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ABSTRACT

Motivation: Next-generation sequencing (NGS) technologies have

enabled whole-genome discovery and analysis of genetic variants in

many species of interest. Individuals are often sequenced at low

coverage for detecting novel variants, phasing haplotypes and infer-

ring population structures. Although several tools have been de-

veloped for SNP and genotype calling in NGS data, haplotype

phasing is often done separately on the called genotypes.

Results: We propose a dynamic Bayesian Markov model (DBM) for

simultaneous genotype calling and haplotype phasing in low-coverage

NGS data of unrelated individuals. Our method is fully probabilistic

that produces consistent inference of genotypes, haplotypes and re-

combination probabilities. Using data from the 1000 Genomes Project,

we demonstrate that DBM not only yields more accurate results than

some popular methods, but also provides novel characterization of

haplotype structures at the individual level for visualization, interpret-

ation and comparison in downstream analysis. DBM is a powerful and

flexible tool that can be applied to many sequencing studies. Its stat-

istical framework can also be extended to accommodate broader

scopes of data.

Availability and implementation: http://stat.psu.edu/�yuzhang/soft

ware/dbm.tar
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Supplementary information: Supplementary data are available at
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1 INTRODUCTION

Haplotype phasing is a long-standing problem in population

genetics. The task is to computationally infer the combination

of alleles (haplotype) at multiple single nucleotide polymorph-

isms (SNPs) on a single copy of chromosome, while the data are

collected in genotype format (combination of alleles per SNP on

two copies of chromosomes) from diploid genomes. Haplotype

phasing is important because haplotypes provide rich informa-

tion about the evolution history of individuals. Haplotype phas-

ing is challenging because its complexity grows exponentially

with respect to the number of SNPs. Although SNP arrays

have been routinely used to collect genotype data from individ-

uals, they only quantify genetic variants at known SNPs. Next-

generation sequencing (NGS), on the other hand, has the ability

to detect all genetic variants in individuals’ genomes. Sequencing

machine reads out genomes as short DNA fragments called

‘reads’. After aligning the reads to a reference genome or by de

novo assembly, putative SNPs are called if reads aligned at the

same position carry alternative alleles. Genotypes are further

called at the putative SNPs by comparing the read counts of

alternative alleles. For haplotype phasing, SNPs are sorted by

their positions so that information of linkage disequilibrium

(LD) can be used. In this study, we will focus on NGS data,

because genotype data is just a special case.
Many haplotype-phasing algorithms have been developed over

the past decade (Browning and Browning, 2007; Howie et al.,

2009; Li and Stephens, 2003; Li et al., 2009; Scheet and

Stephens, 2006; Williams et al., 2012). Recent methods all use

pairs of Markov chains per diploid individual to model LD

among SNPs. The states in Markov chains correspond to haplo-

types, and the transitions of states indicate recombination events.

Most methods, however, are designed for genotype data only.

Although NGS data can be converted to genotypes before haplo-

type phasing, such approach will produce poor results in low

coverage sequencing studies. Some methods (Howie et al., 2009;

Williams et al., 2012) also require genetic maps, which are unavail-

able in many studies. We identified three methods that can phase

haplotypes in NGS data: THUNDER (Li et al., 2011), PPHS

(Efros and Halperin, 2012) and HapSeq (Zhi et al., 2012).

THUNDER is a wrapper of MaCH (Li et al., 2009), where the

latter works on genotype data and is among the most accurate

methods in haplotype phasing (Browning and Browning, 2011).

We therefore used THUNDER as a benchmark in this study.

PPHS uses perfect phylogeny to infer haplotypes. It, however, is

designed for data in short regions without recombination, and

relies on other methods to assemble short haplotypes into longer

ones. We therefore did not include PPHS in this study. HapSeq is

modified from THUNDER that improves on haplotype phasing if

a read carries multiple alleles. We did not compare HapSeq, as it

addresses a different problem. We included BEAGLE (Browning

and Browning, 2007) as a second benchmark method. BEAGLE

runs faster than THUNDER but performs as accurate (Browning

and Browning, 2011). Although BEAGLE does not directly work

on NGS data, it takes genotype likelihoods as input, which can be

generated from read counts.
We introduce a Dynamic Bayesian Markov model (DBM) for

phasing and characterizing haplotypes in NGS data of unrelated

individuals. Three main reasons motivated this work. First, we

want to design a coherent probabilistic model for haplotype

phasing, such that inference consistency is theoretically justifi-

able. Some existing methods (Howie et al., 2009; Li and

Stephens, 2003; Li et al., 2009; Scheet and Stephens, 2006)
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use iterative conditional probabilities to infer haplotypes, for one

individual at a time with the remaining individuals serving as

donors. Such models do not have joint distributions correspond-

ing to the conditionals used in iteration, and thus their results

may not be consistent. Second, we want to develop a concise, but

sufficient, representation of haplotypes for intuitive interpret-

ation, visualization and comparison in downstream analysis.

