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ABSTRACT

Motivation: Given protein–protein interaction (PPI) networks of a pair

of species, a pairwise global alignment corresponds to a one-to-one

mapping between their proteins. Based on the presupposition that

such a mapping provides pairs of functionally orthologous proteins

accurately, the results of the alignment may then be used in compara-

tive systems biology problems such as function prediction/verification

or construction of evolutionary relationships.

Results: We show that the problem is NP-hard even for the case

where the pair of networks are simply paths. We next provide a poly-

nomial time heuristic algorithm, SPINAL, which consists of two main

phases. In the first coarse-grained alignment phase, we construct all

pairwise initial similarity scores based on pairwise local neighborhood

matchings. Using the produced similarity scores, the fine-grained

alignment phase produces the final one-to-one mapping by iteratively

growing a locally improved solution subset. Both phases make use of

the construction of neighborhood bipartite graphs and the contributors

as a common primitive. We assess the performance of our algorithm

on the PPI networks of yeast, fly, human and worm. We show that

based on the accuracy measures used in relevant work, our method

outperforms the state-of-the-art algorithms. Furthermore, our algo-

rithm does not suffer from scalability issues, as such accurate results

are achieved in reasonable running times as compared with the

benchmark algorithms.
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1 INTRODUCTION

Several high-throughput techniques including the yeast two-

hybrid system (Finley and Brent, 1994), co-immunoprecipitation

coupled mass spectrometry (Aebersold and Mann, 2003) and
computational methods such as those based on genome-wide

analysis of gene fusion, metabolic reconstruction and gene co-
expression (Goh and Cohen, 2002) enable extraction of

large-scale protein–protein interaction (PPI) networks of various
species. Several problem formulations related to network topol-

ogies (Han et al., 2004), module detections (Bader and Hogue,

2002) and evolutionary patterns (Hunter et al., 2002) have been

proposed for the analysis of these networks. From a comparative

interactomics perspective, network alignment problems consti-

tute yet another important family of problem formulations for

the analysis of PPI networks.
In general terms, given two or more PPI networks from dif-

ferent species, where for each network, nodes represent the pro-

teins and the edges represent the interactions between the

proteins, the network alignment problem is to align the nodes

of the networks or subnetworks within them. Functional orthol-

ogy is an important application that serves as the main motiv-

ation to study the alignment problems as part of a comparative

analysis of PPI networks; a successful alignment could provide a

basis for deciding the proteins that have similar functions across

species. Such information may further be used in predicting func-

tions of proteins with unknown functions or in verifying those

with known functions (Dutkowski and Tiuryn, 2007; Singh et al.,

2008), in detecting common orthologous pathways between

species (Kelley et al., 2003) or in reconstructing the evolutionary

dynamics of various species (Kuchaiev and Pržulj, 2011). Before

the introduction of network alignment as a model, common

methods to detect orthologous groups of proteins have been

solely based on measures of evolutionary relationships, usually

in the form of sequence similarities. HomoloGene and Inpara-

noid (Remm et al., 2001) are examples of such approaches. Net-

work alignment algorithms on the other hand incorporate the

interaction data as well as the evolutionary relationships repre-

sented possibly in the form of sequence data. Based on the as-

sumption that the interactions among functionally orthologous

proteins should be conserved across species, such an incorpor-

ation is usually achieved by aligning proteins so that both the

sequence similarities of aligned proteins and the number of con-

served interactions are large.

Two versions of this general alignment framework have been

suggested. In local network alignment, the goal is to identify

from the input PPI networks, subnetworks that closely match

in terms of network topology and/or sequence similarities.

Approaches proposed for this version of the problem include

PathBLAST (Kelley et al., 2004), NetworkBLAST (Sharan

et al., 2005), MaWISh (Koyutürk et al., 2006), Graemlin

(Flannick et al., 2006) and the graph match-and-split algorithm

of Narayanan and Karp (2007). Typically many overlapping

subnetworks from a single PPI network are provided as part of

the local alignments; this gives rise to ambiguity, as a protein

may be matched with many proteins from a target PPI network.

In global network alignment on the other hand, the goal is to

align the networks as a whole, providing unambiguous

one-to-one mappings between the proteins of different networks.*To whom correspondence should be addressed.
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Starting with IsoRank (Singh et al., 2008), several global net-

