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ABSTRACT

Motivation: The sheer scale of the metagenomic and metatranscrip-

tomic datasets that are now available warrants the development of

automated protocols for organizing, annotating and comparing the

samples in terms of their metabolic profiles. We describe a

user-friendly java program FROMP (Fragment Recruitment on

Metabolic Pathways) for mapping and visualizing enzyme annotations

onto the Kyoto Encyclopedia of Genes and Genomes (KEGG) meta-

bolic pathways or custom-made pathways and comparing the sam-

ples in terms of their Pathway Completeness Scores, their relative

Activity Scores or enzyme enrichment odds ratios. This program

along with our fully configurable PERL-based annotation organization

pipeline Meta2Pro (METAbolic PROfiling of META-omic data) offers a

quick and accurate standalone solution for metabolic profiling of en-

vironmental samples or cultures from different treatments. Apart from

pictorial comparisons, FROMP can also generate score matrices for

multiple meta-omics samples, which can be used directly by other

statistical programs.

Availability: The source code and documentation for FROMP can be

downloaded from https://sites.google.com/site/dhwanidesai/home/

software along with the Meta2Pro collection of PERL scripts.

Supplementary data are available at https://sites.google.com/site/

dhwanidesai/home/fromp_suppl.

Contact: Dhwani.Desai@Dal.Ca

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

The rapidly accumulating environmental meta-omic (meta-

genomic and metatranscriptomic) projects resulting from high-

throughput sequencing techniques warrant the development of

new protocols that can provide a quick overview of the microbial

metabolic potential or activity. There has been some effort

towards management of such data (Sun et al., 2011), its taxo-

nomic and metabolic profiling (Arumugam et al., 2010; Huson

et al., 2007; Meyer et al., 2008; Yamada et al., 2011), visualiza-

tion of metabolic pathways and statistical analyses of community

differences (Parks and Beiko, 2010). In most cases, the tools are

web-based and the primary method for annotation is BLAST

(Altschul et al., 1990). We describe here a standalone set of

tools to get a rapid and accurate overview of the metabolic func-

tions of the resident microbial community. The enzyme identifi-

cation component of this pipeline, based on the ModEnzA

Enzyme Commission (EC) numbers (Desai et al., 2011) and

Pfam (Punta et al., 2012) profile hidden Markov models

(HMMs), provides a quick and accurate EC number identifica-

tion. The standout feature is the FROMP (Fragment

Recruitment on Metabolic Pathways) pathway mapping and

comparative visualization tool, which maps EC numbers

and Pfam annotations onto the Kyoto Encyclopedia of Genes

and Genomes (KEGG) reference (Kanehisa et al., 2012) or

custom-made metabolic pathways. Multiple meta-omic samples

can be compared with each other based on a Pathway

Completeness Score modified from Inskeep et al. (2010), a

Pathway Activity Score or an odds ratio for enzyme enrichment

(Gill et al., 2006). The increased accuracy of HMM-based anno-

tation and an ability to compare multiple meta-omic samples at

once are attributes that improve on currently available metabolic

profiling tools such as Megan (Huson et al., 2007) and

MG-RAST (Meyer et al., 2008).

2 METHODS AND FEATURES

The java program FROMP is a part of the Meta2Pro

(METAbolic PROfiling of META-omic data) pipeline

(Supplementary Fig. S1). It maps the EC numbers

from ModEnzA directly onto the KEGG pathways or

user-defined custom-made pathways. The Pfam hits are first

mapped to the corresponding Gene Ontology IDs (Ashburner

et al., 2000) (using the conversion files pfam2go, kegg2go and

ec2go downloaded from http://www.geneontology.org/exter-

nal2go/), which are then mapped to KEGG reaction IDs or

EC numbers.

Pathway Completeness Score: We have modified the weighing

scheme for EC numbers described in (Inskeep et al., 2010) by

adding a term for the presence of continuous unbranched chains

of reactions.
For each EC i, the weight
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where N(T,i) is the total number of ECs in all pathways that have
EC i, N(U,i) is the number of unique ECs in all the pathways that
have EC i and N(P,i) is the total number of pathways where EC i
is present and L(UBC,r) is the total edge-length of the unbranched

chain containing EC i in the reference pathway.
The pathway completeness score for a pathway p is then

Cp ¼

P
i2ECp
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where Wi is the specificity weight of each EC i in pathway p, and
Ii is 1 if the EC number is detected in the sample and L(UBC,s) is

the edge-length of the unbranched chain containing EC i in the
sample.
Odds ratio for gene enrichment: As described in Gill et al.

(2006), if A and C are the occurrence counts of a given EC in

sample i and all other comparison samples j, respectively, and B
and D are occurrence counts of all other ECs in sample i and
comparison samples j, respectively, then the odds ratio for the

given EC in sample i is (A/B)/(C/D).
Pathway Activity Score: This is simply the sum of counts for

the ECs in a given pathway multiplied by the EC weight.

Equalization of sequencing effort: To remove bias introduced
by differences in sequencing effort, the user can equalize unequal
sample sizes to the smallest sample by randomly selecting equal

numbers from the other samples.
Custom-designed pathways: In addition to the KEGG path-

ways, the users can design their own pathways in the Pathway
Designer. Chemical species and EC numbers can be placed on a

grid and linked with lines. The customized pathways can then be
added to any project in FROMP.
Input: Apart from reading the output of the hmmscan program

(Eddy, 1998), FROMP can also read in tab- or comma-separated
list of EC numbers and Pfam accession numbers (one column),
ECs and Pfams with counts (two column) and ECs and Pfams

with counts and sequence IDs (three column) of the meta-omic
sequences. It also accepts a matrix file of EC counts, with the
samples arranged in columns and the EC numbers in the rows.
Output: The comparative recruitment of various samples on

the reference pathways can be exported as PNG image files. The
various score matrices (including the EC count matrix) for the
samples and the sequence IDs of the fragments mapping onto

each EC or pathway can also be exported as text files.

3 COMPARATIVE ANALYSIS OF
METATRANSCRIPTOMES FROM THE OXYGEN
MINIMUM ZONE OFF PERU

Three metatranscriptomic samples from a depth profile (oxic,
oxycline and anoxic), collected from one station in the

Peruvian oxygen minimum zone, were analysed with FROMP
and mapped onto a custom-designed pathway that included bio-
logical reactions that are thought to be carried out in

oxygen-depleted environments (Supplementary Figs S2–S4).
The oxic sample metabolism was dominated by sequences
affiliated to oxic respiration (cytochrome-c oxidase, EC

1.9.3.1). It also had elevated levels of nitrite reduction transcripts

(EC 1.7.2.1), while sequences from the oxycline and the an-

oxic samples exclusively mapped onto nitrate reductases (EC

1.7.99.4). In the sulfur cycle, sequences similar to hydrogen sul-

fite reductase (EC 1.8.99.3) mostly originated from the anoxic

depth, while the sulfate adenylyltransferase (EC 2.7.7.4) was

most abundant in the oxic surface. These visual observations

are also supported by the odds ratio or enrichment factors cal-

culated for the ECs in these samples (Supplementary Fig. S5).

4 CONCLUSION

We present here a set of tools for accurate standalone metabolic

profiling of meta-omic data. The java program FROMP and the

Meta2Pro collection of PERL scripts along with the relevant

documentation are available from https://sites.google.com/site/

dhwanidesai/home/software.
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