Existing methods only output strings of alleles as haplotypes,

which neither reflect SNP dependencies nor suggest haplotype

relationships among individuals. In many studies, haplotypes are

not of direct interest. They are instead used as input in down-

stream studies such as association mapping and population in-

ference. HaploView (Barrett et al., 2005) is one example of

haplotype characterization, which shows haplotype block struc-

tures and SNP correlation. HaploView, however, does not char-

acterize haplotypes at the individual level. Our third motivation

is to provide users with a flexible tool for NGS data analysis,

which can be applied to any species of interest with minimum

input from the users.
A schematic view of our approach is shown in Figure 1. The

observed read counts (Fig. 1a) do not carry haplotype informa-

tion across SNPs. DBM takes read counts as input and infers

haplotypes via three key components (Fig. 1b): an infinite-state

hidden Markov model (HMM) modelling templates of haplo-

types, with two Markov chains fitted to each individual; an emis-

sion probability of alleles from the state at each SNP; and an

observation probability connecting alleles to the observed read

counts. DBM is an example of non-parametric Bayes model

(Dunson and Xing, 2009) equipped with Markov structures,

and is also a variant of infinite-state HMM (Beal et al., 2002).

We use Markov Chain Monte Carlo (MCMC) algorithms to

estimate posterior distributions of model parameters of interest.

Particularly, DBM outputs genotypes, haplotypes and recombin-

ation probabilities between SNPs. In addition, DBM produces

segmentations of haplotypes at the individual level as mosaic

combinations of states (Fig. 1c). Haplotypes within the same

states are similar across SNPs, but not necessarily identical due

to random mutations. The state information produced by DBM

can be directly visualized to evaluate the relationships of haplo-

types among individuals at the SNP resolution. Haplotype

blocks and recombination hotspots can also be easily identified.

A challenging problem in HMM is to determine the number of

states. Although too many states may reduce inference efficiency

and over fit the data, too few states may not be sufficient to

capture all the information in the data and thus loose power.

In DBM, we allow the number of states to vary across SNPs.

DBM uses a non-parametric Bayesian process to dynamically

infer the number of states across SNPs. It has great flexibility

to fit regions with either simple or complex structures.

Simultaneously, DBM avoids over fitting the data via Bayesian

regularization.

2 METHODS

2.1 Input data

DBM requires input of read counts of two alleles per putative SNP per

individual. The SNPs should be ordered by their positions. DBM can also

work for partially ordered (e.g. when reads are aligned to contigs) or

unordered SNPs, but the accuracy of genotype calling and haplotype

phasing will be affected due to loss of LD information (Nielsen et al.,

2011). Although DBM only considers biallelic SNPs, multi-allelic SNPs

can always be converted to pseudo biallelic SNPs.

2.2 A dynamic Bayesian Markov model

Suppose that the NGS data (denoted by D) are collected from N indi-

viduals with L putative SNPs. For notation consistency, we use capital

letters to denote an entire quantity and lower case letters to denote indi-

vidual values. For example, dij denotes a pair of read counts observed

from individual i at SNP j, and D¼ {dij} denotes all data for i¼ 1, . . . ,N

and j¼ 1, . . . ,L.

For diploid genomes, we fit two HMMs per individual to model haplo-

type structures, where each HMM corresponds to one haplotype. Let

S¼ {Si,k} denote the collection of HMMs, for i¼ 1, . . . ,N and k¼ 1,2,

with Si,k¼ (si1,k, . . . , siL,k) denoting the states in one HMM across L

SNPs, and sij,k¼ 1,2, . . . taking positive integer values. In our model,

states represent haplotype templates, and we allow infinite number of

templates to be fitted to the data. For example, let

Si,k¼ (1,1,1,3,3,2,2,2) denote the states of eight consecutive SNPs. It

means that the corresponding haplotype is a concatenation of alleles

from three templates: SNPs 1–3 carry alleles from template 1, SNPs

4–5 carry alleles from template 3 and SNPs 6–8 carry alleles from

template 2. We assume that each state has its own allele distribution

per SNP, and the alleles are independently generated from the states at

each SNP.

