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ABSTRACT

Motivation: In developmental biology, quantitative tools to extract

features from fluorescence microscopy images are becoming essen-

tial to characterize organ morphogenesis at the cellular level. However,

automated image analysis in this context is a challenging task, owing

to perturbations induced by the acquisition process, especially in

organisms where the tissue is dense and opaque.

Results: We propose an automated framework for the segmentation

of 3D microscopy images of highly cluttered environments such as

developing tissues. The approach is based on a partial differential

equation framework that jointly takes advantage of the nuclear and

cellular membrane information to enable accurate extraction of nuclei

and cells in dense tissues. This framework has been used to study

the developing mouse heart, allowing the extraction of quantitative

information such as the cell cycle duration; the method also provides

qualitative information on cell division and cell polarity through the

creation of 3D orientation maps that provide novel insight into tissue

organization during organogenesis.

Availability: The proposed framework is free, open-source and avail-

able on the Icy platform (http://www.icy.bioimageanalysis.org/).

Contact: adufour@pasteur.fr or jcolivo@pasteur.fr

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

The advent of modern 3D optical imaging techniques has

impacted numerous areas of life sciences, giving novel insight

into various aspects of cell behavior, notably during tissue devel-
opment (Mavrakis et al., 2010, Sharpe, 2011). Typical images are

obtained by labeling the cell membrane and nuclear DNA with
fluorescent dyes, yielding two-channel image volumes where cells

appear as a dense matrix of contiguous surfaces, while nuclei
appear as pseudo-elliptic blobs in close vicinity (cf. Fig. 5A).

However, in the context of dense tissues, 3D microscopy

images of developing tissues still suffer from rather poor spatial
resolution in the axial direction. Analysis is therefore still

restricted to the upper section (typically 50 microns) of the spe-

cimen, beyond which substantial light scattering occurs in

non-transparent tissues, thus hindering precise segmentation at

the nuclear and cellular level. This is especially true in models

such as the mouse (Meilhac and Buckingham, 2010), where the

tissue is much less transparent than that of zebrafish or

Drosophila (Huisken et al., 2004; Megason, 2010; Zanella et al.,

2010). Alternative solutions have been proposed to improve the

imaging process by combining complementary enhancements in

the biology and the optics fields. For example, in Sato et al

(2010), transgenic quail lines were generated, where only endo-

thelial cells express a fluorescent marker, thus simplifying the

quantification of multi-cellular movements in an embryo that

is amenable to live imaging, but without real improvement of

the resolution. A promising solution certainly lies in recent

advanced imaging setups such as single plane illumination -mi-

croscopy or SPIM (Huisken et al., 2004). There, only a thin

sample plane is illuminated, while the light emitted by the

entire plane is collected at once in the normal direction, thereby

reducing exposure time, bleaching and toxicity. Such systems are,

however, not or only recently commercially available, although

open-access prototypes are currently being developed (Pitrone

et al., 2012). It is also not clear whether SPIM images suffer

from distortion/resolution problems, due in particular to the

registration and stitching of multi-view images (Preibisch et al.,

2010). In this context, and with the exponential increase in ima-

ging datasets produced, digital image processing and analysis

tools have become indispensible to make the most of 3D imaging

techniques and data for biological applications.
To quantify and then understand the mechanisms governing

morphogenesis and organogenesis, quantitative measures such as

cell cycle durations or cell orientations must be revisited if one

wants to make full use of 3D stacks of the sample. Until recent

years, extraction of cell parameters for the characterization of

tissue growth has been limited to 2D (Baena-Lopez et al., 2005)

or multi-2D (Boehm et al., 2010) analysis, or limited by the sub-

jectivity and time-constraints of manual intervention for 3D ana-

lysis (Gong et al., 2004; Saburi et al., 2008). Because 3D cell

behavior is not stereotyped, analyses over a large number of

3D samples are required to extract relevant statistics. Hence,

systematic analysis of developing tissues composed of several

thousands of cells calls for robust and automated tools to
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segment cells, nuclei and other subcellular structures from 3D

fluorescence images.
A substantial amount of research in the image processing field

is dedicated to the problem of multi-cellular segmentation in 3D.

