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ABSTRACT

Motivation: Protein–DNA interactions often take part in various crucial

processes, which are essential for cellular function. The identification

of DNA-binding sites in proteins is important for understanding the

molecular mechanisms of protein–DNA interaction. Thus, we have de-

veloped an improved method to predict DNA-binding sites by integrat-

ing structural alignment algorithm and support vector machine–based

methods.

Results: Evaluated on a new non-redundant protein set with 224

chains, the method has 80.7% sensitivity and 82.9% specificity in

the 5-fold cross-validation test. In addition, it predicts DNA-binding

sites with 85.1% sensitivity and 85.3% specificity when tested on a

dataset with 62 protein–DNA complexes. Compared with a recently

published method, BindNþ, our method predicts DNA-binding sites

with a 7% better area under the receiver operating characteristic curve

value when tested on the same dataset. Many important problems in

cell biology require the dense non-linear interactions between func-

tional modules be considered. Thus, our prediction method will be

useful in detecting such complex interactions.
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1 INTRODUCTION

Protein–DNA interactions play essential roles in a variety of vital
biological processes, such as DNA replication, transcription,

packaging (Luscombe et al., 2000). For example, the interactions
between DNA and transcription factors are important for mod-

ulating the process of gene replication and transcription (Ptashne

et al., 2005). The interactions of DNA and histones are involved
in chromosome packaging in the cell nucleus (Kornberg, 1974).

Moreover, Bullock and Fersht (2001) have shown that mutations
of DNA-binding residues, such as those on the tumor repressor

protein P53, may predispose individuals to cancer. Thus, the
accurate identification of DNA-binding sites in proteins is not

only important for understanding the mechanisms of these bio-

logical processes but also helpful for annotating the function of

proteins. Protein–DNA interaction sites can be detected by using

biochemical techniques, such as DNase I foot-printing

(Brenowitz et al., 1986), Gel retardation (Lane et al., 1992) in

vivo foot-printing (Dumitru and McNeil, 1994) in vitro binding

assay (Diekmann and Hall, 1995) and methylation (Baldwin

et al., 2001). However, traditional biochemical methods are

time-consuming and laborious to carry out for the rapidly

increasing number of protein–DNA complexes. Therefore, de-

veloping an objective and effective computational approach to

precisely predict DNA-binding sites would be necessary.

Several computational methods have been developed to

identify DNA-binding sites in proteins based mainly on protein

sequence or protein structure. The sequence-based method can

be further divided into two classes. The first class is based on the

following: side chain pKa value, hydrophobicity index and

molecular mass of the amino acid residues and DNA-binding

residues predicted by support vector machine (SVM) (Wang

and Brown, 2006; Wang et al., 2010) and random forests classi-

fier (Wang et al., 2009). The second class uses evolutionary and

other sequence information to identify DNA-binding sites in

proteins (Ahmad and Sarai, 2005; Huang et al., 2009; Hwang

et al., 2007; Kuznetsov et al., 2006; Ofran et al., 2007;

Wu et al., 2009). Structure-based methods are further classified

into a structural alignment-based method and a structural

alignment-free method. For the structural alignment-based

method, the DNA-binding sites are recognized from a structural

alignment between the query sequence and a template known to

bind DNA (Gao and Skolnick, 2008; Holm and Sander, 1993).

In the structural alignment-free method, DNA-binding sites

are predicted using electrostatic potentials and the shape of

the molecular surface (Jones et al., 2003; Tsuchiya et al., 2004,

2005).

With the rapid increase in the number of high-quality protein

structures in the Protein Data Bank (PDB), developing new and

efficient techniques for predicting DNA-binding sites using geo-

metric structures has become feasible. In this article, we intro-

duce a two-stage machine-learning strategy to predict

DNA-binding sites. In the first stage, DNA-binding sites are

predicted by a structural alignment algorithm using the geomet-

ric structure. In the second stage, DNA-binding sites are pre-

dicted by SVM using evolutionary information, torsion angles

(’,  ) present in the backbone structure and solvent accessibility.

