, which causes 24 187 (65.9%)

edges to be replaced. To evaluate this result, we calculated gene

ontology-based similarity and gene co-expression for different

edge groups, following the same logic as in Section 3.1. The

gene expression data used for this purpose is downloaded from

M2 DB and contains 878 normal (non-diseased) tissue samples

from the Affymetrix Human U133A platform, following the

parameters suggested by the developers (Cheng et al., 2010).

Figure 7 shows the validation results. Similar as for the yeast

data set, the reconstructed network has improved scores using

both criteria. Although the confirmed edges have the highest

similarities scores, the predicted ones have better scores than

the removed ones, and both are significantly better than

random predictions.
On the other hand, because of the high replacement rate

(65.9%), and the non-trivial functional and gene co-expression

similarity scores, we suspect that most of the removed edges are

probably true interactions. Therefore, we further investigated the

distribution of the topological similarity scores for the PPIs in the

original network, which clearly follow a bimodal distribution

(Supplementary Fig. S3). Therefore, we used topological similar-

ity score50.2 to select 4309 edges to be treated as high-confidence

false-positive edges (top removed), and topological similarity

score 40.9 to select 3802 edges as high-confidence false-negative

edges (top new) and evaluated them using gene ontology and gene

co-expression. As shown in Figure 7, the high-confidence false-

positive edges have close-to-random gene co-expression (0.01),

and low GO-based similarity. In contrast, the average

GO-based similarity score for the high-confidence false-negative

edges are almost as high as the confirmed edges, and they have

high co-expression. These results indicate that the topological

similarity scores can be used to prioritize edges for further valid-

ation. In fact, as shown in Figure 8, with as many as 35 000

(50 000) predicted edges, the average gene co-expression (GO simi-

larity) of interacting genes are as good as that in the original PPI

network, indicating that we can increase the coverage of the

HPRD human PPI network by at least 100%.

4 CONCLUSIONS

In this article, we have presented a novel network topology-based

algorithm to improve the quality of PPI networks, which in turn

Table 2. Validation by BioGRID, breaking down according to experimental systemsa

BioGRID physical interactions

Edge group Number of edges All AP Y2H PCA Other

BioGRID 73929 73 929 (1.00) 52 842 (0.71) 9303 (0.12) 5237 (0.07) 13 080 (0.18)

Krogan

Predicted 2870 1033 (0.36) 983 (0.34) 134 (0.05) 35 (0.01) 180 (0.06)

Removed 2870 412 (0.14) 393 (0.14) 48 (0.02) 16 (0.01) 67 (0.02)

Confirmed 4253 2732 (0.64) 2682 (0.63) 595 (0.14) 165 (0.04) 770 (0.18)

Random 7123 54 (0.01) 33 (0.00) 13 (0.00) 1 (0.00) 13 (0.00)

Yu

Predicted 706 65 (0.09) 52 (0.07) 35 (0.05) 4 (0.01) 20 (0.03)

Removed 706 114 (0.16) 53 (0.07) 85 (0.12) 3 (0.00) 19 (0.03)

Confirmed 935 405 (0.43) 304 (0.33) 290 (0.31) 35 (0.04) 169 (0.18)

Random 1641 7 (0.00) 3 (0.00) 1 (0.00) 0 (0.00) 3 (0.00)

Tarassov

Predicted 1203 135 (0.11) 96 (0.08) 39 (0.03) 23 (0.02) 42 (0.03)

Removed 1203 109 (0.09) 81 (0.07) 22 (0.02) 15 (0.01) 26 (0.02)

Confirmed 1333 352 (0.26) 301 (0.23) 143 (0.11) 34 (0.03) 121 (0.09)

Random 2536 24 (0.01) 18 (0.01) 2 (0.00) 1 (0.00) 6 (0.00)

aValues in parentheses are fractions of edges validated.
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can improve the prediction accuracy of protein complexes. The

key idea of our algorithm is that two proteins sharing some

high-order topological similarities, which are measured by a

novel random walk-based procedure, are likely interacting with

each other and may belong to the same protein complex. Overall,

the reconstructed yeast PPI network have much higher biological

relevance than the original network, and better quality than

those reconstructed by several existing algorithms, assessed by

multiple types of information, including gene ontology, gene ex-

pression, essentiality and conservation between species. The re-

constructed network has also resulted in significantly improved

protein complex prediction accuracy using two different algo-

rithms. Furthermore, our method is applicable to PPI networks

obtained with different experimental systems, such as Y2H, af-

finity purification based and protein-fragment complementation

assay, and evidence shows that the predicted edges are likely

bona fide physical interactions. Finally, an application to a

human PPI network increased the coverage of the network by

at least 100%.

Our method may be improved in several directions. For ex-

ample, to derive a network from the topology-based similarity

matrix, we have used a simple cut-off-based strategy to maintain

the number of edges in the original network. We made this

choice to facilitate a fair evaluation of different network

reconstruction/clustering algorithms. In fact, we have found

that many edges with similarity slightly below the cut-off also

have higher biological relevance than those removed, as shown in

the human data. This is also biologically understandable—the

original PPI network has a higher false-negative rate than

false-positive rate (Huang et al., 2007; Kuchaiev et al., 2009).

In future work, it may be worthwhile to develop methods that

can guide the selection of a more appropriate cut-off that would

allow more functionally relevant edges being included without

introducing too many false-positive edges. One possible way is to

examine the distribution of the similarity scores of the original

edges and non-edges and determine what edge weights might

represent a good separation.