In particular, recent attempts have been reported to tackle the

problem of dense tissue analysis in 3D. These contributions can

be declined in two families: (1) image filtering approaches,

aiming to remove the imaging artifacts by reducing the noise,

smoothing heterogeneous structures and enhancing the contrast

(Drblikova et al, 2009; Kriva et al., 2010; Mosaliganti et al.,

2010); (2) segmentation techniques, aiming to extract nuclei or

cells individually, either by means of the watershed transform

(Fernandez et al., 2010; Mosaliganti et al., 2012) or via

energy-minimizing deformable models (Dufour et al., 2011;

Zanella et al., 2010). While watershed-based approaches usually

suffer from noise and over-segmentation issues, deformable

models offer a more flexible approach by allowing the incorpor-

ation of image- and geometry-based information into a robust

mathematical framework based on Partial Differential

Equations (PDE). For -instance in (Zanella et al., 2010), the

cell membrane signal is first denoised using a geodesic curvature

filter (Kriva et al., 2010), then a generalized 3D Hough trans-

form approach is used on the nuclear channel to estimate the

location of the nuclei (Ballard, 1981), finally a subjective

surface-based technique is used to segment the cell membranes

(Sarti et al., 2000). Such an approach yields promising results;

however, it is restricted to the upper section of the specimen,

illustrating the difficulty of processing deeper slices of the

tissue, despite the transparency of the zebrafish as compared

with the mouse. Also, the cellular and nuclear fluorescence sig-

nals are processed separately, which may impair the extraction

performance.
The present work introduces a new and alternative PDE-based

framework to automatically denoise and jointly segment nuclei

and cells from 3D images of dense and opaque tissues, and to

extract quantitative measures including proliferation rates and

cell orientations. We propose that combining the nuclear and

cellular fluorescence information can significantly improve seg-

mentation of both signals, even in highly non-transparent tissue

such as that of mouse. We first use a filtering technique specif-

ically designed to enhance the cellular membrane signal, and then

subtract this signal from the nuclear signal to separate touching

nuclei, thus improving their detection. Finally, we develop a

two-step deformable-model approach to (i) segment the nuclei

starting from their initial detection using local region homogen-

eity, and (ii) segment the cells starting from the extracted nuclei

using dual region-edge information from the filtered membrane

signal.

We use the proposed approach to study the development of

the mouse heart and provide new quantitative parameters char-

acterizing the morphogenetic process (e.g. number of cells and

divisions, duration of the cell cycle), as well as 3D orientation

maps to facilitate visual inspection and enable further statistical

and geometrical analysis of the observed tissue. Quantitative and

qualitative evaluations are provided, indicating a substantial gain

in performance and analysis time compared with current

approaches.

2 APPROACH

A general overview of the proposed approach is illustrated in

Figure 1, while detailed steps of the analysis are given in the

following subsections. In the ‘Anisotropic filtering’ step, a

novel PDE-based filtering technique is used to denoise the mem-

brane signal (cf. Section 2.1). In the ‘Nucleus initialization’

block, the filtered membrane signal is subtracted from the nu-

clear signal to improve their detection (cf. Section 2.3). The de-

tection results are then used to initialize our deformable model

approach to achieve accurate ‘nuclear segmentation’ (cf. Section

2.4). Once all nuclei are segmented, the resulting boundaries are

used to initialize the subsequent ‘Cell segmentation’ block, con-

ducted on the filtered membrane data. Once nuclei and cells are

segmented, additional subcellular structures are used to deter-

mine quantitative measures and orientations to characterize the

observed tissue.