The final results are obtained by a consensus of SVM predictions

and geometric structure-based predictions.*To whom correspondence should be addressed.
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2 MATERIALS AND METHODS

2.1 Dataset preparation

In this study, two datasets, PDNA-62 and PDNA-224, were used to

evaluate the performance of our method. A summary of these datasets

are shown as follows:

PDNA-62: This is a non-redundant database of representative pro-

tein–DNA complexes from the PDB (http://www.rcsb.org/pdb/), which

was constructed by Ahmad and Sarai (2005) and used by several other

studies (Kuznetsov et al., 2006; Wang and Brown, 2006; Wang et al.,

2009, 2010). The sequence identity in the dataset was �25% and the

resolution of the structures was 2.5 Å or better. Based on the cutoff dis-

tance of 3.5 Å, the PDNA-62 dataset contained 1215 DNA-binding resi-

dues and 6948 non-binding residues (Ahmad and Sarai, 2005; Ahmad

et al., 2004).

PDNA-224: In addition to the latest PDB (released by January 25,

2011), a new DNA-binding protein dataset was constructed from 978

protein–DNA complexes in this work. The 978 protein–DNA complexes

were determined by radiographic crystallography with a resolution better

than 3.0 Å. Redundancy among the amino acid sequences was removed

using the PISCES software (Wang and Dunbrack, 2003) with a threshold

of 25% set for sequence identity. Any proteins homologous to those in

the PDNA-62 were also removed by the PISCES software. Finally, 224

non-redundant protein chains containing 57 348 amino acids were ob-

tained. According to an identical criterion suggested in previous studies,

a residue is regarded as interacting with DNA if the distance between an

atom of the residue and an atom of base is53.5 Å (Ahmad and Sarai,

2005; Ahmad et al., 2004). Using this criterion, 3778 interacting residues

and 53 570 non-interacting residues were projected to be present in the

PDNA-224 dataset. The PDNA-224 dataset and the binding sites infor-

mation are listed in the Supplementary Data S1.

2.2 Methods for prediction

Our method consisted of a SVM predictor and a geometric

structure-based predictor. For the SVM predictor, a SVM decision

value (sdv) for each site in a protein is obtained by SVM using the evo-

lutionary information, solvent accessible surface area and the protein

backbone structure (PBS). For the geometric structure-based predictor,

another geometric decision value (gdv) for each protein site is obtained by

the structural alignment method using the geometric structure informa-

tion. The final result for each site is obtained by combining the two

decision values of SVM-based predictor and geometric structure-based

predictor. The whole prediction procedure is illustrated in Figure 1.

2.3 SVM-based predictor

Owing to the fact that the DNA-binding site is determined not only by

the central residue, but also by other residues present in its neighboring

sites, a sliding window with K residues is selected to represent the infor-

mation of the central site. The information of each residue in the sliding

window is constructed using evolutionary information, the torsion angles

(’,  ) in the PBS and the solvent accessible surface (Li and Li, 2012).

These features and the encoding scheme are described in Part 1 of the

Supplementary Data S2. Then, the encoded features are selected as the

input parameters of the SVM, which is a popular machine-learning ap-

proach mainly used in pattern recognition and orientation (Cai et al.,

2002, 2004; Kuznetsov et al., 2006; Shu et al., 2008). In this work, the

publicly available LibSVM software (version 3.0) was used (http://www.

csie.nut.edu.tw/�cjlin/libsvm) (Chang and Lin, 2011). The SVM outputs

(SVM decision value) have been converted into conditional probabilities

using a sigmoid function. The probability interpretation of sdv(x) is used

for evaluating the performance of the SVM predictor. The sigmoid func-

tion is defined as follows:

PðY ¼ 1jxÞ ¼ 1=ð1þ expðA� sdvðxÞ þ BÞÞ ð1Þ

where x is the SVM input of each feature for position x, sdv(x) denotes

the decision value of the test feature for position x, P(Y¼ 1jx) is the

probability of DNA-binding prediction, and A and B are the slope and

offset, respectively, to be learned by a 3-fold cross-validation method

suggested in Platt (2000) (see Part 2 in Supplementary Data S2 for

more details) from the training set for the sigmoid function. Empirically,

one could use A¼�2.0, B¼�0.5 for DNA-binding prediction.

To combine linearly the scores of SVM predictions with the scores of

geometric structure-based predictions (see section 2.5 for more detail), we

converted conditional probabilities back to SVM decision value by,

sdvðxÞ ¼ fln½ð1� PÞ=P� � Bg=A ð2Þ

where sdv(x) is the decision value of the test feature for position x, P is the

conditional probability for DNA-binding and A and B are the same as

used in the sigmoid function. Equation (2) is an inverse of Equation (1).