To infer the state-specific allele distributions, we introduce an auxiliary

variable Z¼ {Zi,k}¼ {(zi1,k, . . . ,ziL,k)}, for i¼ 1, . . . ,N and k¼ 1,2, with

zij,k¼ 0 or 1 indicating the presence of a ‘minor’ allele in the k-th haplo-

type of individual i at SNP j. Z represents the actual haplotypes in the

sample. For instance, let Zi,k¼ (0,0,1,1,0,1,0,1) at eight SNPs. Combined

with Si,k¼ (1,1,1,3,3,2,2,2), we may infer that template 1 emits alleles

0,0,1 at SNPs 1–3, respectively, template 3 emits alleles 1,0 at SNPs 4–

5, respectively, and template 2 emits alleles 1,0,1 at SNPs 6–8, respect-

ively. Given S and Z, we will not only learn the genotypes and the haplo-

types in the sample, but also we can infer the state distributions and the

state-specific allele distributions. We infer S and Z from the data using

the following probabilistic model
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Fig. 1. Schematic view of DBM. (a) Input read counts of five individuals

at 40 SNPs (grey scale of dots is proportional to the estimated mean

number of minor alleles per SNP). (b) Each individual is fitted by two

HMMs; alleles are generated independently by states; and read counts are

generated by alleles (notations are defined in Section 2). (c) DBM inferred

alleles (dots) and segmentation of haplotypes
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PrðD,Z,SÞ ¼ PrðDjZÞPrðZjSÞPrðSÞ ¼YN

i¼1

YL

j¼1
Prðdijjzij, 1, zij, 2Þ

h i
�
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i¼1

YL

j¼1

Y2

k¼1
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�
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YL

j¼2
Prðsij, kjsiðj�1Þ, kÞ

h i ð1Þ

Formula (1) has three components (Fig. 1b): the HMM Pr(S) of haplo-

type structures; the conditionally independent emission probability

Pr(ZjS) of alleles given states; and the observation probability of read

counts given alleles Pr(DjZ).

The observation probability Pr(DjZ) is a product of Pr(dijjzij,1,zij,2),

where (zij,1,zij,2) denote the two alleles at SNP j in individual i. Let

dij¼ (Aij,aij) denote the read counts of the two alleles at SNP j in individ-

ual i. Let " (default 0.01) denote the sequencing error rate. Let qj (default

0.999) denote the probability that a putative SNP j is a true SNP, which

can be calculated from its SNP quality score. Let ej¼min(�iAij,�iaij)/

�i(Aijþ aij) denote the conditional probability of observing a wrong allele

given that SNP j is a false-positive SNP. We write

Prðdijjzij, 1, zij, 2Þ ¼ PrðAij, aijjzij, 1, zij, 2Þ

/

qjð1� "Þ
Aij"aij þ ð1� qjÞð1� ejÞ

Aij e
aij
j , if zij, 1 þ zij, 2 ¼ 0

0:5Aijþaij , if zij, 1 þ zij, 2 ¼ 1

qj"
Aij ð1� "Þaij þ ð1� qjÞe

Aij

j ð1� ejÞ
aij , if zij, 1 þ zij, 2 ¼ 2

8>><
>>:

:
ð2Þ

For homozygotes (zij,1þ zij,2¼ 0 or 2), formula (2) is a mixture model

with two components corresponding to whether or not SNP j is a true

SNP. For heterozygotes (zij,1þ zij,2¼ 1), SNP j is a true SNP and thus

only has one component. The normalizing constants are not used in the

model-fitting process and are ignored. More details of formula (2) can be

found in Supplementary Material.

The emission probability Pr(ZjS) is modelled as a product of inde-

pendent Bernoulli distributions conditioning on states. Each term

Pr(zij,kjsij,k) in formula (1) is a Bernoulli probability with state-specific

‘minor’ allele frequency {p(s,j)} in state s at each SNP j. Without knowing

{p(s,j)}, we assign a Dirichlet prior Dir(�,�) and integrate {p(s,j)} out, where

� denotes a small constant (default max{0.1,10/(�N)}, and � denotes the

sequencing coverage). Let n0
(s,j), n1

(s,j) denote the number of haplotypes in

state s carrying the major and the minor alleles at SNP j, respectively, we

write

PrðZjSÞ ¼
YN

i¼1

YL

j¼1

Y2

k¼1
Prðzij, kjsij, kÞ

¼
YL

j¼1

Y1

s¼1

�ðn
ðs, jÞ
0 þ �Þ�ðnðs, jÞ1 þ �Þ

�ðn
ðs, jÞ
0 þ n

ðs, jÞ
1 þ 2�Þ

�ð2�Þ

�ð�Þ�ð�Þ

ð3Þ

In formula (3), the multiplication over states s can be computed in finite

time, because n.
(s,j)
¼ 0 for all unoccupied states and hence their terms in

(3) equal to 1. Derivation of formula (3) can be found in Supplementary

Material.