2.1 Anisotropic filtering for membrane enhancement

The cellular membrane can be represented by a structure of

co-dimension 2, i.e. a continuous two-dimensional surface in

3D space. However, due to the imaging and staining conditions,

the observed surfaces appear discontinuous and exhibit a highly

variable contrast, thus impairing precise extraction (Fig. 3A). To

recover continuity and contrast, image filtering approaches

based on anisotropic diffusion are particularly well suited, as

they propagate spatial information from the local neighborhood

to recover both signal intensity and structure orientation, e.g.

through the use of diffusion tensors (Weickert, 1999). Recently,

we introduced a model for cell membrane denoising and en-

hancement that takes explicitly into account the directions of

diffusion thanks to structure tensors (Pop et al., 2011). The gen-

eral equation reads as follows:

@U

@t
¼ divðDrIÞ ð1Þ

where I is the 3D data and D is the diffusivity matrix given as

follows:

D ¼ ð~v1~v2~v3Þ diag �1�2�3½ �ð~v1~v2~v3Þ
T

ð2Þ

�1, �2, �3 represent the amount of diffusivity along ~v1, ~v2, ~v3,
which are the eigenvectors of the structure tensor defined as

follows:

J�ðrI�Þ ¼ G� � ðrI� �rI�Þ ð3Þ

where each component of the resulting matrix of the tensor prod-

uct is convolved with a Gaussian G of standard deviation �. The
structure tensor captures the contrast and orientation of

the structures (in a radius defined by the integration scale �)

Fig. 1. Overview of the proposed workflow for nucleus and cell extrac-

tion from 3D fluorescence images of dense tissues (cf. Supplementary

Fig. S1 for a detailed view and associated parameter values)
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in the input signal smoothed with a Gaussian of standard devi-
ation �. High values of � increases structure enhancement, but

may lead to the creation of false structures. High values of �
improve smoothness of the background, but may also smooth

the signal of interest. In all our experiments, we set �¼ 2 and

�¼ 1. The eigenvectors ~v1 and ~v3 express the average orientation
of the gradient and the orientation of the most homogeneous
structure, respectively. The eigenvalues of the tensor

ð�1 � �2 � �3Þ are positive and capture the average contrast

in the eigenvector directions. The model contains a system of

equations that define the amount of diffusion along each

eigendirection.
To build a system of eigenvalues �1, �2, �3 that is adapted to

membrane structures, we compute a plane-confidence measure

defined in van Kempen et al. (1999) as follows:

Cplane ¼
�1 � �2

�1 þ �2
ð4Þ

and integrate this measure into the following eigenvalue system:

�1 ¼ ½�1:gKð�1Þ�
0

�2 ¼ maxð�1, 0Þ � ½maxð�1, 0Þ � �3�h�ðCplaneÞ

�3 ¼ 1

8<
: ð5Þ

where gK is an edge detector function, e.g. rational function from

the Perona-Malik model (Perona and Malik, 1990) (see
Supplementary Data for more details). Here K indicates a thresh-

old between background and edge structures and should take

higher values as the noise level increases (in our experiments,

we chose K ¼ 5). Here h�ð�Þ is a fuzzy threshold function between

0 and 1 that allows a better control of the transition between

co-2D structures and other regions (Terebes et al., 2005). The
eigenvalue �2 depends continuously on the confidence measure

and takes values between �1 and �3. The max function prevents

�2 from taking negative values and thus avoids oscillations.

Table 1 summarizes the behavior of the proposed model with

respect to the possible eigenvalue combinations. In the average

gradient direction (~v1), contrast enhancement is achieved along-
side the diffusion process, by letting �1 take negative values. To

ensure that the model remains well posed, the enhancement is

similar to the Perona-Malik model. It can be shown that in the

gradient direction, the diffusivity in the Perona-Malik model is

implicitly modulated by the flux derivative function ½x � gðxÞ�0

(Perona and Malik, 1990). When �14K, this function takes
negative values, inducing an enhancing behavior along ~v1
(Fig. 2).