work algorithms using more or less similar definitions have

been suggested. IsoRank is based on an eigenvalue formulation

of local neighborhood alignments. PATH and GA of Zaslavskiy

et al. (2009) are based on appropriate relaxations of a cost for-

mulation over the set of doubly stochastic matrices. PISwap uses

a greedy heuristic based on iterative swaps of mappings until

local optimum (Chindelevitch et al., 2010). MI-GRAAL

(Kuchaiev and Pržulj, 2011) and variants (Kuchaiev et al.,

2010; Memišević and Pržulj, 2012; Milenković et al., 2010) use

greedy heuristics based on cost formulations including one or

more of the graphlet degree signatures, degrees, clustering coef-

ficients, eccentricities and the sequence similarities in terms of

BLAST E-values. Other related network alignment problems in-

clude global many-to-many alignments (Ay et al., 2011; Liao

et al., 2009) and queries in interaction networks and pathways

(Banks et al., 2008; Dost et al., 2008; Pinter et al., 2005; Shlomi

et al., 2006).
A major issue in network alignment is the computational in-

tractability of all the appropriate optimization formulations. It

becomes even more apparent with some input PPI networks con-

taining tens of thousands of nodes and interactions. An import-

ant feature expected of the global network alignments is then

scalability; the running time performances of the suggested meth-

ods should not degrade drastically with increasing network sizes.

At the same time, accurate alignment scores close to optimum

values of appropriate formulations is a natural expectation.

However, existing approaches either aggressively optimize for

better accuracy at the expense of scalability or vice versa. We

propose a novel global network alignment algorithm, SPINAL,

which consists of two phases: a coarse-grained alignment score

estimations phase and a fine-grained conflict resolution and im-

provement phase. Both phases make use of the construction of

neighborhood bipartite graphs and a set of contributors as a

common primitive. Using these concepts within iterative local

improvement heuristics constitute the backbone of the algorithm.

In terms of scalability, SPINAL runs much faster and provides

more accurate results than the compared state-of-the-art meth-

ods in almost all of the experimented instances under

consideration.

2 METHODS AND ALGORITHMS

2.1 Problem definition

Let G1 ¼ ðV1,E1Þ and G2 ¼ ðV2,E2Þ be two PPI networks

where V1,V2 denote the sets of nodes corresponding to the pro-

teins and E1,E2 denote the sets of edges corresponding to the

interactions between proteins. We define an alignment network

A12 ¼ ðV12,E12Þ. Each node of V12 is denoted with a pair

� ui, vj �, where ui 2 V1 and vj 2 V2. For any pair of nodes

� ui, vj �2 V12 and � u0i, v
0
j �2 V12 it should be the case that

ui 6¼ u0i and vj 6¼ v0j. The edge set of the alignment network is

defined so that any conserved interaction gives rise to an edge

in the network, that is, for � ui, vj �2 V12 and � u0i, v
0
j �2 V12,

the edge ð� ui, vj � , � u0i, v
0
j �Þ 2 E12 if and only if ðui, u

0
iÞ 2 E1

and ðvj, v
0
jÞ 2 E2.

Although an explicit definition of an alignment network is not

given, informally the common goal in most of the previous

global PPI network alignment approaches is to provide an align-

ment so that the edge set E12 is large and each pair of node

mappings in the set V12 contains proteins with high sequence

similarity (Chindelevitch et al., 2010; Kuchaiev and Pržulj,

2011; Singh et al., 2008; Zaslavskiy et al., 2009). Formally, we

define the pairwise global PPI network alignment problem as that

of finding the alignment network A12 ¼ ðV12,E12Þ that maxi-

mizes the global network alignment score, defined as follows:

GNASðA12Þ ¼ �� jE12j þ ð1� �Þ �
X

8�ui , vj�

seqðui, vjÞ ð1Þ

The constant � 2 ½0, 1� in this equation is a balancing param-

eter intended to vary the relative importance of the

network-topological similarity (conserved interactions) and the

sequence similarities reflected in the second term of the sum.

Each seqðui, vjÞ can be an appropriately defined sequence simi-

larity score based on measures such as BLAST bit-scores or

E-values.

2.2 The SPINAL global alignment algorithm

For the special case of � ¼ 1, the pairwise global PPI network

alignment problem becomes a generalized version of the

Maximum Common Edge Subgraph (MCES) problem used

commonly in the matchings of 2D/3D chemical structures

(Raymond and Willett, 2002). The MCES of two undirected

graphs G1,G2 is a common subgraph (not necessarily induced)

that contains the largest number of edges common to both G1

and G2. The NP-hardness of the MCES problem (Garey and

Johnson, 1979) trivially implies that the defined network align-

ment problem is also NP-hard. Although useful in certain as-

pects, such a result does not provide sufficient intuition to grasp

the nature of the problem, which involves simultaneous opti-

mization of two possibly conflicting properties. In addition,

PPI networks usually exhibit certain topological properties that

may affect the computational complexity of an optimization

problem defined on them. Nevertheless, we show that the prob-

lem with its simultaneous nature is computationally intractable

even for two paths. This result holds for all � values other than 0

and 1. The full proof of the following theorem can be found in

the Supplementary Document.

THEOREM 2.1. The pairwise global PPI network alignment prob-

lem is NP-hard for a pair of paths.

