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ABSTRACT

Motivation: The goal of any parentage analysis is to identify as many

parent–offspring relationships as possible, while minimizing incorrect

assignments. Existing methods can achieve these ends, but they

require additional information in the form of demographic data,

thousands of markers and/or estimates of genotyping error rates.

For many non-model systems, it is simply not practical, cost-effective

or logistically feasible to obtain this information. Here, we develop

a Bayesian parentage method that only requires the sampled

genotypes to account for genotyping error, missing data and false

matches.

Results: Extensive testing with microsatellite and SNP datasets

reveals that our Bayesian parentage method reliably controls for the

number of false assignments, irrespective of the genotyping error rate.

When the number of loci is limiting, our approach maximizes the

number of correct assignments by accounting for the frequencies of

shared alleles. Comparisons with exclusion and likelihood-based

methods on an empirical salmon dataset revealed that our Bayesian

method had the highest ratio of correct to incorrect assignments.

Availability: Our program SOLOMON is available as an R package

from the CRAN website. SOLOMON comes with a fully functional

graphical user interface, requiring no user knowledge about the R

programming environment. In addition to performing Bayesian parent-

age analysis, SOLOMON includes Mendelian exclusion and a priori

power analysis modules. Further information and user support can

be found at https://sites.google.com/site/parentagemethods/.

Contact: christim@science.oregonstate.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

Accurate parentage assignment and pedigree reconstruction are

required to make correct inferences for a broad array of study

questions (Pemberton, 2008). Parentage methods span a vast

gamut of theoretical approaches from fractional to categorical

allocation and simple exclusion to sophisticated likelihood-based

approaches (Jones and Ardren, 2003; Jones et al., 2010). One

area of parentage analysis that has been largely overlooked is a

general Bayesian method for categorical allocation. This void is

unfortunate, as additional sampling or field information can be

elegantly incorporated as priors into a Bayesian framework

(Hadfield et al., 2006). Furthermore, the information present

within the genotypic data itself can be used to calculate a prior

analogous to a false discovery rate, which can be useful for the

challenges associated with parentage analysis. As an illustrative

example, consider a typical kinship dataset consisting of seven

microsatellite loci and 750 individuals (Rieseberg et al., 2012). In

this dataset, a parent and an offspring would share at least one

allele across all loci following Mendelian inheritance. However,

the probability of two unrelated individuals sharing alleles by

chance at all loci is not trivial considering that hundreds of thou-

sands of pairwise comparisons are required. Thus, a primary

challenge of parentage analysis in natural populations is to cor-

rectly identify the true parent–offspring pairs within a dataset,

while simultaneously excluding any pairs that share alleles by

chance.

The challenge of parentage analysis is further exacerbated by

missing data and genotyping errors, which can erode the parent–

offspring ‘signal’ of sharing at least one allele at all loci

(Slate et al., 2000; Vandeputte et al., 2006). Because errors can

create an incorrect record of genotypes, true parent–offspring

pairs in an empirical dataset may not share an allele at all loci

despite that being the Mendelian expectation. Here, we address

the challenges associated with parentage analysis by first calcu-

lating the prior probability of a dyad sharing an allele across all

numbers of mismatching loci. The calculation of this prior

(analogous to a false discovery rate) creates a systematic frame-

work for determining how many loci to let mismatch and does

not require any estimates of genotyping error. For each putative

pair, we next use Bayes’ theorem to calculate the posterior prob-

ability of a parent–offspring pair being false given the frequencies

of shared alleles. Because the probability of sharing common

rather than rare alleles is much greater for unrelated pairs, we

can compare the frequencies of observed shared alleles to a dis-

tribution of alleles shared by unrelated individuals. By combining

this information with Bayes’ theorem, we can maximize the iden-

tification of true parents and offspring in a dataset, while mini-

mizing the number of false assignments. Here, we overhaul the

approach of Christie (2010) to (i) account for genotyping error

and missing data, (ii) reduce the computational time by up to

three orders of magnitude as measured in minutes and (iii) allow

for one known parent or for known parent pairs (i.e. known

matings), which can substantially increase assignment power.

We extensively test this methodology with data drawn from

three empirical studies and use an empirical salmon dataset to

make comparisons with commonly implemented exclusion and

likelihood-based methods.*To whom correspondence should be addressed.
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2 METHODS

We created test datasets of multilocus genotypes with allele

frequencies based on the site frequency spectra from three

empirical studies. We chose empirical studies featuring three

distinct taxonomic groups with two different marker types,

SNPs and microsatellites (Table 1). The test datasets were fully

characterized, such that we knew all true parents and offspring.

For drawing comparisons between methods, we used complete

genotype data from a summer-run steelhead (Oncorhynchus

mykiss) dataset (see details later in the text).

