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ABSTRACT

Motivation: Computational modelling of the dynamics of gene regu-

latory networks is a central task of systems biology. For networks of

small/medium scale, the dominant paradigm is represented by sys-

tems of coupled non-linear ordinary differential equations (ODEs).

ODEs afford great mechanistic detail and flexibility, but calibrating

these models to data is often an extremely difficult statistical problem.

Results: Here, we develop a general statistical inference framework

for stochastic transcription–translation networks. We use a coarse-

grained approach, which represents the system as a network of sto-

chastic (binary) promoter and (continuous) protein variables. We derive

an exact inference algorithm and an efficient variational approximation

that allows scalable inference and learning of the model parameters.

We demonstrate the power of the approach on two biological case

studies, showing that the method allows a high degree of flexibility and

is capable of testable novel biological predictions.
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1 INTRODUCTION

Understanding the dynamics of gene regulatory networks

(GRNs) is a fundamental area of research in systems biology.
In silico predictions of the network’s response to altered condi-

tions can often give deep insights in the functionality of the bio-
logical system under consideration, as well as being crucial in

biomedical and biotechnological applications.
Bioinformatics data analysis methods are invaluable in

extracting information in large datasets, and can be useful to
predict the main changes in regulatory behaviours (Asif and

Sanguinetti, 2011; Sanguinetti et al., 2006). However, detailed

predictions of the dynamics of small/medium scale complex regu-
latory networks cannot avoid dealing with the non-linear and

continuous time nature of such systems, calling for more sophis-
ticated mathematical modelling techniques. By some distance,

the dominant paradigm to model GRNs’ dynamics is given by
systems of coupled non-linear ordinary differential equations

(ODEs). ODEs provide an ideal framework for the detailed mod-

elling of mechanistic systems, and of course can rely on refined

analysis tools developed over hundreds of years of mathematical

research. Nevertheless, mechanistic detail often comes at the cost

of including many unknown parameters, as well as novel vari-

ables that are not observed (e.g. post-translational modifications

of proteins). Although there are many parameter estimation

tools available (Georgoulas et al., 2012; Hoops et al., 2006;

Liepe et al., 2010; Vyshemirsky and Girolami, 2008), parameter

estimation in systems of non-linear ODEs is often an intrinsically

difficult statistical problem owing to the severe multimodality of

the likelihood landscape. This is further compounded by the

limited amount of data usually available in most biological

scenarios.

Here, we propose a novel statistical modelling framework to

model regulatory interactions in GRNs, which maintains some

key features of non-linear ODE models while being amenable to

a principled statistical treatment. Statistical modelling has

become increasingly central in systems biology (Lawrence

et al., 2010). Many different statistical models have been pro-

posed in the context of mechanistic systems biology models,

ranging from ODEs with uncertain parameters to fully stochastic

models (Vyshemirsky and Girolami, 2008; Wilkinson, 2011).

Naturally, the key question is to select a representation that is

complex enough to capture the behaviour of the system, but

simple enough to allow tractable inference. Here, we build on

recently proposed statistical models for transcriptional regulation

(Ocone and Sanguinetti, 2011; Opper and Sanguinetti, 2010;

Sanguinetti et al., 2009) and represent GRNs using a hybrid

continuous/discrete stochastic process, consisting of binary pro-

moter states (occupied/vacant) that drive a stochastic differential

equation describing protein dynamics. In this way, we bypass

much of the statistical difficulties introduced by detailed

modelling of transcription/translation and subsequent post-

translational modifications. On the other hand, the introduction

of a latent stochastic promoter state can capture much of this

complexity, giving a flexible framework. Our key advance is the

introduction of a model of how promoters can depend on up-

stream protein states, and of a modular approach to approxi-

mate inference in this model class that scales linearly with the

number of genes in the network. In this way, we can handle

medium-sized networks of arbitrary topology. We complement

our theoretical analysis with an empirical analysis of our method

on simulated data, as well as on two real biological systems: the*To whom correspondence should be addressed.
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benchmark yeast synthetic network IRMA (Cantone et al.,
2009), and the circadian clock of the picoalga Ostreococcus
tauri (Troein et al., 2011). We compare with existing ODE

models, and show that our approach achieves excellent fits and
robust predictions. By comparing predictions on different data

types, our model also provides a new testable hypothesis about
the structure of the O.tauri clock network.