In membrane regions, the fuzzy function h�ðCplaneÞ ! 1
implies �2 ! �3 ¼ 1; thus, diffusion is applied along the mem-

brane tangential plane, i.e. orthogonally to ~v1. The regions where
h�ðCplaneÞ ! 0 are either isotropic or exhibit 1D homogeneous

structures, and are therefore processed differently. In regions
with 1D structures, �2 tends toward �1 because h�ðCplaneÞ ! 0
and both are close to zero. Hence, diffusion will take place along

the smallest variation of contrast ~v3 with an intensity equal to
one. In the orthogonal directions, two possible events can occur:

if �1 and �2 are both positive, a weak diffusion is applied, and
hence our model comes down to the classical model proposed in

Weickert (1999), which considers all structures as 1D structures;
if �1 is negative and �2 is positive, the signal is enhanced along ~v1
and smoothed along ~v2. It is interesting to note that at membrane
extremities or at junctions, the model is able to enhance the

membrane continuity even if the diffusion acts predominantly
in the most homogeneous direction (~v3). Membrane continuity

can be further enhanced by increasing the size of the neighbor-
hood where the structure tensor is computed, or by computing
an anisotropic structure tensor (Brox et al., 2006). Finally in

homogeneous regions, �1 tends toward 1. Hence, our model
diffuses in an isotropic manner to denoise the background

(cf. Fig. 3B), whereas classical tensor-based approaches create
false anisotropic structures in such regions (Weickert, 1999).

Comparisons with the classical model as well as with other
models dedicated to membrane filtering on synthetic and real

data are given in Supplementary Data.
To summarize, the proposed model is able to (a) smooth the

signal along planar structures while enhancing their contrast; (b)

enhance the continuity of the structures, enabling the recovery of
incomplete signal; (c) provide a strong isotropic diffusion in

Fig. 3. Result of the proposed filter (3D raycast rendering). (A) Original

data (total variation: 126.5). (B) Denoised result (total variation: 53.7)

Fig. 2. Flux derivative function graph or variation of �1 as a function

of �1/K
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homogeneous regions. This behavior is illustrated on real

membrane data in Figure 3 and Supplementary Figure S3.

2.2 Data fusion for nuclei detection

The high tissue density implies that nuclei are close to each other,

and are sometimes difficult to distinguish by eye. We ensure that

nuclei are well separated by subtracting the cell membrane signal

from the nucleus data. In this step, all the voxels belonging to the

cell membrane [determined using an Otsu threshold (Otsu, 1979)]

are replaced in the nucleus data by the background value.
To initialize the segmentation model described below, a fast

detection method is used to detect automatically the approximate

shape and location of the nuclei in the tissue. The original images

are first denoised using classical filtering (see Supplementary

Data). However owing to the important intensity variations

across the tissue, the filtered data still exhibit nuclei with different

intensities. We thus apply a multi-level threshold approach based

on Hierarchical K-Means (HK-Means), which has been

developed to separate clusters of confluent cells with varying

intensities (cf. Supplementary Data). An illustration of this de-

tection step is given in Figure 4: on the raw data (A,D), the

proposed algorithm yields over segmentation; on the filtered

data (B,E), some nuclei are recovered, while others are missing

or merged. Finally, after membrane subtraction (C,F), almost all

nuclei are recovered, although their size and boundary may be

inaccurate. The next section presents a solution to the latter

problem.

2.3 Segmentation

A drawback of the previous detection step is that nuclear bound-

ary localization may have been impaired during the membrane

subtraction process. A specific segmentation step is thus required

to accurately recover the boundary of each nucleus. Likewise,

each individual cell has to be extracted from the enhanced mem-

brane signal. The former problem is known as a region-based

segmentation problem (nuclei have similar homogenous intensity

as compared with the background), while the latter is known as

an edge-based segmentation problem (the interior of each cell is

unknown and bounded by its membrane). Deformable models

are well suited for these tasks, as they allow integration of both

region-based and edge-based information into a single formal-

ism, and allow the incorporation of geometrical constraints that

permit the distinction of objects in contact. In particular, the 3D

Active Mesh framework (Dufour et al., 2011) provides such a

flexible formalism and provides a polygonal description of the

extracted objects, thus facilitating geometrical measurements and

allowing real-time 3D visualization of the deformation process.