2.4 Geometric structure-based predictors

Generally speaking, if a protein has a geometric structure similar to a

DNA-binding protein, the probability that this protein is also

DNA-binding protein is much higher. In our study, we use a structural

alignment method (see Section 2.5 for more details) to detect structural

similarities between a query protein and a template known to bind DNA.

The quality of the structural alignment method is determined by an inter-

face alignment score (IAS), which provides a quantitative measure of the

similarity between two protein–DNA complexes in the geometry.

Therefore, for a complex in the test set, a protein–DNA complex in the

training set with the highest IAS is kept, including the PDB code and the

DNA-binding information. This information is used to calculate the de-

cision values for all matched residues of the target chain according to the

following strategies: If the matched residue in the detected chain is a

DNA-binding site, a positive amino acid–amino acid similarity score is

assigned to the site in the target chain. On the other hand, if the matched

residue in the detected chain is a non-DNA–binding site, a zero score is

assigned to the site in the target chain.

2.5 Structural alignment method for detecting structural

similarity

Structural similarities between two protein–DNA complexes were calcu-

lated using the structural alignment method described in a previous study

(Siggers et al., 2005).

Step 1: Construct coordinate system

Based on this method, local coordinate systems are constructed on

both the amino acid residue and the nucleic acid (see Fig. 2A).Fig. 1. Overall framework of DNA-binding sites prediction
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According to the local coordinate systems, the vector (O
*

) connecting the

nucleotide–amino acid pair (base to amino acid) is determined as set out

in Figure 2A. The magnitude of the O
*

vector for all nucleotide–amino

acid pairs is calculated in our datasets. As in the previous study (Siggers

et al., 2005), a pair is regarded as ‘contacting’ if it had a O
*

vector whose

magnitude was 516 Å. Therefore, this value is chosen as the distance

cutoff used to define an ‘interfacial’ amino acid–nucleotide pair when

determining amino acid–amino acid similarity scores.

Step 2: Calculating amino acid–nucleotide geometric similarity score

Based on the coordinate system, the indices i and c are introduced to

represent an amino acid and nucleotide subunit, and m and n for the

other, respectively. By comparing the geometric similarity between two

amino acid–nucleotide subunits ic andmn, the geometric parameters such

as the rotation angle and the distance displacement are obtained. The

rotation angle is in the form of �� {(i,c)(m,n)}. The distance displacement

contains a radial displacement, �d {(i,c)(m,n)}, and an angular dis-

placement, �� {(i,c)(m,n)}. The geometric parameters are described in

Figure 2. Because the geometric parameters �d {(i,c)(m,n)}, ��

{(i,c)(m,n)} and �� {(i,c)(m,n)} are discrete distributions, these param-

eters are transformed into corresponding geometric parameters

sd{(i,c)(m,n)}, s�{(i,c)(m,n)} and s�{(i,c)(m,n)} so that the transformed

geometric parameters are continuous distributions in the range of

�0–1. In this article, sd{(i,c)(m,n)}, s�{(i,c)(m,n)} and s�{(i,c)(m,n)} are

calculated by using the following logistic function:

sdfði, cÞðm, nÞg ¼ expðAdðBd ��dÞÞ=ð1þ expðAdðBd ��dÞÞÞ ð3Þ

safði, cÞðm, nÞg ¼ expðAaðBa ��aÞÞ=ð1þ expðAaðBa ��aÞÞÞ ð4Þ

s�fði, cÞðm, nÞg ¼ expðA�ðB� ���ÞÞ=ð1þ expðA�ðB� ���ÞÞÞ ð5Þ

where Ad, Bd, A�, B�, A� and B� are the constant coefficients, respectively,

to be obtained by the method suggested in Siggers et al. (2005) (see Part 3

in Supplementary Data S2 for more details). Therefore, the constant co-

efficients used here are 25.0 (Ad) and 0.5 (Bd) for sd{(i,c)(m,n)}, 5.0 (A�)

and 2.6 (B�) for s�{(i,c)(m,n)} and 0.45 (A�) and 25.0 (B�) for

s�{(i,c)(m,n)}. The final stage in this step is to calculate the amino acid–

nucleotide geometric similarity score; the amino acid–nucleotide geomet-

ric similarity score can be written in the form,

sfði, cÞðm, nÞg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sdfði, cÞðm, nÞg safði, cÞðm, nÞg s�fði, cÞðm, nÞg3

p
ð6Þ

where sd{(i,c)(m,n)}, s�{(i,c)(m,n)} and s�{(i,c)(m,n)} are the transformed

geometric parameters.