The intrinsic computational hardness of the problem gives rise

to the design of local heuristic approaches rather than globally

optimum solutions. Most of the global network alignment algo-

rithms can be viewed to proceed in two phases. For each pair

ui 2 V1, vj 2 V2, an estimate confidence score is sought at an ini-

tial coarse-grained phase. The score represents the level of con-

fidence that the match ðui, vjÞ is in the optimum alignment

maximizing the global score defined in Equation (1). This is usu-

ally followed by a fine-grained phase that consists of refining an

initial global alignment based on the estimate scores attained in

the previous phase. Similar in spirit to the previous global PPI

network alignment algorithms, SPINAL also proceeds in two

phases. However, the definition and the construction method

of the confidence scores matrix in the coarse-grained phase,

and the refinement method in the fine-grained phase constitute
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the novelties of our algorithm. We first introduce the construc-

tion of neighborhood bipartite graph and the computation of its

maximum weight matching, both of which together constitute

the common primitive operation used in both phases. Let S be

a function mapping every pair of vertices ui 2 V1, vj 2 V2 to a

real valued weight. Denote the set of neighbors of ui in G1 with

NðuiÞ and the set of neighbors of vj in G2 with NðvjÞ. The neigh-

borhood bipartite graph of the pair � ui, vj � on S, denoted with

NBGðf� ui, vj �g,SÞ is a complete edge-weighted bipartite graph

defined on the partitions NðuiÞ and NðvjÞ. The weight of an edge

ðxi, yjÞ in NBG is Sðxi, yjÞ. Similarly, we define NBG of a set of

pairs rather than that of a single pair, as the union of the NBGs

of the constituent pairs.

Algorithm 1 SPINAL global alignment algorithm

1: Input: G1 ¼ ðV1,E1Þ,G2 ¼ ðV2,E2Þ, seq, �

2: Output: Node set V12 of the global alignment network A12

3: // Coarse-grained

4: for all ui 2 V1, vj 2 V2 do

5: Pðui, vjÞ ¼ �� DegDiffðui, vjÞ þ ð1� �Þ� seqðui, vjÞ

6: end for

7: repeat

8: P0 ¼ P

9: for all ui 2 V1, vj 2 V2 do

10: construct NBGðf� ui, vj �g,P
0Þ

11: construct contributors set C of NBG

12: compute Pðui, vjÞ as in Equation (2)

13: end for

14: until enough iterations

15: // Fine-grained

16: SP ¼ List of � ui, vj � sorted w.r.t P, for ui 2 V1, vj 2 V2

17: repeat

18: // Find new connected component in A12

19: pop unaligned � ui, vj � from SP, insert into V12

20: repeat

21: construct NBGðV12,PÞ

22: construct contributors set C of NBG

23: swap improvements for each NBG edge not in C

24: insert � xi, yj � into V12, for each ðxi, yjÞ 2 C

25: until no contributors

26: until no unaligned pair in SP

2.2.1 Coarse-grained construction of estimate scores Let Pðui, vjÞ

for ui 2 V1, vj 2 V2 denote the estimate confidence score of align-

ing ui with vj. The contributors, that is, the set of edges in the

maximum weight matching of NBGðf� ui, vj �g,SÞ is denoted

with C. Among all edges in NBG, those are the only ones con-

tributing to the score Pðui, vjÞ, which is defined as follows:

��

P
ðxi, yjÞ2C

Pðxi, yjÞ
degG1 ðxiÞ�degG2 ðyjÞ

ffiffiffiffiffiffiffi
jCj
p þ ð1� �Þ � seqðui, vjÞ ð2Þ

where degG1
ðxiÞ, degG2

ðyjÞ denote the degrees of xi and yj in G1

and G2, respectively, and seqðui, vjÞ denotes the normalized

BLAST bit scores of the proteins corresponding to ui and vj.

Note that although Equation (2) resembles the functional simi-

larity score used in IsoRank and various alignment methods

based on it (Ay et al., 2011; Liao et al., 2009), there is a crucial

difference. In the IsoRank definition, there is no concept of spe-

cial contributors; every ðxi, yjÞ pair in the immediate

neighborhood contributes to the score inverse proportional to

its degree product. In the special case of �¼ 1, such a choice
makes the equation local; for each pair of nodes assigning a

score proportional to their degree product trivially satisfies the

equation (Chindelevitch, 2010). In contrast, Equation (2) dis-

ables the contributions of pairs that have no chances of coexist-

ence in the final alignment by imposing the contributors set be a

matching. Furthermore, it enables contributions of pairs with

higher chances of existence in the optimum solution by imposing

the matching have maximum weight. To construct the scores

matrix P in accordance with our definition, we follow an iterative

approach similar to the simple gradient method used in energy

minimization (Höltje et al., 1997). Every iteration brings the

score of a pair close to the scores of the contributors from the pre-

vious iteration. Note that not only the scores but also the con-

tributors of a specific pair themselves may change; at each

iteration the set of contributors is constructed anew. The iter-

ations continue until the score of every pair remains the same as

in previous iteration; see lines 7–14 in Algorithm 1. As is usually

the case with similar iterative methods, it is important to start

with a good initial configuration both for the quality of results

and for the convergence rate. We initialize the score of each pair

taking into account the sequence similarity values and the degree

differences [denoted with DegDiffðui, vjÞ and normalized between

0 and 1] in lines 4–6. It is worth noting that the loop in lines 7–14

converges in only 10–15 iterations even for considerably large

networks.