This technique relies on an energy minimizing framework, where

the simultaneous evolution of n surfaces S1::n within an image I is

expressed as follows:

EðR0::n,S1::nÞ ¼
Xn
i¼1

ZZZ

Ri
0

� Î� ciout

���
���2d�þ 1=�

Z ZZ

Ri

Î� ciin

���
���2

2
64 d�

þ�

ZZ
�

Si

�g1 þ ð1� �Þdsþ �
Xn
j¼iþ1

ZZZ

Ri\Rj

d�

3
75

ð6Þ

where Î is a contrast-enhanced version of I that reduces the light-

scattering effect along the depth axis (cf. Supplementary Data),

ciout is the average background intensity of Î around Si (noted Ri
0),

ciin is the average intensity of Î inside the segmented region Ri

bounded by Si, d� is the elementary 3D space, g is a positive

non-increasing edge detector function, ds is the elementary surface

and �,�, �, � are empirical weights. The Erst two terms (weighted

by �) express region homogeneity, dramatically improving

Table 1. Diffusion quantities in the proposed anisotropic filtering model

Tensor structure eigenvalue combinations (�1 � �2 � �3)

�144�2 ffi �3 �1 ffi �244�3 �1 ffi �2 ffi �3

Target structures Plane-like (corners, junctions) Line-like (membranes) Homogeneous (background)

Diffusion quantities

�3 ¼ 1 �3 ¼ 1 �3 ¼ 1

�2 ! �3 �2 ! �1, �240 �2 ! �3
�1 ffi 0�if �14K �1 ffi 0�if �14K �1 ! �2
�1 ffi 0þif �15K �1 ffi 0þif �15K

Note: �i ! 1: strong diffusion along ~vi; �i ! 0þ: weak diffusion along ~vi; �i ! 0�: enhancement along ~vi; K: threshold of the Perona-Malik edge function (Fig. 2).

Diffusion quantities respect 0� 
 �1 
 �2 
 �3 ¼ 1.

Fig. 4. Nucleus detection results via HK-Means. (A–C): 2D slice of raw

3D data (A); after filtering (B); after membrane subtraction (C). (D–F)

Detection obtained on A–C
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the Chan–Vese–Mumford–Shah model (Chan and Vese, 2001) in

three aspects: firstly, the multi-phase implementation is robust to

heterogeneity of the fluorescent signal; secondly, following

(Lankton and Tannenbaum, 2008) background intensity compu-

tation is restricted to a local neighborhood of each contour to

cope for uneven sample illumination; finally, we propose a novel

scheme that automatically adjusts the parameter � for each con-

tour according to local image statistics by setting �i ¼
1
ci
. This

setting automatically increases detection sensitivity for dim ob-

jects, while reverting to the original model for bright objects.

The third term (weighted by � and �) regularizes this ill-posed

problem by minimizing either the euclidean surface length (when

�! 0) or the geodesic surface length (when �! 1), depending

on whether edge information is available (see below). The Enal
term (weighted by �) couples the evolution of all surfaces and

prevents them from overlapping during their deformation, thus

handling objects in contact. Because this is a hard (topological)

constraint, the weight is set arbitrarily very large (� !þ1) to

ensure its predominance over the other energy terms. To summar-

ize, the only free parameter is �, which is adjusted on a

trial-and-error basis (in our experiments, we chose 0.05 for

nuclei and 0.1 for cells). This value should typically increase

with the level of noise data.
To initialize the segmentation of the nuclei, triangular meshes

are created from the pre-detected nuclei with the Marching

Tetrahedra algorithm (Treece et al., 1998). Meshes are then de-

formed on the nuclear signal. Because no edge information is

available, we set � ¼ 0. Figure 5 illustrates the results obtained

on typical 3D stacks.

Cell segmentation is achieved using the same approach,

although here the input meshes are given by the segmented

nuclei, and the input image is the filtered membrane signal.