Step 3: Calculating amino acid–amino acid similarity score

The amino acid–amino acid similarity score S {i,m} is the average of

the geometric similarity scores for all successful matches,

Sfi,mg ¼
X

c, n
ssuccessfulfði, cÞðm, nÞg=N ð7Þ

where N is the number of all successful matches.

Step 4: Calculating the Protein–DNA interface alignment score

Based on an amino acid–amino acid similarity matrix with elements S

{i,m}, the protein–DNA IAS is determined by summing the S {i,m} scores

over all aligned residues,

IAS ¼
X

Sfi,mg ð8Þ

where S {i,m} is the amino acid–amino acid similarity score, and IAS is

the Protein–DNA IAS.

Therefore, for a test instance, a complex in the training set with the

highest IAS is kept, including the PDB code and the DNA-binding in-

formation. The amino acid–amino acid similarity score is used to calcu-

late the gdv for all matched residues of the test instance. However, there

are two important differences in the usefulness of the amino acid–amino

acid similarity score: (i) In our study, the amino acid–amino acid simi-

larity scores are converted into the average amino acid–amino acid simi-

larity score using the normalized function suggested in a previous study

(Chang and Lin, 2011) in order that the average amino acid–amino acid

similarity score remains the same as the decision value derived from SVM

predictions. (ii) Not all the amino acid–amino acid similarity scores are

used in our study. The amino acid–amino acid similarity scores in which

the matched residues in the detected chain are non-DNA–binding sites

are not included in this study. The remaining amino acid–amino acid

similarity scores are regarded as the gdv. The scheme is defined as follows:

gdvðx,mÞ ¼

0 if the matched residue in the alignment chain
is a nonDNA� binding

Sfx,mg if the matched residue in the alignment chain
is a DNA� binding

8><
>:

ð9Þ

where S {x,m} is the average amino acid–amino acid similarity score for

position x and gdv(x,m) is the gdv for position x.

2.6 The combination of the decision values from the SVM

and geometry-based predictor

To predict the DNA-binding sites accurately, we used a novel scheme by

combining the SVM decision value with the gdv. The scheme is based on

the expected value in probability theory; suppose a random variable X

can take value x1 with probability p1, value x2 with probability p2, and so

on, up to value xk with probability pk. Then the expectation of this

random variable X is defined as follows,

A B

C

Fig. 2. Description of the geometric parameters used to compare two

amino acid–nucleotide pairs. (A) Orthonormal coordinate systems con-

structed on the amino acid backbone (i) and DNA base (m). The vector O
*

connects the origin of the base system to the origin of the amino acid

system. The three coordinate vectors of the amino acid frame and the O
*

vector are transformed into the base reference frame. These four vectors

describe the relative spatial orientation of the amino acid backbone with

respect to the base. (B) Geometric parameters �d and �� for (ic) and

(mn) amino acid–nucleotide pairs. Amino acid–nucleotide-pair geometric

relationships are described in the base reference frame. In the base refer-

ence frame, the radial displacement �d is the difference between the

magnitude of the O
*
ic and O

*
mn vectors: �d {(i,c)(m,n)}¼ abs

(jjO
*
ic
jj � jjO

*
mn
jj). The angle displacement ��, which is analogous to an

arc length, is represented by the base of an isosceles triangle where the

shorter of the two O
*

vectors determines the length of the two equivalent

sides. (C) Geometric parameter �� for (ic) and (mn) amino acid–nucleo-

tide pairs. �� (rotation angle) is the acute angle required to superimpose

the two transformed amino acid coordinate frame when their origins are

coincident
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EðXÞ ¼ x1p1 þ x2p2 þ :::þ xkpk ð10Þ

where p1þ p2þ . . .þ pk¼ 1.

Therefore, in this section, the decision values from the SVM and the

geometry-based predictor are combined by a combination scheme as

follows:

comðxÞ ¼ ð1:0� pÞ � sdvðxÞ þ p� gdvðxÞ ðx ¼ 1, 2:::LÞ ð11Þ

where sdv(x) is the SVM decision value for the position x, gdv(x) is the

gdv for the position x, com(x) is the combined decision value for the

position x, L is the length of the protein sequence and p is the proportion

factor, p¼ 0.45 is used by learning the method from the training set (See

Part 4 in Supplementary Data S2 for more details).