2 MODEL AND METHODS

Our aim is to obtain plausible, yet statistically tractable, models of the

dynamics of transcription–translation networks. A central requirement is

therefore to include a plausible model of gene expression at the heart of

the framework. In this approach, we use the on/off model of gene expres-

sion (Ptashne and Gann, 2002), a simple, yet powerful, model where the

rate of transcription of a gene can vary between two levels depending on

the occupancy of the promoter of the gene. Assuming for simplicity a

tight coupling of transcription and translation, we will use the stronger

assumption that protein production can also happen at two distinct rates

depending on the occupancy of the promoter. Our network models are

therefore composed of a number of connected blocks of two separate

types, each of them representing a protein node and a promoter state.

It is convenient to adopt a graphical notation for the statistical models.

We denote protein states as circles, and promoter states as squares.

Measured protein values are denoted by shaded circles, and we will

always assume measurements to occur at discrete times with i.i.d.

Gaussian noise; promoter states are assumed not to be observed.

Figure 5A shows an example of our graphical representation of a two-

gene network.

2.1 Promoter model

We model promoters as Markovian continuous time random variables

with two possible states, occupied or unoccupied; we denote promoter

states as � and represent them as telegraph processes. The time marginal

probability p�¼1ðtÞ ¼ p1ðtÞ obeys the chemical master equation

dp1ðtÞ

dt
¼ �f�ðtÞp1ðtÞ þ fþðtÞp0ðtÞ,

dp0ðtÞ

dt
¼ �fþðtÞp0ðtÞ þ f�ðtÞp1ðtÞ

ð1Þ

where fþ and f� are called switching rates. They represent the transition

probabilities per unit time for the switching of the promoter state from 0

to 1 and the other way round, respectively. The time marginal probability

p�ðtÞ represents the probability of the promoter state to have a certain

value (either 0 or 1) at a given time t. For example, the marginal prob-

ability p1ðtÞ is the probability for the promoter state to be 1 at time t.

Naturally, the rate at which a promoter becomes occupied depends on

the state (concentration) of upstream proteins which can bind the pro-

moter. Mathematically, we encode this property by enforcing that the

switching rates of the telegraph process �i are functions of the transcrip-

tion factor (TF) concentration xj. As f i� represent probabilities per unit

time, these functions must be always positive. We use a log-linear model

for f iþ, primarily owing to its mathematical convenience for approximate

inference (see Supplementary Material). On the other hand, the switching

rate f i� is set to a positive constant value, reflecting the fact that unbind-

ing of the TF (i.e. switch from state 1 to state 0) does not depend on xi
(Schultz et al., 2007). In formulae we have:

f iþ ¼ kp exp kexj
� �

ð2Þ

f i� ¼ km ð3Þ

where kp,m, e are hyperparameters. Notice that this model implies that the

steady-state probability of being bound has a saturating Hill-type

dependence on the concentration of protein x (see Supplementary

Material).

2.2 Protein model

Protein production is modelled as a stochastic on/off model. We use a

continuous approximation to the underlying discrete system and model

the transcriptional–translational dynamics through the following stochas-

tic differential equation (SDE):

dxi ¼ ðAi�iðtÞ þ bi � �ixiÞdtþ �dwðtÞ ð4Þ

where subscript i refers to the target gene and its promoter.

Here, �i ¼ Ai, bi, �i½ � is the set of kinetic parameters: Ai represents the

efficiency of the promoter in recruiting polymerase when occupied. Its

sign defines the type of regulation: either activation or repression.

Parameter bi represents a basal transcriptional–translational rate and �i
is the exponential decay constant for xi, which is inversely proportional to

xi half-life. Note that Equation (4) is a linear SDE conditioned on the

history of the promoter state, which entails significant computational ef-

ficiency. However, the time-varying nature of the promoter state allows

plenty of flexibility to capture non-stationary behaviours. The term

�dwðtÞ, where w(t) is a Wiener process, represents a white noise-driving

process with non-zero variance �2. This accounts for the presence of

intrinsic noise in the protein concentration xi, whereas the stochastic

process �i takes into account the extrinsic noise in gene expression

(Elowitz et al., 2002; Swain et al., 2002).