2.2.2 Fine-grained conflict resolution and improvement Once the
scores matrix P is ready, the next step is to extract a one-to-one

mapping of node pairs in a way that the resulting mapping in-

duces a high score in terms of Equation (1). We follow a

seed-and-extend approach coupled with local improvements

based on iterative swaps. We note that both these techniques

are standard heuristics in combinatorial optimization and differ-

ent versions have also been used in previous alignment algo-

rithms (Altschul et al., 1990; Chindelevitch et al., 2010;

Kuchaiev et al., 2010; Kuchaiev and Pržulj, 2011; Shih and

Parthasarathy, 2011).
The NBG and the contributors’ concepts, which constituted

the basis of the coarse-grained phase are the main primitives of

this phase as well. The pseudocode is provided in lines 16–26

of Algorithm 1. The basic idea is to find a connected component

of the alignment network A12 at each iteration of the outer repeat

loop. Each component starts with the best available seed. It is the

pair ðui, vjÞ with the largest score in P, such that neither ui nor vj
is aligned. The component grows layer by layer in an almost

breadth-first manner. At each iteration of the inner repeat

loop, a new breadth-first layer of G12 is added to the current

component of A12. For this, we first construct the NBG of the

set of the aligned pairs in the current component, which is the

union ofNBGs of each pair. Assuming the weight of each edge is

its estimate confidence score in P, a maximum-weight matching

of NBG provides a set of candidate contributors to be added to

the current component of the alignment graph. Because the

scores in P are solely estimate scores of confidence, even an op-

timum maximum-weight matching may have room for improve-

ment as far as the GNAS score of Equation (1) is concerned.

Therefore, our final step is to improve the candidate set locally
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via possible swaps. Each pair in NBG but not among the candi-

dates is compared against its overlap set, that is, the set of can-

didate contributors sharing a node with it. If the contribution of

the new pair to the GNAS score is not smaller than that of its

overlap set, it is inserted into A12 rather than the overlap set.
In terms of running time requirements, in almost all the tests,

495% of the execution time is spent by the initial coarse-grained

phase. We note that in the actual implementation, the contribu-

tors set in the first phase is computed via a greedy maximal

matching algorithm, whereas for the second phase, an optimum

solution is used. Details of the SPINAL algorithm, including

implementation details, a discussion of stability and running

time analysis, are provided in the Supplementary Document.

3 DISCUSSION OF RESULTS

SPINAL is implemented in Cþþ using LEDA (Mehlhorn and

Naher, 1999). Source code, useful Python scripts for testing and

evaluations, all the data and output results are available as part

of the Supplementary Material. We experiment on data from

four species: Saccharomyces cerevisiae, Drosophila melanogaster,

Caenorhabditis elegans and Homo sapiens. All the data are from

IsoBase (Park et al., 2011), which is the same as that used in

IsoRank and IsoRankN. The PPI network sizes are as follows:

5499 proteins and 31 261 interactions in the S.cerevisiae network,

7518 proteins and 25 635 interactions in the D.melanogaster net-

work, 2805 proteins and 4495 interactions in the C.elegans net-

work and 9633 proteins and 34 327 interactions in the H.sapiens

network. Potentially, SPINAL can be compared with other

alignment algorithms with a similar problem definition forma-

lized by Equation (1). These are IsoRank, MI-GRAAL and vari-

ants, GA, PATH heuristics and the PISwap algorithm. We

extensively compare SPINAL with IsoRank and MI-GRAAL.

IsoRank is a popular benchmark algorithm in global network

alignment. Recently suggested MI-GRAAL, to the best of our

knowledge, provided the best alignments in terms of the number

of conserved interactions previously. The current implementa-

tions of GA and PATH are not amenable for the alignment of

networks with sizes similar to those under consideration

(Kuchaiev and Pržulj, 2011). For lack of a publicly available

implementation of PISwap, only brief comparisons with the pub-

lished results are made whenever applicable.

3.1 Global network alignment score evaluations

We first measure the extent of accuracies of the algorithms in

terms of the maximization objective formulated in Equation (1).