Then, the com(x) elements are normalized to fall with the range of

O �1 by the sigmoid function, which is analogous to equation (1) as

shown below,

pcomðY ¼ 1jxÞ ¼ 1=ð1þ expðA� comðxÞ þ BÞÞ ð12Þ

where com(x) denotes the combined decision value for the position x,

pcom(Y¼ 1jx) is the probability interpretation of the com(x), and A

and B are the slope and offset, respectively. In this article, we use

A¼�6.0, B¼�0.2 for the final prediction.

The final prediction result is obtained using the probability interpret-

ation of the com(x). Given a protein sequence X with l residues, we obtain

an l-dimensional feature vector [pcom(1), pcom(2),. . ., pcom(l)]. Then, we

use a threshold �0 to integrate the vector into a non-linear discriminant

function. The threshold �0 gives the decision for sample X. As

pcom(x)4�0, the sample X is classified into the positive group, or into

the negative group as pcom(x) ��0. Empirically, one could use �0¼ 0.52

for DNA-binding prediction (See Part 5 in Supplementary Data S2 for

more details).

3 RESULTS AND DISCUSSION

In predicting DNA-binding sites, the 5-fold cross-validation test

is often used to examine the effectiveness of a predictor (Wang

and Brown, 2006; Wang et al., 2009, 2010; Wu et al., 2009). The

performance of our predictor was also assessed by the 5-fold

cross-validation test. During this test, a dataset is randomly

divided into five non-overlapping sets, four of which are used

for training the predictor and the accuracy of the predictor is

assessed on the remaining sets. This process is repeated five

times. The predictive capability of our method was evaluated

by the sensitivity (Sn), specificity (Sp), Matthew’s correlation

coefficient (MCC), overall prediction accuracy (Acc), strength

(Str) and false-positive rate (FPR):

Sn ¼ TP=ðTPþ FNÞ ð13Þ

Sp ¼ TN=ðTNþ FPÞ ð14Þ

Strength ¼ Snþ Spð Þ=2 ð15Þ

FPR ¼ FP=ðTNþ FPÞ ¼ 1� Sp ð16Þ

Acc ¼ TPþ TNð Þ=ðTPþ FPþ TNþ FNÞ ð17Þ

MCC ¼ ðTP� TN� FP� FNÞ
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþ FPÞ � ðTNþ FNÞ � ðTPþ FNÞ � ðTNþ FPÞ

p

ð18Þ

where TP represents the number of correctly identified positives,

FN represents the number of the positives identified as negatives,

TN represents the number of the correctly identified negatives

and FP represents the number of negatives identified as positives.
To further evaluate the capability of using our method on an

unbalanced dataset, the receiver operating characteristic (ROC)

curve (Swets, 1988), one of the most robust approaches for clas-

sifier evaluation, was also used. It is obtained by plotting the

true-positive rate (sensitivity) on the y-axis against the FPR

(1-specificity) on the x-axis. The area under the ROC curve

(AUROC) (Bradley, 1997) can be used as a reliable measure

for the prediction performance. The maximum value of

AUROC (1) denotes a perfect prediction. A random guess re-

ceives an AUROC value close to 0.5.

3.1 Effect of the sliding window size in the construction of

the SVM input vectors

To obtain the best performance for predicting DNA-binding

sites, the sliding window size is optimized with respect to the

overall accuracy, MCC and Strength values. The optimized slid-

ing window size is obtained by testing the performance of differ-

ent sliding window sizes from 3 to 21 with the default parameters

c, g and weight in SVM. Table 1 shows the results of different

sliding window sizes on the dataset PDNA-62. It was found that

a sliding window of 11 amino acids achieves the best predicting

performance. Therefore, the optimized sliding window size was

set to 11 in this study.

3.2 The predicted results on the PDNA-62 dataset

Table 2 shows the predicted results for the PDNA-62 dataset

with various combinations of features. We show that the

lowest overall prediction accuracy is 62.6% when only using

the PBS as the input parameter. By using the PSSM profiles

as the input vector, the accuracy of the SVM classifier is signifi-

cantly improved up to 79.4%. However, the prediction perform-

ance slightly increases when the PSSM profiles were combined

with PBS or normalized solvent accessible surface area (NSASA)

are used as the input vectors. The best results (Acc of 83.6%,

MCC of 0.50 and Strength of 82.2%) were obtained when all the

Table 1. The test results for the PDNA-62 dataset with respect to differ-

ent window sizes based on the 5-fold cross-validation test

K c g Weight Sn

(%)