2.3 Approximate inference

As the model of promoter and proteins is jointly Markovian, exact infer-

ence can be carried out by numerically solving the Chapman–Kolmogorov

forward and backward equations along the lines of Sanguinetti et al. (2009)

(see Supplementary Material). This, however, requires the numerical solu-

tion of a system of high dimensional partial differential equations, leading

to severe computational problems when parameters need to be estimated

or when more than two genes are present in the network.

We therefore adopt an approximate Bayesian approach for the recon-

struction of promoter states �, protein states x and the estimation of

model parameters. The quantity we are interested in is the conditional

probability distribution p �, xjyð Þ, the joint (posterior) probability of the

state of the promoter � and the promoter concentration x at all time

points t ¼ t0, . . . ,T, conditioned on the observations y. We compute an

approximation to this quantity by minimizing the Kullback–Leibler (KL)

divergence functional under a restrictive ansatz for the approximating

process. We give details for a two-gene network: extension to more

genes is straightforward.

The choice of the family of approximating distributions q �, xð Þ is often

crucial for computational reasons; here, we use a mean-field approxima-

tion (Opper and Saad, 2001). The approximating posterior then factorizes

as follows

qðx20:T,�20:T,x10:T,�10:TÞ ¼

qx2 ðx20:TÞq�2
ð�20:TÞqx1 ðx10:TÞq�1

ð�10:TÞ
ð5Þ

where we are considering a network with two genes, x1 and x2. qxi and q�i

represent pure diffusion processes and pure telegraph processes, respect-

ively. By using this factorized distribution, the KL divergence becomes a

sum of terms that are analytically computable

KL½qjjp� ¼ logZ�
X

j¼1, 2

XN

i¼1

hlog pðyj ijxjðtiÞÞiqxj

þ
X

j¼1, 2

hKL qxj jjpðxj0:Tj�j0:TÞ
� �

iq�j

þ
X

i¼ 1, 2
j¼ 2, 1

hKL q�i
jjpð�i0:Tjxj0:TÞ

� �
iqxj
:

ð6Þ
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Here, the last two terms include the KL divergence between two diffusion

processes and between two telegraph processes, respectively. The second

KL term can be computed using the variational approximation for tele-

graph processes (Opper and Sanguinetti, 2007); in addition, it requires an

expectation with respect to the diffusion process, which involves the prior

switching rates Equations (2) and (3). This expectation can be computed

exactly, as the diffusion process is approximated with a Gaussian process;

the resulting term is linear in the marginals of the � process, so that the

computation of the approximating telegraph processes can be done effi-

ciently using a forward–backward algorithm (Opper et al., 2010). The

computation of the approximating diffusion process is more involved,

as the expectation of the telegraph switching rates introduce non-linear

terms of the form hexp½x�i; these terms can, however, still be computed

analytically under the Gaussian process ansatz, so that an efficient gra-

dient descent algorithm can be used (see Supplementary Material).

The inference problem in this way becomes a constrained

optimization problem: we iterate between minimizing with respect to

each factor, and each of these minimizations is carried out exactly

using a forward–backward procedure. The posterior inference problem

is solved together with the parameter estimation problem, in a variational

expectation–maximization style. Our mean-field variational approxima-

tion does not require large computational resources and at the same time

provides a solution whose quality is comparable with a computationally

expensive exact inference method (see Supplementary Material). Full al-

gorithmic and implementation details are reported in Supplementary

Material.

2.4 Approximate variational Bayesian scheme

Here, we report an algorithmic description of the iterative procedure for

KL minimization; mathematical details are found in the Supplementary

Material. The iterative algorithm consists of the following three steps:

(i) computation of the approximating diffusion process;
(ii) computation of the approximating jump process;

(iii) update of the kinetic parameters � ¼ A, b, �½ �.

In the first step, we need to compute the approximating diffusion

process; under the restrictive assumption of Gaussianity, this is equivalent

to computing marginal mean m(t) and variance c2ðtÞ of the process.