The number of conserved interactions, that is, the edge set size of

the alignment network, denoted with E12 in the equation is a

common performance indicator used in almost all the global

network alignment studies (Chindelevitch et al., 2010; Klau,

2009; Kuchaiev et al., 2010; Kuchaiev and Pržulj, 2011;

Milenković et al., 2010; Singh et al., 2008; Zaslavskiy et al.,

2009). Because the optimization goal is also commonly defined

as in Equation (1), we include the score obtained from

GNASðA12Þ as well as jE12j in our evaluations of an alignment

A12. Table 1 summarizes our findings for the SPINAL, IsoRank

and MI-GRAAL algorithms. For each of the six dataset pairs,

we include two rows: top row indicates the size of conserved

interactions set E12 and the bottom row indicates the score ob-

tained from GNASðA12Þ. Each column represents the scores of

an alignment output by a specific algorithm under a specific

setting of input parameters. Parameter settings for SPINAL

and IsoRank consist of varying the � constant from 0.3 to 0.7

in the increments of 0.1. As for the MI-GRAAL algorithm, three

alignment versions are described in the original description

(Kuchaiev and Pržulj, 2011). The Alignment3 version refers to

an output alignment obtained when signatures, degrees, cluster-

ing coefficients and BLAST sequence similarities are all used by

the algorithm. It is mentioned that the largest set of conserved

interactions are obtained under Alignment3 and that its results

are the most stable, in the sense that different runs provide

almost the same results (Kuchaiev and Pržulj, 2011). Therefore,

we present evaluations of this version for MI-GRAAL. For each

row measuring the size of conserved interactions set, the largest

score is marked in bold. The number of conserved interactions

attained by the SPINAL alignments is impressive. The

state-of-the-art algorithm known to achieve the largest conserva-

tion scores was MI-GRAAL. Table 1 indicates that in five of

the six alignment pairs, SPINAL provides the highest score in

terms of E12 sizes. Only for the C.elegans–D.melanogaster pair,

MI-GRAAL provides better edge conservation. The GNASðA12Þ

scores for the MI-GRAAL alignments are computed under the

setting of �¼ 0.7. For the instances where MI-GRAAL columns

are marked with a X, Alignment3 could not be successfully exe-

cuted until completion. We were able to execute Alignment1 ver-

sion using signatures for the hs-sc instance. Interaction

conservation and the GNAS scores of a single run were, respect-

ively, 5277 and 3693.95. Regarding scores of conserved inter-

actions, our final remark is on published results of PISwap

using the data of Bandyopadhyay et al. (2006). On the same

dataset, SPINAL produces an alignment with 3890 conserved

interactions for the D.melanogaster–S.cerevisiae pair, whereas

the PISwap alignment achieves 398 interactions.
Emphasizing the issue of scalability, we provide a sample com-

parison of execution times. The pair of largest and densest

networks for which all three methods provide alignments is

H.sapiens–S.cerevisiae. The execution times of SPINAL,

IsoRank and MI-GRAAL (The Alignment1 version of

MI-GRAAL that uses graphlet degree signatures is used.

Nevertheless, Alignment3 version, which could not be executed

until completion on this dataset is expected to require an even

larger execution time because it uses three additional cost func-

tions.) on this dataset are, respectively, 49, 116 and 305 min. The

contrast between SPINAL and MI-GRAAL is especially signifi-

cant, as previously the latter was known to provide the highest

conserved interaction ratios. SPINAL runs almost five times

faster than MI-GRAAL and provides almost 10% more con-

served interactions. We note that the running time experiments

were performed on a 64-bit machine with Intel Core i5 2.27GHz

processors and 4 GB of memory.

3.2 Gene ontology consistency evaluations

A common measure to test the biological quality of alignments is

based on gene ontology (GO) consistency of the aligned pairs of

proteins. For an alignment A12, we define GOCðA12Þ as the sum

of jGOðuiÞ \ GOðvjÞj=jGOðuiÞ [ GOðvjÞj, over all aligned pairs
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� ui, vj �2 V12. Here, GO(x) denotes the set of GO terms anno-

tating a protein x. We exclude the annotations to the root terms,

Biological Process, Cellular Component and Molecular Function.

The GO annotations are retrieved from the GO Consortium

(Ashburner et al., 2000).

The results presented in Table 1 are valuable in providing an

idea on the extent of conserved interactions achieved by different

algorithms. However the same strategy of comparisons based on

fixed � values can not be directly used in GOC evaluations of

IsoRank and SPINAL, although both algorithms use the same

global optimization function. This is mainly due to the variance

in total sequence similarity scores achieved by resulting align-

ments even for the same � instances. Because many GO annota-

tions are based on sequence alignments themselves, such

comparisons would produce misleading results. This discrepancy

has been observed and handled in different ways in previous

studies (Kuchaiev and Pržulj, 2011; Zaslavskiy et al., 2009).