Sp

(%)

Acc

(%)

MCC Str

(%)

3 4.0 0.0078125 7.04 76.4 76.6 76.6 0.38 76.5

5 1.0 0.0078125 7.04 77.2 77.9 77.8 0.40 77.5

7 0.5 0.0078125 7.04 76.8 78.6 78.4 0.40 77.7

9 0.25 0.0078125 7.04 76.8 78.3 78.2 0.40 77.6

11 0.25 0.0078125 7.04 76.8 79.7 79.4 0.42 78.3

13 0.125 0.0078125 7.04 76.3 78.3 78.1 0.40 77.3

15 0.25 0.003906 7.04 76.9 78.2 78.1 0.40 77.6

17 0.25 0.003906 7.04 76.3 79.4 79.1 0.41 77.9

19 0.25 0.003906 7.04 75.4 80.3 79.7 0.41 77.9

21 0.25 0.003906 7.04 74.2 80.8 80.0 0.41 77.5

The values in bold indicate that they are the best values.
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features, including PSSM profiles, PBS and NSASA were com-

bined. Therefore, in our work, the SVM-based prediction model

was constructed by combining all the features. By integrating

SVM with geometric structure-based predictor, we obtained a

final ROC curve for the final prediction shown in Figure 3. It

is clear that the AUROC values in our predictions are �5–10%

higher than those obtained in other studies. The best values for

Acc, MCC, strength and AUROC were 85.5%, 0.55, 85.3% and

0.926, respectively, in our study.

3.3 The predicted results on the new PDNA-224 dataset

To further evaluate the performance of our method in predicting

DNA-binding sites, we applied it to a new dataset PDNA-224

generated in this work. The test results of the SVM models using

various features are listed in Table 3. Our results show that the

prediction performance increases significantly while using the

PSSM profiles as the parameter of the SVM model. When the

PSSM profile was combined with one or more additional fea-

tures as input vectors, the performances were slightly improved.

The best performance was achieved with an MCC of 0.35, over-

all accuracy of 81.8% and strength of 79.2% (with a sensitivity of

76.1% and specificity of 82.2%) by combining the PSSM pro-

files, PBS and NSASA. In addition, the ROC curves of predict-

ing DNA-binding sites for the PDNA-224 dataset (Fig. 4) was

obtained by combining the SVM predictor using different par-

ameters with the geometric structure-based predictor. The

AUROC values show that the combined results are better than

the results of the SVM models using various features. The best

AUROC value was 0.898 in the 5-fold cross-validation test.

3.4 Comparison with other computational methods

DNA-binding sites have been predicted successfully using pre-

dictors, such as Dps-pred (Ahmad et al., 2004), Dbs-pssm

(Ahmad and Sarai, 2005), BindN (Wang and Brown, 2006),

Dp-bind (Kuznetsov et al., 2006), DP-Bind (Hwang et al.,

2007), BindN-RF (Wang et al., 2009) and BindN þ(Wang

et al., 2010). When we compared our method with prior methods

using the common dataset, PDNA-62, we obtained the results

shown in Table 4. Overall, the best results of our prediction were

85.2% (85.2% sensitivity and 85.3% specificity). The results

show that our predictor has a considerably higher sensitivity of

85.2% compared with 40.3% from a previous study (Ahmad

et al., 2004). Both the sensitivity and specificity of our pre-

dictor were also better than those of other predictors shown in

Table 4. Moreover, our method is benchmarked with one of the

most successful DNA-binding sites predictors, BindNþ. Our

method improves the sensitivity, specificity, accuracy, strength,

MCC and AUROC values from 77.3%, 79.3%, 79.0%, 78.3%,

Fig. 3. ROC curves for the DNA-binding sites prediction in PDNA-62

dataset by combining SVM predictor using different parameters (such as

NSASA, PBS, NPSSM, NSASAþPBS, NPSSMþNSASA, NPSSMþ

PBS,NPSSMþNSASAþPBS) with geometric structure-based predictor

Table 2. The prediction performances for the PDNA-62 dataset based on various features in the 5-fold cross-validation test

Feature vector c g Weight Sn (%) Sp (%) Acc (%) MCC Str (%)