Again as a consequence of the Gaussian assumption, we know that the

diffusion process is governed by a linear SDE with drift dx ¼ �ðtÞxþ �ðtÞ

(� and � are variational parameters to be optimized). As mentioned

above, some of the terms involving m(t) and c2ðtÞ are non-linear; there-

fore, we cannot use forward–backward Kalman recursions. Instead, we

adopt a gradient descent algorithm and minimize the KL divergence with

respect to � and �, subject to constraints involving the approximating

moments. This is done by incorporating the constraints, through

Lagrange multipliers, into the KL functional. Then solving forward for

the moments and backward for Lagrange multipliers, we finally compute

the gradients with respect to the variational parameters.

In the second step, we compute the approximating jump process mar-

ginals and rates. Inspection of the KL divergence reveals that the mar-

ginals are only involved linearly, so that fast forward–backward

recursions can be used for these computations (see Supplementary

Material).

The KL functional is also a quadratic function of the kinetic param-

eters; therefore, they can be easily updated using quadratic programming.

This provides an estimation for the mean of each parameter. In addition,

assuming the parameters are Gaussian distributed, we also get an estima-

tion of the variance of each parameters, which is simply given by the

diagonal elements of the inverse Hessian matrix. This information pro-

vides a confidence interval for the parameter estimation and can be used

to evaluate statistically the goodness of the estimation.

3 RESULTS

In this section, we assess the performance of the hybrid regula-

tory model on two real datasets. The main features we are inter-

ested in are the quality of the fits to the training data (i.e. whether

the model has sufficient flexibility to capture the complex behav-

iour of biological circuits) and the ability to predict unseen data

in perturbed conditions (i.e. whether it is able to generalize).

Statistically, identifiability is also an important issue: we address

this in the Supplementary Material through a study on simulated

data, where comparisons with the ground truth and with the

results of exact inference show empirically an excellent identifia-

bility. Throughout the results section, the hybrid regulatory

model has three free parameters per gene, corresponding to the

kinetic parameters in Equation (4). Hyperparameters in the tran-

sition rates, as well as the system noise, are fixed to reasonably

vague values (their precise identifiability would require longer

time series than usually available).

3.1 Modelling the IRMA synthetic yeast network

As a first application, we considered the IRMA network

(Cantone et al., 2009), a synthetic network embedded in the

yeast Saccharomyces cerevisiae. IRMA is composed of five

genes: ASH1, CBF1, GAL4, SWI5 and GAL80. Figure 1 shows

a representation of our hybrid regulatory model for the IRMA

network, where the interactions between the five genes can be

easily detected by looking at the thick black lines. The network

was engineered to respond to changes in the sugar supplied (gal-

actose versus glucose). Gene expression from all the five genes

was measured during the transitions from glucose to galactose

and from galactose to glucose, giving two sets of data that are

referred to as switch-on and switch-off time series.
To analyse the dynamics of the IRMA network, we compared

two different models: our hybrid regulatory model and the non-

linear delay differential equation (DDE) model of Cantone et al.

(2009). Our model consists of five SDEs with 3� 5 free param-

eters, while the model of Cantone et al. consists of five DDEs,

Fig. 1. IRMA yeast synthetic network. Thick black lines, which model

promoter activations, show the IRMA network topology. Activation and

repression arrows in the transcriptional–translational dynamics between

�CBF1 and xCBF1 model the fact that ASH1 and SWI5 are a repressor and

an activator of CBF1, respectively
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modelling the mRNA levels of the five genes, with a total of 31

parameters. Both models were trained by using only the

switch-on time series: for the hybrid regulatory model, we

adopt the variational Bayesian scheme described above, whereas

the Cantone et al. model is trained using stochastic optimization

(see Supplementary Material). Figure 2 shows the results of this

analysis. The left hand column shows the fit to the training

switch-on data: the dark grey lines represent the fits of the

Cantone et al. model, while the light grey lines are the hybrid

regulatory model posterior predictions (with confidence inter-

vals). Both models give a qualitatively good fit, with a slightly

better fit for the hybrid regulatory model. The right hand column

in Figure 2 shows the simulated switch-off behaviour obtained

using the parameters estimated from the switch-on transition

data. Both models capture the general de-activation trend, but

the hybrid regulatory model seems to give a slightly better pre-

diction of the initial transient behaviour of ASH1. The results for

the hybrid regulatory model were obtained in less than a minute

on a standard dual-core desktop machine.