Finally, the HMM Pr(S) is a product of 2N-independent identically

distributed Markov chains, with all chains governed by two sets of par-

ameters: an infinite vector of state probabilities and a L-dim vector of

SNP-specific recombination probabilities. Let {vs} denote the infinite

vector of state probabilities that sum to 1. We use a stick-breaking pro-

cess (Sethuraman, 1994) to describe the prior distribution of {vs}. Let {Vs}

denote an infinite set of independent Beta random variables,

Vs�Beta(1,�), with � denoting a hyper-parameter. We determine vs by

vs¼Vs

Q
t5s(1�Vt). Using this prior, DBM allows and regularizes an

infinite number of states in the model. The posterior distribution of

{vs} is again a stick-breaking process. By default, we let �¼ 1. While

larger � prefer more states to be fitted to the data, smaller � prefer

fewer states.

To model the transition between states in our infinite-state HMM, we

use a recombination mechanism: at each SNP j, the HMM decides

whether or not to select a new state; if yes, a new state is randomly

selected from distribution {vs}, otherwise the state at SNP j remains the

same as the state at SNP j� 1. Let {rj} denote a L-dim vector of recom-

bination probabilities at SNPs j¼ 1, . . . ,L, with r1¼ 1 fixed. Let

�¼ {�i,k}¼ {(�i1,k, . . . ,�iL,k)} denote the corresponding indicators of

recombination events. We model �ij,k�Bernoulli(rj) independently. The

model for (Si,k, �i,k) is therefore written as

PrðSi, k,�i, kÞ ¼ Prðsi1, kÞ
YL

j¼2
Prðsij, k,�ij, kjsiðj�1Þ, kÞ

¼ vsi1, k
YL

j¼2
ð1� rjÞ

1��ij, k ðrjvsij,k Þ
�ij, k I1��ij, ksiðj�1Þ,k¼sij, k

where the indicator I
1��ij, k
siðj�1Þ,k¼sij, kequals to 0 if �ij,k¼ 0 and sij�1,k6¼sij,k.We

assign a Dirichlet prior Dir(�,1� �) and integrate {rj} out, with 05�551

denoting a small constant (default 0.01). Let �j¼
P

i

P
k �ij,k denote the

total number of recombination events at SNP j in all Markov chains, we

obtain (see Supplementary Material)

PrðS,�Þ ¼
YN

i¼1

Y2

k¼1
vsi1, k

YL

j¼2
I1��ij, ksiðj�1Þ, k¼sij, k

v�ij, ksij, k

h i

�
YL

j¼2

�ð�j þ �Þ�ð2N� �j þ 1� �Þ�ð1Þ

�ð2Nþ 1Þ�ð�Þ�ð1� �Þ

� � ð4Þ

Putting formulas (2–4) back to formula (1), along with the prior distri-

bution of {vs} and the auxiliary variable �, we obtain the full DBM

model in the form of Pr(DjZ)Pr(ZjS)Pr(S,�j{vs})Pr({vs}).

In summary, DBM is an infinite-state HMM with the states represent-

ing haplotype templates that emit alleles independently at each SNP. In

turn, alleles generate the observed read counts. There are four sets of

variables to be inferred from our model: (Z, S, �, {vs}). Our HMM is

specified by the initial distribution v¼ {vs} and the transition matrix

diag(1� rj,1)þ rj1v’. Instead of estimating {rj}, we introduce an auxiliary

variable � and integrate {rj} out. The state variable S is a realization of

HMMs regularized by � and {vs} with priors. Given S, alleles Z are

generated independently at each SNP, which can also capture spurious

mutations unexplained by LD. Although the dimensionality of these four

sets of parameters is greater than the sample size, DBM is identifiably in a

Bayesian framework. Particularly, the posterior distributions of the vari-

ables are balanced between the observations and the model priors. We

next discuss our model inference using MCMC algorithms.