NPSSM 0.25 0.0078125 7.04 76.8 79.7 79.4 0.42 78.3

NSASA 0.25 0.5 7.04 68.3 67.5 67.6 0.24 67.9

PBS 0.25 0.015625 7.04 57.4 63.7 62.6 0.14 60.4

NSASAþPBS 0.25 0.015625 7.04 76.4 63.3 64.9 0.26 69.8

NPSSMþNSASA 0.25 0.0078125 7.04 79.7 81.8 81.6 0.46 80.7

NPSSMþPBS 0.25 0.0078125 7.04 77.3 82.6 82.0 0.46 80.0

NPSSMþNSASAþPBS 0.25 0.0078125 7.04 80.2 84.1 83.6 0.50 82.2

NPSSM, normalized PSSM score;NSASA, normalized solvent accessible surface area;PBS, protein backbone structure. The values in bold indicate that they are the best values.
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0.44 and 0.859 to 85.2%, 85.3%, 85.2%, 85.2%, 0.55 and 0.926,

respectively. The comparative results indicate that our method

has good generalization abilities in recognizing DNA-binding

sites.

3.5 False-positive sites predicted with high confidence

To further illustrate the predictive capability of our predictor,

our results for the common PDNA-62 dataset were compared

with those of the PDB. The results show that 197 residues that do

not bind to DNA in the PDB annotation are predicted as

DNA-binding sites with490% confidence. However, based on

deep and comprehensive analyses, the 197 residues can be clas-
sified into five groups. We used the pdb_idþchain_letter (e.g.

1B3TA) to name the protein chains.

In the first group, we found 27 false-positive residues with

other related functions. Some of the residues are protein–protein
interaction sites (Ala46 in 1A02J, Gly82 in 1B3TA, Asp50 in

1CF7A, Gln18 in 1FJLA, Glu128 in 1GDTA, Lys22 in

1HWTD, Gln44 in 1HWTD, His 32 in 1IHFB, Leu37 in

1IHFB, Cys93 in 1MNMA, Val63 in 1PYIA, Asn117 in

1TSRA, Thr118 in 1TSRA, Gln28 in 1YRNA), while others

represent water-binding sites (Val99 in 1A02N, Gly158 in
1A74A, Thr9 in 1BHMA, Ala40 in 1CDWA, Trp65 in 1FJLA,

Glu30 in 1HCQA, Met 42 in 1HCQA, Leu83 in 1IGNA, Glu101

in 1IGNA, Tyr57 in 1PUEE, Thr30 in 1TSRA). Moreover,

Ser49 in 1DP7P is a ligand-binding site and Cys125 in 1A74A

is a Zn-binding site. Although these predicted residues are not

DNA-binding sites, they do interact functionally with other resi-

dues or small molecules. The results seem to indicate that our
method is helpful for predicting other functional sites.

The second group contains 21 false-positive residues. Our re-

sults show that these residues (Lys42, Phe63, Leu76, Asp77,
Lys102 and His113 in 1UBDC) have higher amino acid–amino

acid similarity scores with actual DNA-binding residues based

on the structural alignment method. Because of structural re-

latedness to actual DNA binding residues, these false-positives

may indeed bind to DNA.
In the third group, seven sites (Gly158 in 1GDTA, Arg10 in

1PERL, Thr27 in 1PERL, Lys23 in 1SRSA, Gly36 in 1SRSA,

Arg17 in 1YSAC and Ser19 in 1YSAC) are neither functional

nor geometrically similar. But the sequences of 1GDTA, 1PERL,

1SRSA, 1YSAC are exactly the same as 1GDTB, 1PERR,
1SRSB, 1YSAD. And Gly158 in 1GDTB, Arg10 in 1PERR,

Thr27 in 1PERR, Lys23 in 1SRSB, Gly36 in 1SRSB, Arg17 in

1YSAD and Ser19 in 1YSAD have been verified in actual

DNA-binding experiments (Berman et al., 2000). Therefore,

the results show that our method can detect true DNA-binding

sites.