3.2 Modelling circadian clock in O.tauri

Despite its complex topology and the relatively large number of

genes involved, the IRMA network does not exhibit particularly

complex dynamics during the two transitions. As a second ex-

ample, therefore, we consider a circadian clock, i.e. a network

that can sustain oscillatory dynamics autonomously. By standard

results in dynamical systems theory, this implies the presence of

feedback loops in the network architecture. Typically, transcrip-

tion–translation models are used to explain the sustained oscil-

lations of gene expression. In a minimal model, the translational

product of a clock gene becomes the transcriptional activator/

inhibitor of another clock gene. Given the importance of circa-

dian clocks for biomedical applications, and the availability of

many tools to study oscillatory time series in mathematics and

engineering, circadian clocks have become a major focus of

systems biology research

The picoalga O.tauri has recently emerged as a powerful, yet

simple, model of plant circadian clocks owing to its compact

genome and extremely simple physiology. Notably, only the

clock genes TOC1 and CCA1, represented by multiple members

in the higher plant Arabidopsis thaliana, are encoded in O.tauri,

along with a cryptochrome-like gene with possible clock involve-

ment (Heijde et al., 2009). This has led to the hypothesis that its

clock network consists of a minimal oscillator of a single loop

between these two genes. This hypothesis has been explored

mathematically in a number of articles (Morant et al., 2010;

Thommen et al., 2010; Troein et al., 2011); most recently,

Troein et al. provided comprehensive datasets consisting of sev-

eral luciferase time series measurements of TOC1 and CCA1

protein abundance in a synchronized population of O.tauri

cells. Troein et al. then proposed a detailed ODE model of the

system, and used 144 luciferase time series to parametrize

the model.
We compare the results of our hybrid approach with the ODE

approach of Troein et al. on theO.tauri circadian clock data. The

structure of the model is a simple negative feedback loop (NFL)

network, including the evening gene TOC1 and the morning gene

CCA1 (Fig. 5A). We consider the presence of a single light input

affecting the CCA1 promoter state. This is to mimic

light-induced phosphorylation of the TOC1 transcription factor

(Troein et al., 2011), which affects its ability to bind the CCA1

promoter (see Supplementary Material for how this input

contribution is modelled).
To evaluate the performance of our approach, we compare

our stochastic hybrid approach and the complex clock model

of Troein et al. (2011). Our hybrid regulatory model has only

two SDEs and six free parameters, with mild non-linearities

coming from the expðxÞ terms in the master equation; Troein

et al.’s model is a system of seven ODEs with 19 parameters.
All models were given two time series of TOC1 and CCA1

protein concentrations sampled hourly across three cycles. The

data were obtained by measuring luciferase (LUC) luminescence

sampled at regular intervals during 12h:12 h light–dark cycles

(L:D 12:12) in transgenic lines where LUC was fused to the

protein of interest. We indicate these data as translational

reporter data (yTOC1 and yCCA1). The parameters of the ODE

model were determined again by stochastic optimization

(see Supplementary Material), while in our model they are
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Fig. 2. Model fitting and predictions on IRMA dataset. Left column

represents the fit of the models to the training, switch-on data. Right

column are predictions on the switch-off data. The dark grey lines (red

lines in the online version) are the results of the Cantone et al. model,

light grey lines (blue lines in the online version) the results of the hybrid

regulatory model (with dashed confidence intervals)
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learned during the variational Bayesian scheme as described in

section 2.4.

Figure 3 shows the results of applying these procedures on the

training data: the top two panels show the posterior mean of

the hybrid regulatory model, while the bottom two panels

show the optimized fit of the ODE model. The Troein et al.’s

model is sufficiently complex to afford a credible fit to the data.

Nevertheless, even with its complexity, it cannot explain the

higher level of CCA1 expression in the third cycle, while the

stochastic model of course can accommodate that by a slightly

higher activation of the CCA1 (latent) promoter variable.
Next, we compare the predictions of the two models on inde-