2.3 MCMC update

We infer DBM parameters iteratively using MCMC algorithms. Starting

from a random initialization of model parameters, we use a forward-

summation and backward-sampling algorithm to update (Zi, �i, Si) for

each individual i, conditioning on the parameters for the other individuals

and {vs} in the current iteration. In the forward-summation step, we cal-

culate the marginalized probability of data at SNPs 1, . . . ,j, with param-

eters for SNPs 1, . . . ,j� 1 marginalized out via recursive summation, for

j¼ 1, . . . ,L in ascending order, respectively. Marginalization is done over

all possible states, recombination events and alleles at SNPs 1, . . . ,j� 1.

To handle infinite number of possible states, we collapse states that are

unoccupied in the current iteration into a ‘super state’, such that the total

number of states in our calculation becomes finite. In the

backward-sampling step, we then use the marginal probabilities to

update {Zij,k}, {�ij,k}, {Sij,k}, for k¼ 1,2 and j¼L, . . . ,1 in descending

order, respectively. Sampling at SNP j is also conditioning on the states

updated at SNP jþ 1. If a ‘super state’ is sampled, indicating an unoccu-

pied state, we further sample an unoccupied state. To avoid local mode

problems, we implemented additional MCMC updating schemes, includ-

ing switching state labels and splitting states during burn-in. The detailed

sampling procedures can be found in Supplementary Material.

Given the current states (S) and recombination events (�), we next

update the state distribution {vs}. Let {cs} denote the total number of

state s selected at all recombination sites, i.e. at sites with �ij,k¼ 1. We first

sample Vs from Vs�Beta(csþ 1,
P

t4sctþ 1þ �), the posterior distribution

of Vs. We then calculate vs¼Vs

Q
t5s(1�Vt). We only calculate vs for a
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finite number of states up to state s*, where s* denotes the maximum state

index in S in the current iteration, because we collapse the unoccupied

states with indices4s* into a super state during MCMC, the probability

of which is 1�
P

s�s* vs.

We repeat the above updating procedures many times and then collect

posterior samples of (Z, S, �). The output of DBM includes the inferred

haplotypes (and genotypes and SNP calls), the recombination probabil-

ities at each SNP and the underlying haplotype structures. To determine

the final haplotypes, we first use maximum a posteriori (MAP) to call

genotypes from the posterior samples of Z, at each SNP for each indi-

vidual separately. We then slide a five-heterozygote window across all

detected heterozygotes in each individual to determine their haplotype

configurations. Starting from the first five heterozygotes, we use MAP to

determine their joint haplotype configurations. We then slide the window

to the right by one heterozygote, and we use MAP to determine the

configuration of the new heterozygote conditioning on the haplotype

configurations of the other four heterozygotes in the window. We

repeat this procedure across all heterozygotes to obtain the entire haplo-

type pair for each individual. Direct MAP of the entire haplotypes is

computationally intractable. Using this procedure, we can recover haplo-

type information accurately and efficiently. When summarizing haplo-

types, we further determine their underlying states from the posterior

samples of states (S). Conditioning on the haplotype pair determined in

the current window, we identify all posterior samples of states carrying

the haplotype pairs. We then use MAP to determine the state configur-

ation for both heterozygotes and homozygotes. Finally, we estimate the

recombination probabilities from the posterior samples of � by calculat-

ing the proportion of recombination events occurred at each SNP.

3 RESULTS

3.1 Simulation from human data

We evaluated the performance of DBM using datasets generated

from human sequences with European (CEU) and African (YRI)

origins. We downloaded the phased haplotypes of CEU and YRI

individuals from the 1000 Genomes Project (The 1000 Genomes

Project Consortium, 2010). Using these reference haplotypes, we

simulated haplotypes of new individuals and their corresponding

read counts as follows: (i) we generated new haplotypes as

mosaic combination of reference haplotypes with transition

rate 1 per 200 kb, and reference individuals are randomly

chosen; (ii) we randomly paired new haplotypes to form new

individuals; (iii) we simulated read counts at each SNP using a

Poisson distribution with mean �x/2, where � denotes the

sequencing coverage and x¼ 0,1,2 denotes the allele count; (iv)

we generated random sequencing errors in read counts across the

genome at rate 0.01 per basepair per read; this created both false-

positive alleles and false-positive SNPs; and (v) we removed all

reads carrying alleles that are different from the two most fre-

quent alleles at each SNP, as they are most likely sequencing

errors; we also removed SNPs whose minor read count is less

than a threshold, such that the total number of false-positive

SNPs in the data is controlled55%.