Fig. 4. ROC curves for the DNA-binding sites prediction in PDNA-224

dataset by combining SVM predictor using different parameters (such as

NSASA, PBS, NPSSM, NSASAþPBS, NPSSMþNSASA, NPSSMþ

PBS, NPSSMþNSASAþPBS) with geometric structure-based

predictor

Table 3. The prediction performances for the PDNA-224 dataset based on various features in the 5-fold cross-validation test

Feature vector c g Weight Sn (%) Sp (%) Acc (%) MCC Str (%)

NPSSM 0.25 0.0078125 14.18 69.5 79.8 79.1 0.29 74.6

NSASA 0.125 0.25 14.18 80.6 55.3 56.9 0.18 67.9

PBS 0.125 0.03125 14.18 58.2 62.9 62.6 0.11 60.6

NSASAþPBS 0.125 0.03125 14.18 76.3 62.5 63.4 0.20 69.4

NPSSMþNSASA 0.125 0.0078125 14.18 76.3 80.0 79.8 0.33 78.2

NPSSMþPBS 0.125 0.0078125 14.18 73.5 80.3 79.9 0.32 76.9

NPSSMþNSASAþPBS 0.125 0.0078125 14.18 76.1 82.2 81.8 0.35 79.2

NPSSM, normalized PSSM score; NSASA, normalized solvent accessible surface area, PBS: protein backbone structure. The values in bold indicate that they are the best

values.
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The fourth group has 110 mis-predicted residues that are
located in DNA-binding regions (DBRs). A DBR is an inde-

pendently folded protein region that contains at least one motif

that recognizes double- or single-stranded DNA. From the pre-
dicted results, it is obvious that some demonstrated binding re-

gions are in reasonable agreement with experimental data (see

Supplementary Data S3 for more details). For example, in
1A02F, we observe that Arg7, Asn10, Lys11, Ala13, Lys16,

Ser17, Arg18, Arg21 form a DBR. The results indicate that

our method predicts DNA-binding with greater accuracy and

will be of help to biologists.
Besides the four groups mentioned above, only 32 residues in

the fifth group were incorrectly predicted by our method.

3.6 Effect of the beginning or the end of �-helices and
b-strands

From an analysis on the false-negatives sites with 510%

confidence level, we find it difficult to predict DNA-binding

sites when these sites are located in the beginning or the end
of �-helices and �-strands. For example, Lys17, Thr130 in

1B3TA are DNA-binding residues according to experimental

data. But these are mis-predicted in this article. From the spatial

structure of 1B3TA (Fig. 5), we find Lys17 is located in the
beginning of �-helices and Thr130 is located in the end of

�-strands. As alluded to earlier, residues of this nature are diffi-

cult to predict, as they occur in the beginning or end of �-helices
and �-strands that are usually distorted randomly (Zhou et al.,

2010).

4 CONCLUSIONS

The following conclusions can be drawn from this work:

(1) Based on SVM and geometric structure-based algorithms,
a novel computational method for predicting DNA-

binding sites in proteins is proposed in this work. Overall,

method when applied to the common dataset PDNA-62

shows better predictive capability when compared with

other methods using the 5-fold cross-validation test.

(2) Our method performs equally well and can detect novel

DNA-binding proteins when tested on a new DNA-

binding protein dataset generated in this study.

(3) Our method has a better predictive value especially with

false-positive sites located in a DBR and can indeed show

that these residues have other functions unrelated to DNA
binding.

(4) From an analysis on the false-negatives sites with510%

confidence level, it is difficult to predict some binding resi-

dues that are located in the beginning or end of �-helices
or �-strands.
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Fig. 5. The spatial structure of 1B3TA, Lys17 is located in the beginning

of �-helices, and Thr130 is located in the end of �-strands

Table 4. The predictive results compared with other computational meth-

ods on the PDNA-62 dataset

Methods Sn

(%)

Sp

(%)

Acc

(%)

Str

(%)

MCC Threshold AUC

Dps-preda 40.3 81.8 79.1 61.1 — — —

Dbs-pssmb 68.2 66.0 66.4 67.1 — — —

BindNc 69.4 70.5 70.3 — — — 0.752

Dp-bindd 79.2 77.2 78.1 — 0.49 — —

DP-Binde 76.4 76.6 77.2 — — — —

BindN-RFf 78.1 78.2 78.2 78.1 — — 0.861

BindNþg 77.3 79.3 79.0 78.3 0.44 — 0.859

Our method 85.2 85.3 85.2 85.2 0.55 0.03 0.926

The values in bold indicate that they are the best values.
aDps-pred (Ahmad et al., 2004).
bDbs-pssm (Ahmad and Sarai, 2005).
cBindN (Wang and Brown, 2006).
dDp-bind (Kuznetsov et al., 2006).
eDP-Bind (Hwang et al., 2007).
fBindN-RF (Wang et al., 2009).
gBindNþ (Wang et al., 2010).
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