Here, we set � ¼ 1 such that the meshes are attracted by intensity

gradients. A well-known limitation of edge-based models is their

local spatial support, requiring that the contours must be initi-

alized close to the target boundaries to perform efficiently. In our

model, however, we formulate the cell extraction problem as a

dual segmentation task, based on the fact that the membrane

signal can also be interpreted as piecewise constant (cell mem-

branes versus cell interior or background). As a result, the loca-

lized region-based term allows segmentation of the interior of

each cell regardless of the distance from the mesh to the mem-

brane, while the edge-based term takes over when intensity gra-

dients are locally available, thus improving the localization

accuracy of the membranes (Fig. 6). While the cell membranes

are accurately recovered in most cases, the remaining errors are

due to two main factors: (i) no initialization owing to nuclei that

have not been correctly segmented; (ii) cells in anaphase, where

two nuclei are detected and initialized within the same cell, thus

disturbing the segmentation process. Another illustration of the

cell segmentation result on a full scan of an embryonic mouse

heart is presented in Supplementary Data along with the corres-

ponding nucleus segmentation (Supplementary Fig. S4).

3 IMPLEMENTATION

The presented framework is developed in Java and is available

on the free open-source Icy platform (de Chaumont et al., 2012;

http://icy.bioimageanalysis.org/). Computations are conducted

on a 1.7GHz quad core processor with 8 GigaBytes of RAM.

The total processing time per scan is �40 min, depending on the

total number of nuclei/cells in the scan. All PDE-based

approaches are implemented using an explicit time-stepping

scheme with forward and backward finite difference approxima-

tions. It is worth noting that the current implementation is

software-based (although it exploits multiple cores), while gra-

phics hardware is used for real-time viewing of the 3D scene

during its evolution. Hardware implementation of the workflow

could further decrease the computation time, although iterative

processes such as energy-minimization techniques benefit less

from hardware implementation than single-pass processes.

4 RESULTS

Our approach was validated for efficiency and robustness on

both generated and real imaging data (cf. Supplementary

Data). We report here three applications of the proposed frame-

work dedicated to the quantitative analysis of the developing

mouse heart. We first present results on measuring the duration

of the cell cycle using differential fluorescence labeling. We then

focus on the extraction of two descriptors of tissue anisotropy,

namely the orientation of the centrosome-nucleus axes and the

Fig. 5. Nuclei segmentation result in 2D axial and orthogonal views. (A) Raw data (red: membranes; blue: nuclei). (B) Segmented nuclei shown

in false colors
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cell division axes, to build 3D orientation maps of the tissue that

can be used for further statistical analyses (Le Garrec et al.,

2013).

4.1 Computation of the cell cycle duration

An important quantitative descriptor of tissue growth is the

duration of the cell cycle in different regions. To compute this

duration, we perform two additional scans of the specimen with

overlapping subpopulation of cells stained with IddUþBrdU or

BrdU markers (cf. Supplementary Fig. S7). The goal is to quan-

tify the proportion of cells in each subpopulation.
Segmentation is first carried out on the entire population of

nuclei (Hoechst channel) and is followed by computing an

intensity-related measure for each nucleus within the two other

scans. Owing to the inhomogeneous fluorescence labeling for

each subpopulation and the variability between experiments,

automatic distinction using a simple intensity threshold fails.

Instead, we compute a threshold on the total variation of the

signal. Finally, the cell cycle duration is given by the ratio of

stained nuclei:

Tcycle ¼ �t
Ntotal

NIddUþBrdu �NBrdu
ð7Þ

where �t is the time interval between IddU and BrdU injections,

Ntotal is the total number of nuclei (on the Hoechst channel),

NIddUþBrdu is the number of nuclei in the first population and

NBrdu is the number of nuclei in the second population. With

this setup, we obtain a consistent mean cycle time of 22.7h.

(standard deviation: 2.7h.) over four different samples at the

looped heart tube stage.
This type of application can be adapted for more advanced

studies to quantify cell proliferation. By measuring such ratio in

various regions of the tissue, cell proliferation maps can be com-

puted, thus providing a deeper insight into tissue growth under-

lying shape changes.