3.2 Accuracy in genotyping and haplotype phasing

We ran DBM on the simulated datasets with sequencing cover-

ages � ¼ 1.0, 3.0 and 6.0, and sample sizes N¼ 10, 20, 40, 80,

160, 320, 640, respectively. Each dataset contained 10 000 SNPs

from a randomly chosen genomic region. We compared DBM

with THUNDER (Li et al., 2011) and BEAGLE (Browning and

Browning, 2007). We ran THUNDER by its default setting for
100 iterations with sequencing error rate specified at 0.01. For
computing speed, the maximum number of states used by

THUNDER is bounded by 200. We also run DBM and
BEAGLE for 100 iterations. BEAGLE does not take read
counts. We therefore input BEAGLE with the genotype likeli-

hoods generated by DBM. To evaluate the benefit of using LD in
genotype calling, we further implemented a single SNP call
method, which determines genotypes at each SNP separately.

This is done by fixing the recombination probability at 1 at all
SNPs in DBM. In practice, one may call genotypes first and then
make a bona fide use of the called genotypes to infer haplotypes.

To evaluate the power of this two-step approach, we ran MaCH
on the called genotypes generated by the single SNP call method.
We used two accuracy measures to compare the results, one

for genotype calling (percentage of incorrect alleles) and one for

haplotype phasing (percentage of switch errors). For genotype
calling, we calculated the number of alternative alleles (relative to
an arbitrarily chosen reference allele), denoted by xij, estimated

by each program at SNP j in individual i. Further, we denote the
true number of alternative alleles by gij. The percentage of incor-
rect alleles is defined as

P
ijjxij� gijj / (2NL). For haplotype

phasing, we first calculated the number of switches needed to
convert the inferred haplotypes to the true haplotypes in each
individual. We then divided that number by the number of het-

erozygous SNPs in the individual minus 1. We only used the
correctly inferred heterozygous SNPs by each program, so that
the results were not strongly affected by genotyping errors.

Finally, the overall switch error is averaged across all individuals.
Figure 2 shows the genotyping accuracy of the four programs.

At low sequencing depth (�¼ 1), DBM performed consistently

the best among all methods, especially in small samples. In con-
trast, THUNDER performed slightly worse than DBM, but
BEAGLE performed poorly in small samples. It was as inaccur-

ate as the single SNP call method at N¼ 20. At larger sequencing
depths (�¼ 3 or 6), the performance of the first three programs
became much more similar in both CEU and YRI individuals,

except that BEAGLE performed slightly worse than DBM and
THUNDER at N¼ 10. All three programs substantially outper-
formed the single SNP call method, suggesting that LD can

greatly help improving the accuracy of genotype calling
(Nielsen et al., 2011).
We next show in Figure 3 the haplotype phasing result. At all

sequencing depths (�¼ 1,3,6), DBM performed consistently the
best in small samples (e.g. N� 80). BEAGLE performed worse
than both DBM and THUNDER at �¼ 1, which may be related

to its erroneous genotype calls. THUNDER performed consist-
ently and substantially worse than DBM in small samples (e.g.
N� 80) regardless of the sequencing depth. In large samples

(N� 320), DBM performed slightly worse than BEAGLE and
THUNDER, which may be due to the local mode problem in the
MCMC algorithm. Given the dynamic nature of DBM that se-

lects varying numbers of states to fit the data, the method may be
trapped in a suboptimal mode when many individuals are fitted
simultaneously. In such cases, multiple independent runs of

DBM from different starting values and advanced MCMC sam-
pling techniques (Liu, 2001) may be desirable to improve its
performance. Finally, the two-step approach of single SNP

callþMaCH phasing performed the worst in most cases.
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3.3 Run time

Figure 4 shows the computing time of the three programs for the

simulated CEU datasets at �¼ 3. At N¼ 10, DBM was the slow-

est program among the three. At N� 20, however, DBM ran up

to 8� faster than THUNDER. Both DBM and THUNDER ran

in time complexity O(jSj2NL), i.e. proportional to the square of

the number of states and linear to the number of individuals and

SNPs. Since DBM dynamically selects the number of states to fit

the data, the number of states used by DBM can be far less than

that used by THUNDER in large samples, which then can

greatly improve the computation speed. Interestingly, while

BEAGEL ran the fastest among the three programs in small

samples (N� 160), its computing speed does not scale up well

in large samples. Particularly, BEAGEL ran slower than DBM

at N� 320 in this study. In Figure 4, we also observed that the

computing time of DBM is almost linear with respect to the

Fig. 3. Haplotype phasing accuracy in CEU and YRI samples at different sequencing depth (�) by DBM, THUNDER, BEAGLE and a two-step

approach of Single SNP Call followed by MaCH phasing. The sample size is shown in log scale

Fig. 2. Genotyping accuracy in CEU and YRI samples at different sequencing depth (�) by DBM, THUNDER, BEAGLE and Single SNP Call. Sample

size is shown in log scale

882

Y.Zhang

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/29/7/878/253555 by guest on 20 M
arch 2024



sample size. The computing time of THUNDER is theoretically

cubic to the sample size, but due to the fact that its maximum

number of states is bounded at 200, its computing time is linear

at N4100. The computing time of BEAGLE appears to be

non-linear with respect to the sample size. As previously reported

(Williams et al., 2012), BEAGLE’s running time grows faster

than the sample size.