We follow both approaches and compute GOC scores

accordingly.
The main idea of Zaslavskiy et al. (2009) is to compare the

alignments achieved under fixed total sequence similarity scores

when possible. The SPINAL algorithm, especially in the

fine-grained phase in Algorithm 1, aggressively aims at increasing

the size of E12 to achieve higher scores for GNASðA12Þ. For the

PPI network alignment problem formalized by Equation (1), this

makes sense, as a large portion of all pairs contributes little to the

alignment score through their sequence similarity scores. On

the other hand, it may not be possible to produce alignments

with some specific total sequence similarity values, especially the

large ones. Therefore, we introduce another version of our algo-

rithm, SPINALI, that only makes use of the coarse-grained

phase of Algorithm 1 and similar to IsoRank simply applies a

maximum weight bipartite matching for the fine-grained phase.

This provides an opportunity to evaluate SPINAL and IsoRank

better, as the coarse-grained phases of both algorithms are

defined to solve exactly the same problem. The results for all

six pairs of PPI networks are presented in Table 2. The

IsoRank [IsoRank provides two separate alignments. To provide

a fair comparison, the GO consistency evaluations of Table 2 are

those obtained from the IsoRankHSP version, the alignment that

is mentioned to provide better GO consistencies (Singh et al.,

2008)] results in the table correspond to the alignments under

the shown � values ranging from 0.3 to 0.7 in the increments of

0.1. On the other hand, for a fixed �, each SPINALI result cor-

responds to the alignment that achieves as close a total sequence

similarity score as possible, to that of the IsoRank alignment

under �. In almost all cases, the difference in the corresponding

total sequence similarity scores is50.1; hence, the gathered align-

ments are comparable. Among all 30 alignment instances,

SPINALI provides better results than IsoRank, except for

three instances. The differences between the GOC scores

become more apparent as the network sizes get larger. Also, in

terms of the number of conserved interactions, for all pairwise

alignments and � values, SPINALI provides much better results

than IsoRank. This is significant because it provides a clue that

optimizing the number of conserved interactions under fixed

total sequence similarities leads to better functional orthology

detection, a conjecture assumed to have limited evidence previ-

ously (Zaslavskiy et al., 2009). For comparisons with

MI-GRAAL, we use the Alignment3 version of the algorithm,

as it makes use of sequence information and is favored over the

other alignment types to be the basis of function predictions of

unannotated proteins (Kuchaiev and Pržulj, 2011). Both the

SPINAL and the MI-GRAAL algorithms aggressively aim at

improving the number of conserved interactions. For a fair com-

parison, we can actually pick any alignment of SPINAL that

provides better conserved interaction scores than those of the

MI-GRAAL Alignment3 results from Table 1. We pick � ¼ 0:7

instance of SPINAL, even though in many cases even � ¼ 0:3
alignments with better chances of large GOC scores produce

better conserved interaction ratios. Nevertheless, SPINAL GO

consistency scores are much higher than those of MI-GRAAL in

Table 1. GNAS evaluations

Dataset SPINAL IsoRank MI-GRAAL

� ¼ 0:3 � ¼ 0:4 � ¼ 0:5 � ¼ 0:6 � ¼ 0:7 � ¼ 0:3 � ¼ 0:4 � ¼ 0:5 � ¼ 0:6 � ¼ 0:7 (Alignment3)

ce-dm 2343 2320 2300 2237 2258 335 329 325 327 328 2390

717.99 941.19 1159.93 1350.59 1586.87 125.22 152.59 179.70 209.71 239.49 1673.00

ce-hs 2370 2446 2437 2487 2512 299 287 290 300 293 2396

728.26 993.07 1229.95 1501.61 1764.93 116.54 137.68 163.76 194.80 215.81 1677.23

ce-sc 2326 2384 2323 2361 2398 410 385 385 360 339 2290

709.12 963.28 1168.95 1422.74 1683.13 155.14 180.78 214.65 233.60 250.52 1603.00

dm-hs 6189 6235 6282 6291 6344 823 841 830 817 829 X

1883.22 2517.23 3160.48 3790.79 4451.60 334.53 410.47 475.82 537.70 615.04 X

dm-sc 5203 5150 5311 5283 5360 840 856 837 781 763 4990

1579.06 2075.14 2668.65 3180.27 3759.07 312.41 393.96 461.22 502.73 559.30 3493.06

hs-sc 5703 5593 5651 5706 5798 786 824 817 763 761 X

1731.81 2253.66 2839.00 3434.54 4066.22 292.00 377.56 448.22 489.21 556.05 X

ce, C.elegans; dm,D.melanogaster; hs,H.sapiens; sc, S.cerevisiae. For each species pair, first row lists jE12j, whereas the second lists GNASðA12Þ for the alignment output by the

corresponding algorithm provided in the columns.
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all pairwise alignments. For the C.elegans–D.melanogaster pair,

the SPINAL alignment produces a GOC score of 79.57, whereas

the score of MI-GRAAL alignment is 14.41. For the C.elegans–

H.sapiens, C.elegans–S.cerevisiae and the D.melanogaster–

S.cerevisiae pairs, the scores are 43 versus 15.64, 60.03 versus

24.97 and 113.01 versus 50.51, respectively.
Secondly, to account for the effects of sequence similarities in

the GO consistency evaluations, we repeated the same experi-

ments following the approach of Kuchaiev and Pržulj (2011).