pendent data where the light input (length of the light periods,

photoperiod) was altered. We focus here on predicting the expres-

sion of TOC1, as it is not directly affected by the light input. To

do this, we use the two models parameterized using the L:D

12:12 translational reporter data. We then simulate an entraining

phase where the oscillator is driven for a long time by an L:D

12:12 cycle and then suddenly alter the photoperiod of the cycle

to L:D 6:18, followed by a period of constant light. This mimics

the experimental setting in which the data were collected (Troein

et al., 2011). We stress that these predictions are truly out of

sample predictions in a statistical sense: the data we compare

with have not been used in any form to parameterize or tune

the models (except for a global scaling factor due to the arbi-

trariness of the units on the LUC signal). Figure 4 shows the

results of the simulation of TOC1 expression from the two

models. Both models accurately predict a reduction of amplitude

of the oscillations during the altered L:D cycles. However,

Troein et al.’s model completely misfits the final constant light

period, both in terms of frequency and amplitude. On the other

hand, the stochastic hybrid approach provides robust predictions

that continue to oscillate with the same period after the change to

constant light. Furthermore, it predicts an increase in the average

value of the TOC1 protein, and a dampening of the amplitudes

of the oscillations in constant light. As a further control, in the

Supplementary Material, we also consider whether a simple de-

terministic approach (obtained by training by optimization of the

mean behaviour of the hybrid regulatory model) could yield

good fits and predictions. The results in the Supplementary

Material show that the simple model can indeed yield robust

predictions but is unable to fit the training data satisfactorily:

the stochastic hybrid regulatory models appears to strike a good

compromise between the flexibility given by the latent promoter

process, and the robustness given by the simplicity of the

underlying model.

3.3 Predicting the clock’s structure

Troein et al. (2011) also provide an indirect measurement of

promoter states in the form of luciferase time series. This is ob-

tained by inserting in the Ostreococcus genome another copy of

the TOC1 or CCA1 promoters directly fused to luciferase. We

call these additional data sources transcriptional reporters and

denote them as ypTOC1 and ypCCA1.

Statistically, these two data types could be represented with

the simpler models of Figure 5B; nevertheless, obviously the pro-

moter state profiles inferred from transcriptional reporters using

the model in Figure 5B should match reasonably well the profiles

inferred from translational reporters using the model in

Figure 5A.
Figure 6 shows the results of this approach for CCA1 (left)

and TOC1 (right) arranged in a negative feedback loop.

Surprisingly, while the predicted promoter states of TOC1

match well, CCA1 promoters present different dynamics when

inferred from transcriptional and translational reporter data,

exhibiting an average phase shift of �40o. More worryingly,

the phase shift is highly asymmetrical, with accurately matched

off-time estimates and widely divergent on-time estimates.
We then decided to explore the possibility that this mismatch

may be due to an incorrect network topology. Recent results

have shown that, in A.thaliana, TOC1 acts as a repressor

(Huang et al., 2012), and that the core structure of the

Arabidopsis clock is better represented as a three-node network

known as a repressilator (Elowitz and Leibler, 2000; Pokhilko
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Fig. 3. Fit of the two models to training data: upper, posterior mean of

hybrid regulatory model; bottom, model of Troein et al. (2011)
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model (Troein et al., 2011); black solid line, prediction using the hybrid
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et al., 2012). Therefore, we introduced a hypothetical third gene

X in the NFL network, leading to a more complex clock net-

work. There are only two possible repressilator configurations

after introduction of a putative clock gene X into the previous

network, depending on whether X is repressed by TOC1 or by

CCA1. We will refer to them as TOC1-X-CCA1 and

CCA1-X-TOC1, where X has the role of repressor for CCA1

and TOC1, respectively (Fig. 5C).

We then repeated the inference of the promoter states using

the repressilator model. Naturally, in this case, we do not have

translational and transcriptional reporter data for the hypothet-

ical gene X; however, marginalization of this additional latent

variable is straightforward in the Bayesian setting. Therefore, we

can use the translational reporter data yTOC1 and yCCA1 to infer

the promoter states �TOC1, �CCA1 and �X (as well as the protein

states for all three genes).
Figure 7 left panel shows the predicted promoter state of

CCA1 using the TOC1-X-CCA1 architecture (the TOC1 pro-

moter gives a good agreement also with this architecture). As

can be seen, the average phase shift is greatly reduced, and the

inferred promoter states overlap symmetrically.