3.4 Using reference input

DBM can further take input of reference genotypes and haplo-
types. To use reference genotypes, one can simply convert

genotypes to pseudo read counts. For genotypes AA, Aa and

aa, the read counts can be written as (2X,0), (X,X) and (0,2X),
respectively, with large X (e.g.� 15). If the reference data are in

haplotype format, we treat each reference haplotype as an ‘indi-

vidual’, and we fit each reference haplotype with one Markov
chain only. To do this, we replace the observation probability

Pr(DjZ) in formula (2) by an indicator function Iz¼a at each

SNP, with ‘a’ denoting the true allele in the current haplotype
at each SNP.

To evaluate the benefit of using extra data in genotype calling
and haplotype phasing, we simulated 40 individuals (CEU and

YRI, respectively) at 10 000 SNPs with sequencing depth �¼ 3

and sequencing error rate 0.01. These are the sample individuals.
We further simulated additional 40 individuals (CEU and YRI,

respectively) as the references. We ran DBM to analyse the 40

sample individuals along with various numbers of references
input to the program. The references were input in three ways:

(i) in form of read counts at sequencing depth �¼ 3, which then

merely increased the sample size; (ii) in form of known
genotypes, which eliminated genotyping uncertainties in the ref-

erence data; and (iii) in form of known haplotypes, which further

provided phasing information in the reference data. As shown in
Figure 5, DBM can indeed gain power in genotype calling and

haplotype phasing from the reference data. By comparing the

three types of reference input, reference haplotypes provided
the largest accuracy boost in both CEU and YRI samples.

In practice, however, haplotypes are expensive to obtain.

Alternatively, reference genotypes also significantly improved
the accuracy of genotyping and haplotype phasing, just slightly

worse than using reference haplotypes, but clearly better than

merely increasing the sample size.

3.5 Haplotype characterization

Our method further produces haplotype segmentation that cap-

tures the allele compositions and dependencies. Haplotype seg-

mentation is specified by the recombination indicator � in DBM

that partitions each haplotype into consecutive intervals, and

also by the state variable S in DBM that specifies the haplotype

template index of each interval. Since haplotypes in the same

templates at the same SNPs have similar allele compositions,

the haplotype segmentation output by DBM is useful in down-

stream analysis, e.g. for population structure inference and asso-

ciation studies. An example of haplotype segmentation is shown

in Figure 6a, a mixture of 10 CEU and 10 YRI individuals from

1000 Genomes at 2000 SNPs. DBM segmented the 20 individuals

using 14 states as shown in colours. Relationships among indi-

viduals can be clearly seen: the states shared by the CEU indi-

viduals are quite different from the states shared by the YRI

individuals. Recombination hotspots can also be observed at

SNPs with frequent transitions between states. In association

studies, one can use the haplotype segmentation in similar

ways to visually identify associated loci among individuals ascer-

tained by phenotypes. Formal test on the association of haplo-

type segments is also possible.
DBM outputs haplotype templates as summary statistics from

the data. The haplotype templates can be intuitively treated as a

reconstruction of the ancestral haplotypes, although not exactly

so because our model does not involve a time component. In

Figure 6b, we show the inferred haplotype templates in CEU

and YRI samples, respectively. Each colour represents one tem-

plate (the colours match with those shown in Fig. 6a), and the

height of colour bars indicates their estimated population abun-

dance at each SNP. Darkness of colours is drawn proportionally

to the probability that the SNP carries a minor allele in the cor-

responding template. Comparing the haplotype templates in

CEU and YRI, we observed that the two sets of individuals

only shared small proportions of genetic contents (templates)

at each SNP, and hence they are genetically separable. The

YRI samples carried more diverse genetic contents than the

CEU samples. Also, the proportions of templates varied across

regions, reflecting genetic variability. Figure 6c shows the

number of distinct states fitted to the data by DBM, where the

number of states fitted to the YRI sample is consistently larger

Fig. 5. Performance of DBM using different types of reference in differ-

ent sizes. Left: genotyping error rate. Right: haplotype phasing switch

error rate. Reference data are input in three ways: haplotypes (solid line),

genotypes (dashed line), read counts (dotted line)