The idea is to consider only the experimental GO annotations,

that is, those with evidence codes IPI, IGI, IMP, IDA, IEP, TAS

and IC. Because the resulting relative GOC scores are almost the

same, we do not provide separate tables. Among all 30 instances

corresponding to the ones presented in Table 2, in only five of

them IsoRank provides slightly better GOC scores than

SPINALI. For the rest, SPINALI provides higher scores and

the differences between achieved scores are relatively large for

many of them. Finally, comparing SPINAL and MI-GRAAL,

we get the same results as in the previous approach. In all in-

stances, SPINAL provides much higher scores than

MI-GRAAL.
We note that because GO category organization is hierarchical

and there might be specific categories at levels further away from

the root of the GO DAG, expecting exact category overlaps can

be a strong requirement for GO consistency evaluations.

Therefore, similar to the evaluation method suggested in Singh

et al. (2008), we repeated the same tests annotating each protein

to a standardized set of GO categories (those at distance 5 from

the root of GO DAG) and considering the resulting category

overlaps. Furthermore, to test the algorithms on different data-

sets, we created experiments based on synthethic PPI network

data of Sahraeian and Yoon (2012) and evaluated the algorithms

using this database and the IsoBase database under several add-

itional metrics including mean normalized entropy, coverage,

correct nodes and specificity. In general, the results are along

the lines of those presented in this section. Details regarding all

these extensive evaluations can be found in the Supplementary

Document.

3.3 Annotation transfers via network alignment

PPI networks of single species have been studied in depth to

predict functions of unannotated proteins or to extract biological
pathways; see Sharan et al. (2007) for a survey on the topic.

Another way to extract such information has been through a

detailed analysis of proteins with sequence similarities (Louie
et al., 2009). It is natural to assume that alignment networks of

pairwise PPIs should provide analog information because they

provide a model to integrate both kinds of data. Accordingly,
previous network alignment studies suggest protein function pre-

dictions via annotation transfers, that is, via assigning the anno-

tations of a protein in an aligned pair to the unannotated
member of the same pair (Kuchaiev and Pržulj, 2011; Singh

et al., 2008). However, a detailed analysis demonstrates that
such automated transfers by themselves may not always be suf-

ficient to provide immediate function predictions. Incorporating

the global alignment results into the function prediction methods
using network analysis techniques provides more reliable predic-

tions (Sharan and Ideker, 2006). Although a methodological

treatment of this issue is beyond the scope of this article, we
present a more detailed analysis of the H.sapiens–S.cerevisiae

alignment network to provide a basis for such an integration.

We choose to analyze the SPINALI alignment resulting from the
settings used in the � ¼ 0:3 column of Table 2. Details regarding

this alignment network can be found in the Supplementary

Document.
Graph-theoretic approaches to identify key regulatory pro-

teins in an organism by analyzing local PPI network structures
have been suggested previously (Fox et al., 2011). Following

similar reasoning, we extract neighborhood subgraphs induced
by a node and its neighbors in the alignment network to identify

key pairs of proteins. Each key pair is considered suitable for a

possible annotation transfer. For each � ui, vj �, we compute a

Table 2. GOC evaluations

Dataset Employed algorithm GOC scores Conserved interactions

�¼ 0.3 �¼ 0.4 �¼ 0.5 �¼ 0.6 �¼ 0.7 �¼ 0.3 �¼ 0.4 �¼ 0.5 �¼ 0.6 �¼ 0.7

ce-dm SPINALI 235.28 234.90 231.87 230.84 225.99 575 585 611 624 655

IsoRankHSP 236.48 231.65 229.49 224.72 222.18 484 491 499 491 468

ce-hs SPINALI 100.83 100.31 100.31 99.43 99.45 518 537 535 562 605

IsoRankHSP 102.18 100.98 98.75 98.12 98.39 447 447 448 465 439

ce-sc SPINALI 148.53 150.59 149.51 148.93 148.75 810 815 815 814 809

IsoRankHSP 145.89 145.40 144.92 143.49 142.59 612 615 596 601 607

dm-hs SPINALI 317.35 313.84 310.33 306.44 318.02 1546 1605 1636 1673 1747

IsoRankHSP 304.73 300.35 299.13 297.47 289.56 1089 1096 1107 1116 1127

dm-sc SPINALI 392.41 390.64 389.28 388.99 385.42 1645 1653 1647 1646 1681

IsoRankHSP 384.95 383.54 381.66 380.14 375.54 1275 1248 1232 1198 1188

hs-sc SPINALI 341.15 342.38 342.07 342.56 340.08 2209 2234 2226 2254 2262

IsoRankHSP 320.44 319.52 319.13 315.61 315.33 1692 1700 1698 1683 1664

For an alignment network A12 achieved under a certain algorithm (provided in the multirows), the left multicolumn provides GOCðA12Þ scores, whereas the right multicolumn