Interestingly, using the CCA1-X-TOC1 repressilator structure,

the model fails to predict the CCA1 promoter state. Therefore,

our approach predicts that the O.tauri clock should have a

repressilator structure, and that the third gene should be re-

pressed by TOC1. As TOC1 is expressed mainly in the evening,

it follows that the third gene X should be an afternoon gene, as

predicted by our model also (Fig. 7 right panel). This is consist-

ent with the existing knowledge of the A.thaliana clock.
Next, we checked whether the repressilator model trained on

L:D 12:12 translational reporter data is able to predict TOC1

profiles in altered photoperiods. The results are shown in

Figure 4, which compares the repressilator predictions (black

solid line) with the NFL predictions (dashed). It is apparent

that the repressilator provides a more accurate prediction, par-

ticularly during the final constant light period. Further predic-

tions on different altered photoperiods are shown in the

Supplementary Material.

4 DISCUSSION

Mathematical modelling of GRNs is fundamental to our at-

tempts to understand the structure and dynamics of gene net-

works. Non-linear ODE models provide an excellent framework

to elucidate and predict complex regulatory mechanisms in

small-to-medium scale GRNs. However, they can be vulnerable

to incomplete knowledge of the system, and calibrating complex

models to limited data may pose an unsurmountable statistical

challenge.

Here, we have presented a statistical approach to modelling

transcription–translation networks, which aims at retaining the

flexibility allowed by non-linear ODE models while making pos-

sible a statistical exploration of the model’s parameterization.

The approach relies on a stochastic hybrid representation of

the system where the transcription–translation mechanism is

modelled using only two variables: promoter (latent) states and

protein states. By replacing complex non-linearities and add-

itional unknown parameters of ODE models with latent

variables, the model becomes simpler, more robust and more

identifiable.
Our empirical study demonstrates the identifiability of our

approach and shows how on two real biological problems, it

can yield comparable or better predictions than competing meth-

ods, as well as leading to novel testable biological hypotheses.

Our prediction that a repressilator structure underpins the

O.tauri clock is in line with recent discoveries on the structure
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Fig. 5. Statistical models for O.tauri: negative feedback loop (A), tran-

scriptional models (B), repressilator TOC1-X-CCA1 (C). Note that in

order to compare inference results obtained with transcriptional and

repressilator models, we need to consider a repressive regulation between

�CCA1 and xpCCA1
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Fig. 7. Inferred promoter states for CCA1 (left), obtained with the

repressilator model TOC1-X-CCA1 using translational (solid lines) and

transcriptional (dashed lines) reporters. The right panel shows the mean

prediction of the hypothetical gene X
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Fig. 6. Inferred promoter states for CCA1 (left) and TOC1 (right),

obtained with the NFL model using translational (solid lines) and

transcriptional (dashed lines) reporters
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of the A.thaliana clock (Pokhilko et al., 2012), and indeed with
the structure of known animal circadian clocks (Ukai-Tadenuma
et al., 2011). If validated, this finding would suggest that the
repressilator structure is an evolutionarily conserved feature of

eukaryotic circadian clocks. Furthermore, our model predicts
that TOC1 acts as a repressor (while remaining an indirect acti-
vator of CCA1 through a double repression); again, the repressor

role of TOC1 was recently demonstrated in A.thaliana (Gendron
et al., 2012; Huang et al., 2012), leading further weight to our
hypotheses. Although the repressilator model substantially

ameliorates the model misfit of the NFL model, there remains
some residual unexplained discrepancy between inferences from
transcriptional and translational reporters. Although this may be

due to noise in the data, it cannot be excluded that the complex-
ity of the O.tauri oscillator may be even greater, as is the case of
other plant oscillators (Pokhilko et al., 2012).
We believe that these results show the promise of this

approach as an effective tool in addressing systems biology prob-
lems. Nevertheless, this work opens further avenues for develop-
ment. From the biological point of view, validation of the novel

structure of the O.tauri clock would be an important step, which
is likely to require substantial bioinformatics research. However,
perhaps even more interesting would be to computationally ex-

plore the links between the transcription–translation oscillator
we study and the recently described non-transcriptional oscillator
ofO.tauri (O’Neill et al., 2011). From the computational point of
view, this study does not address the important problem of de

novo reconstruction of the structure of the regulatory network,
but relies on pre-existing network structures. A systematic
method to combine structure learning with dynamical modelling

remains a desirable goal (Oates et al., 2012); we hope that this
work will represent an advance in that promising direction.
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