4.2 Extraction of centrosome–nucleus axes

Cell polarity is an important feature characterizing organ

morphogenesis. Oriented deformation is the outcome of oriented

cell behavior, which in turn reflects intrinsic cell polarity

(Bosveld et al., 2012). One typical polarity marker is the position

of the centrosome with respect to the nucleus of the cell

(Bornens, 2012). To study this orientation, we acquired an add-

itional scan of the specimen (cf. Supplementary Data—
Biological and imaging protocol), in which the centrosomes are

fluorescently stained and appear in the images as small bright

isotropic spots (cf. Supplementary Fig. S8).
Identification of the centrosomes is performed using a

wavelet-based approach (Olivo-Marin, 2002) that consists in a

multi-scale decomposition of the input signal using un-decimated
wavelets, followed by an adaptive extraction of spot-like

structures.

After the extraction, each centrosome is paired with the near-
est neighboring nucleus, and the resulting axis of cell polarity is

considered valid if it is located within a cell. We validated this

procedure by randomly selecting 90 pairs from three different

experiments. Our algorithm obtains a correct rate of 28 of 30
pairs for the first scan, 25 of 30 pairs for the second and 28 of 30

for the third, yielding a global accuracy of 90%. The remaining

errors are due to the inexact segmentation of nuclei and cells

mostly present in deeper Z sections, and were removed for sub-

sequent analyses. Figure 7A illustrates such a map computed on
a real dataset.

4.3 Extraction of cell division axes

The orientation of cell division is also of interest to characterize
tissue growth. In any given scan of a heart specimen, the number

of cells in mitosis is limited (e.g.51% are in anaphase). To in-

crease this number, we perform an additional scan of the speci-

men in which cytoplasmic bridges are fluorescently stained. The
cytoplasmic bridge links recently divided sister cells, totalizing

between 12 and 17% of the total cell population. The division

orientation of interest is defined by the axis linking the centroids

of sister cells (see Supplementary Data for the detailed identifi-

cation algorithm).
We evaluate the performance of the proposed algorithm by

manually counting the number of correctly associated sister cells
over three different scans. Out of 160 cells considered in division

by an expert, 139 were correctly identified as sister cells, i.e. 87%

accuracy. The remaining errors are due to cells that were missed

during the segmentation process and to poorly stained bridges

Fig. 6. Cell segmentation of an embryonic heart scan. (A) 2D section of the result (red: enhanced membrane signal; green: extracted cells). (B) 3D

rendering (green: enhanced membrane signal; segmented cells are pseudo-colored from red to blue in order of descending depth)
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that are not well segmented. We stress that this automated an-

notation process dramatically decreases the analysis time com-
pared with manual analysis (from several hours to a few

minutes).
An illustrative map of extracted cell division axes is shown in

Figure 7B, where each axis indicates the direction joining the

newly divided sister cells.

5 DISCUSSION

While this work has been tailored for imaging data produced via
standard confocal microscopy techniques, we believe the pro-

posed approach is directly amenable to larger samples with
future imaging systems, and will be of great value when studying

tissues with complex geometry (Matsuyama et al., 2009).
In the described workflow, the major source of segmentation

error is the low intensity in deep tissue sections. One of the direct

consequences is that the nucleus pre-detection step is not always
able to capture the nucleus as a whole (notably due to the het-

erogeneous labeling), therefore yielding more than one object per
nucleus, and hence over-segmentation. This problem is also
described for watershed-based processes, and solutions to

reduce such artifacts using prior knowledge are currently in
development (Lin et al., 2007; Xinghua et al., 2012). On a similar

note, we stress that the proposed workflow enforces a strong
semantic relation between the segmentation of the nuclei and

that of the cells, based on the assumption that cells are
mono-nucleated. While this assumption holds for the current
development stage of the observed tissue, analysis at later

stages of development with the appearance of multi-nucleated
cells would require similar care to ensure that a single cell can

be extracted from a subset of detected nuclei.

6 CONCLUSION

We have presented a comprehensive framework for automatic
extraction of nuclei and cells from dense and highly cluttered

environments in 3D microscopy of biological tissue. The

proposed framework combines a number of robust PDE-derived

approaches that jointly exploit nucleus and cell fluorescence

information, and provides an efficient toolset for robust quanti-

fication of complex features. The approach was applied to study

the developing mouse heart and was validated on three different

applications, illustrating how developmental biology can benefit

from computational approaches to facilitate the understanding

of tissue development and morphogenesis.
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