Fig. 4. Computing time of DBM, THUNDER and BEAGLE on CEU

datasets with sequencing depth l¼ 3 at 10 000 SNPs. Time and sample

size are both shown in log scale
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than the number of states fitted to the CEU sample, again indi-

cating greater genetic diversity of YRI than CEU. Finally,

Figure 6d shows the estimated recombination probabilities

between SNPs. This example illustrates the utility of DBM char-

acterization of haplotypes for evaluating genetic relatedness and

diversity among individuals at the SNP resolution.

4 DISCUSSION

We introduced a dynamic Bayesian Markov model for joint in-

ference of genotypes and haplotypes in NGS data. The method is

fully probabilistic and produces consistent inference results. A

main feature of DBM is its infinite-state Markov chain that

allows varying numbers of mixture components fitted to the

data depending on the structural complexity of the data across

regions, such that haplotype structures and SNP dependencies

can be most efficiently and sufficiently captured by the states.

Using data from the 1000 Genomes Project with individuals of

different ethnicity, we compared DBM with two popular algo-

rithms: THUNDER and BEAGLE, as they both have been used

to phase haplotypes in the 1000 Genomes Project (the 1000

Genomes Project Consortium, 2010). In all scenarios tested,

DBM produced either similar or better results than the two

benchmark programs. Particularly, for small sample datasets

and/or low sequencing studies, DBM performed substantially
better than the other two programs. DBM is thus desirable for
exploratory sequencing studies that involve limited samples at

low sequencing coverage. For large sample datasets, DBM per-
formed similarly to the other two methods, and DBM had better
runtime scalability with respect to the sample size. All three pro-

grams tested in this study call genotypes and phase haplotypes
simultaneously, which is more powerful than the two-step ap-
proach. Consistent with previous reports (Nielsen et al., 2011),
we demonstrated that using LD information can substantially

increase the accuracy of genotype calling.
DBM is a flexible tool that can be applied to many sequencing

projects with minimum input requirement from the user. DBM

takes input of either read counts or genotypes (in form of pseudo
read counts), and outputs genotypes, haplotypes and recombin-
ation probabilities. Additional information such as SNP quality

scores and genetic maps can also be provided, but not manda-
tory. Missing genotypes can be easily accommodated and
imputed by specifying zero read counts for both alleles in the

input file. Although all examples shown in this article were gen-
erated from data in human genome, DBM can be directly
applied to sequencing studies of any diploid species. To fully

use LD information, SNPs should be ordered by their genomic
positions. On the other hand, DBM can work on unsorted SNPs,
in which case it reduces to a single SNP call method.

DBM characterizes haplotypes via segmentation that captures
the haplotype relationships among individuals and de-correlates
alleles across SNPs. It also reveals the most likely recombination

loci at the individual level. One can use DBM segmentation in
downstream analysis for hypothesis testing and parameter infer-
ence, such as association mapping and population evolution stu-

dies. Most de novo population detection algorithms require
independent SNPs, whereas our approach enables use of all
SNPs in form of haplotype segments, which can potentially sig-

nificantly increase the power for detecting subtle stratification.
DBM reports summary statistics of a sample in form of haplo-

types templates. The templates are identified as commonly

shared haplotypes among individuals. The haplotype templates
can be used to learn genetic relatedness and diversities within and
between groups of samples at the SNP resolution. To compare
groups of individuals, data from all groups of individuals should

be input to DBM together, such that the state indices are
matched across groups.
Population NGS data are being increasingly generated in

many species of interest, and the sequencing cost continues to
drop. Although DBM only facilitates the first step in population
sequencing studies, the DBM model itself has broader applica-

tions. For example, we can modify the observation and emission
probability functions to take various types of data into account.
We can also modify the DBM model for de novo detection of

population stratification and admixture mapping, where we
allow unknown numbers of populations to be admixed without
requiring ancestral references.
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Fig. 6. Comparing CEU and YRI samples using DBM. (a) Haplotype
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to one chromosome, and each colour corresponds to a state.

(b) Reconstructed haplotype templates with the same colours as used in
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each SNP, the height of each colour bar represents the population pro-

portion of the template; colour darkness at each SNP is proportional to

the alternative allele frequency. (c) Number of distinct haplotype

templates used at each SNP in CEU and YRI samples. (d) Inferred

recombination probabilities
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