provides the jE12j value of A12.
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dominating annotation, domð� ui, vj �Þ and a domination count,
dcð� ui, vj �Þ. Let Sui, vj denote the subgraph induced by
� ui, vj � [f� xi, yj �: ð� xi, yj �, � ui, vj �Þ 2 E12g. We count

the number of times each GO annotation appears in any node
of Sui , vj . Note that an annotation appearing in any of the
proteins of a node contributes to the count. The largest

count is dcð� ui, vj �Þ and the corresponding annotation is
domð� ui, vj �Þ. We exclude all GO annotations derived from
Cellular Component. To extract a list of hubs in decreasing

order of importance, we sort the dc values of all nodes with
two exceptions. If � u0i, v

0
j �2 Sui, vj and dcð� u0i, v

0
j �Þ 5

dcð� ui, vj �Þ, then � u0i, v
0
j � is not included in the list.

Additionally, if domð� u0i, v
0
j �Þ ¼ domð� ui, vj �Þ and

dcð� u0i, v
0
j �Þ 5dcð� ui, vj �Þ, then � u0i, v

0
j � is not in the list.

For this analysis, among the top 10 nodes in the list, we
consider those with five or more neighbors that contain three

or more GO annotation overlaps. Six such nodes are identified.
Going from 1 to 6, the matches corresponding to those nodes
and their dominating annotations are, respectively, as follows:

TBPjYER148W regulation of transcription, DNA-dependent
(GO:0006355), RANjYLR293C transport (GO:0006810),
LOC392454jYBR088C DNA binding (GO:0003677),

POLR2AjYDL140C transcription, DNA dependent
(GO:0006351), TAF7jYPL011C RNA polymerase II transcrip-
tional preinitiation complex assembly (GO:0051123),

MCM2jYBL023C DNA replication (GO:0006260). The domin-
ation counts are 17, 15, 14, 13, 10 and 10, respectively. It is worth
noting that some of the identified hub matches themselves con-

tain considerably large GO annotation overlaps. The
TBPjYER148W match has 5, RANjYLR293C match has 10,
POLR2AjYDL140C match has 9 and MCM2jYBL023C

match has 14 overlaps. We expect each protein involved in a
match contain an annotation same as or similar to (descending
from a not too distant common ancestor in the GO dag) its

dominating annotation. We realize an annotation transfer for
an unannotated protein in a match, if its mate in the alignment
and a considerable number of its neighbors in its own PPI net-

work are annotated with the dominating annotation.
Both proteins in the TBPjYER148W match are annotated

exactly with the dominating annotation. Proteins in the

RANjYLR293C match on the other hand are not annotated
with the dominating annotation, GO:0006810, although both
are annotated with a similar category, GO:0006886 (intracellular

protein transport). Considering the LOC392454jYBR088C
match, LOC392454 does not contain any annotations, whereas
YBR088C contains the dominating annotation of the match,

GO:0003677 (DNA binding). The neighborhood of
LOC392454 in the H.sapiens PPI network contains 81 proteins.
Among these, 44 of them are unannotated. On the other hand,

only 14 are not annotated with DNA binding or related cate-
gories. Twelve neighbors have been annotated with exactly DNA
binding and 11 have annotations that are similar (nucleic acid

binding, chromatin binding, double-stranded DNA binding,
damaged DNA binding). This provides a clue that the match
LOC392454jYBR088C has been correctly identified as a regulat-

ing hub and LOC392454 should also be annotated with
GO:0003677 (DNA binding). Regarding the POLR2Aj
YDL140C match, we verify that YDL140C is annotated

with GO:0006351 (transcription, DNA-dependent). Although

POLR2A is not annotated with the same category, it has a simi-

lar annotation GO:0006355 (regulation of transcription,

DNA-dependent). With regard to the TAF7jYPL011C match,

YPL011C is annotated with exactly the dominating annotation.

Although it is tempting to transfer the dominating annotation to

TAF7, which is unannotated, a careful analysis reveals that

among the 20 neighbors of TAF7, only one of them contains

the annotation GO:0051123. Twelve do not contain related cate-

gories, and the rest are unannotated. This is in accordance with

the results of Fox et al. (2011), as the TAF7jYPL011C hub is

what Fox et al. (2011) call a single-component hub and can not be

counted as a regulating hub. Therefore, we do not apply an an-

notation transfer in this case. Finally, regarding the

MCM2jYBL023C match, it is verified that both proteins are

annotated with the dominating annotation.
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