ACKNOWLEDGEMENT

The authors would like to thank Saleh Tamim for his assistance

in obtaining the human microarray data. We also thank the an-

onymous reviewers for their insightful comments that have sig-

nificantly improved this manuscript.

FUNDING

NIH (SC3GM086305, R01CA152063, U54CA113001,

G12MD007591 (Computational Systems Biology Core)), NSF

(IIS-1218201, IOS-0848135).

Conflict of Interest: none declared.

REFERENCES

Asthana,S. et al. (2004) Predicting protein complex membership using probabilistic

network reliability. Genome Res., 14, 1170–1175.

Bader,G. and Hogue,C. (2002) Analyzing yeast protein-protein interaction data

obtained from different sources. Nat. Biotechnol., 20, 991–997.

Brohee,S. and van Helden,J. (2006) Evaluation of clustering algorithms for

protein-protein interaction networks. BMC Bioinformatics, 7, 488.

Cheng,W.-C. et al. (2010) Microarray meta-analysis database (m2db): a uniformly

pre-processed, quality controlled, and manually curated human clinical micro-

array database. BMC Bioinformatics, 11, 421.

Chua,H.N. et al. (2006) Exploiting indirect neighbours and topological weight to

predict protein function from protein-protein interactions. Bioinformatics, 22,

1623–1630.

Chuang,H.Y. et al. (2007) Network-based classification of breast cancer metastasis.

Mol. Syst. Biol., 3, 140–140.

Dwight,S. et al. (2004) Saccharomyces genome database: underlying principles and

organisation. Brief. Bioinform., 5, 9–22.

Fang,Y. et al. (2011) Global geometric affinity for revealing high fidelity protein

interaction network. PLoS ONE, 6, e19349.

Fouss,F. et al. (2007) Random-walk computation of similarities between nodes of a

graph with application to collaborative recommendation. IEEE Trans. Knowl.

Data Eng., 19, 355–369.

Fowlkes,E. and Mallows,C. (1983) A method for comparing two hierarchical clus-

terings. J. Am. Stat. Assoc., 78, 553–569.

Friedel,C. et al. (2009) Bootstrapping the interactome: unsupervised identification

of protein complexes in yeast. J. Comput. Biol., 16, 1–17.

Gasch,A. et al. (2000) Genomic expression programs in the response of yeast cells to

environmental changes. Mol. Biol. Cell, 11, 4241–4257.

Gavin,A. et al. (2006) Proteome survey reveals modularity of the yeast cell machin-

ery. Nature, 440, 631–636.

Hall,M.C. et al. (2003) Mnd2 and swm1 are core subunits of the saccharomyces

cerevisiae anaphase-promoting complex. J. Biol. Chem., 278, 16698–16705.

Hannum,G. et al. (2009) Genome-wide association data reveal a global map of

genetic interactions among protein complexes. PLoS Genet., 5, e1000782.

10
2

10
3

10
4

10
5

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5

0.52

Number of edges

A
ve

ra
ge

 G
O

 s
im

ila
rit

y

org PPI edges
top predicted edges

Average GO similarity

10
2

10
3

10
4

10
5

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

Number of edges

A
ve

ra
ge

 g
en

e 
co

−
ex

pr
es

si
on

org PPI edges
top predicted edges

Average gene co-expression

(a)

(b)

Fig. 8. Quality of top predicted human PPIs as compared with that of

the original PPIs. Predicted/original PPIs are ranked by their topological

similarity scores. All edges above a particular rank are then used to

calculate the average GO similarity score (a) or average gene co-

expression (b)

363

Algorithm for reconstructing PPI networks

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/29/3/355/257152 by guest on 09 April 2024



Han,J.-D.J. et al. (2004) Evidence for dynamically organized modularity in the yeast

protein-protein interaction network. Nature, 430, 88–93.

Hidalgo,C. et al. (2009) A dynamic network approach for the study of human

phenotypes. PLoS Comput. Biol., 5, e1000353.

Huang,H. et al. (2007) Where have all the interactions gone? Estimating the cover-

age of two-hybrid protein interaction maps. PLoS Comput. Biol., 3, e214.

Ideker,T. and Sharan,R. (2008) Protein networks in disease. Genome Res., 18,

644–652.

Jeong,H. et al. (2001) Lethality and centrality in protein networks. Nature, 411,

41–42.

Keshava Prasad,T.S. et al. (2009) Human protein reference database–2009 update.

Nucleic Acids Res., 37, D767–D772.

Kim,Y. et al. (2011) Identifying causal genes and dysregulated pathways in complex

diseases. PLoS Comput. Biol., 7, e1001095.

King,A. et al. (2004) Protein complex prediction via cost-based clustering.

Bioinformatics, 20, 3013–3020.

Krogan,N. et al. (2006) Global landscape of protein complexes in the yeast sacchar-

omyces cerevisiae. Nature, 440, 637–643.

Kuchaiev,O. et al. (2009) Geometric de-noising of protein-protein interaction net-

works. PLoS Comput. Biol., 5, e1000454.

Lee,K. et al. (2008) Protein networks markedly improve prediction of subcellular

localization in multiple eukaryotic species. Nucleic Acids Res., 36, e136.

Li,A. and Horvath,S. (2007) Network neighborhood analysis with the multi-node

topological overlap measure. Bioinformatics, 23, 222–231.

Lovász,L. (1993) Random walks on graphs: a survey. Combinatorics, Paul Erdo
00

s is

Eighty, 2, 1–46.
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