2.1 Bayesian parentage method

To identify true parent–offspring pairs, we used Bayes’ theorem

to determine the posterior probability of a putative parent–off-

spring pair being false given the frequencies of shared alleles. For

illustrative purposes, we first consider a scenario with no missing

data, genotyping error or known parents, although we expand

on each of these later in the text. In accordance with Mendelian

expectation, each parent–offspring pair will share at least one

allele across all loci. If a limited number of loci are used, then

pairs of individuals can share alleles by chance alone. In fact, the

rate of false matching increases exponentially with a linear

increase in sample size (Christie, 2010). We first calculate a

prior equal to the probability of any given putative pair sharing

alleles by chance:

Prð�Þ ¼
Fpairs

Nputative
ð1Þ

where Fpairs equals the expected number of false parent–off-

spring pairs, and Nputative equals the total number of putative

parent–offspring pairs. Here, we define a ‘false parent–offspring

pair’ to be a pair of unrelated individuals that share alleles by

chance. A ‘putative parent–offspring pair’ is any pair of individ-

uals that share alleles across all loci and contain all true and false

parent–offspring pairs. Thus, if a dataset was expected to contain

10 pairs that shared alleles by chance, but was observed to

contain 100 pairs, then Prð�Þ would equal 0.1. Estimates for

Prð�Þ are constrained to range between 0 and 1. To calculate

the expected number of false pairs in a dataset, we deviate

from the approach presented in Christie (2010) and use simula-

tions rather than allele frequencies. We chose to use simulations

because they (i) facilitate the incorporation of genotyping error

into a Bayesian framework and (ii) substantially expedite the

calculation of the posterior probability.
To determine the expected number of false pairs, we first cal-

culate allele frequencies across all loci. For each locus separately,

we calculate genotype frequencies in accordance with Hardy–

Weinberg equilibrium (HWE) and create a pool of genotypes

where the rarest genotype occurs at least 100 times. We next

create simulated genotypes by sampling from this pool a

number of individuals equal to the number genotyped in the

empirical dataset (randomly assigning individuals as adults and

juveniles). We then make all pairwise comparisons between

adults and juveniles and calculate the number of times each

allele is shared. If a shared allele is homozygous in an individual,

then that allele is only counted once. If an adult and a juvenile

are heterozygous for the same alleles, then only the rarer of the

two alleles is counted. The number of times that an allele is not

shared between an adult and a juvenile is also recorded. The user

may choose how many simulated datasets per locus that they

wish to use, although we recommend a minimum of 100 simula-

tions for SNPs and 1000 simulations for microsatellites to maxi-

mize precision for the posterior probability (Supplementary

Table S1). In the simulations, we examine each locus separately

to expedite the calculation and reduce the amount of memory

allocated by R (R Core Team, 2012).
We next create a user-defined number of multilocus ‘geno-

types’ by using the output of the simulations (‘simulated geno-

types’). Assuming independence across loci, we sample alleles at

each locus by the average frequencies that they were observed to

be shared between two unrelated individuals. Included in the

sampling process is a dummy variable that represents the fre-

quency of dyads that did not share an allele. This process sim-

ultaneously creates a distribution of frequencies of alleles shared

among false parent–offspring pairs, while also creating a distri-

bution of the number of false pairs that share at least one allele at

0, 1, 2 . . .L loci, where L equals the total number of genotyped

loci. We calculate the expected number of false pairs as

Fpairs ¼ NLsim � n1 � n2 ð2Þ

where NLsim equals the frequency of the simulated multilocus

genotypes that shared at least one allele at all loci and n1 and n2
equal the empirical sample sizes of the adults and juveniles. After

Fpairs is calculated, the number of observed putative pairs

(Nputative) is calculated using Mendelian incompatibility and

used to calculate the prior, Prð�Þ:
Most, if not all, observed false pairs will share common alleles,

as the probability of sharing an allele by chance is approximately

proportional to the square of the allele frequency. In contrast,

the probability that a true parent–offspring pair will share a

particular allele is simply proportional to the allele frequency.

Therefore, pairs sharing rare alleles are much more likely to be

Table 1. Empirical datasets used to validate the Bayesian parentage

method

Symbol Species Marker NL NA Max

European Beech

(Fagus sylvatica)

msat 13 11.08 0.66

Steelhead Trout

(O.mykiss)

msat 8 34.88 0.19

Labrador Retriever

(Canis lupus

familiarus)

SNP 21115

(200)

2.00 0.98

NL refers to the total number of loci used in the study, NA equals the average

number of alleles per locus and Max equals the frequency of the most common

allele in the dataset. The retriever dataset had 21115 SNPs of which 200 were

randomly selected. References are as follows: beech (Lander et al., 2011), steelhead

(Araki et al., 2007) and retriever (Akey et al., 2010).
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true parent–offspring pairs. We exploit this principle by using

Bayes’ theorem to calculate the probability of a putative par-

ent–offspring pair being false given the frequencies of shared

alleles:

Prð�j�Þ ¼
Prð�j�Þ � Prð�Þ

Prð�j�Þ � Prð�Þ þ Prð�j�CÞ � Prð�CÞ
ð3Þ

where Prð�Þ is calculated as described earlier in the text, and

Prð�CÞ is the complement. Prð�j�Þ equals the probability of shar-

ing the observed alleles given that the putative pair in question is

false. We calculate this value for each putative pair using the

multilocus ‘genotypes’ where each locus contains values equal

to the frequencies of alleles shared by false pairs. To create a

distribution of frequencies of shared alleles among false parent–

offspring pairs, we multiply these values across all loci (‘false-pair

products’). We similarly calculate the product of the shared allele

frequencies among all putative parent–offspring pairs

(‘putative-pair products’). To calculate Prð�j�Þ for each putative

pair, we count the number of false-pair products that were less

than or equal to the observed putative-pair product and divide

by the total. Notice that when a putative pair shares the most

common alleles across all loci that Prð�j�Þ ¼ 1, and consequently

Prð�j�Þ ¼ Prð�Þ. To calculate Prð�j�CÞ, which is the probability

of sharing alleles given that a putative pair is true, we used the

same approach, but we use the observed allele frequencies rather

than the frequencies at which alleles were shared.

2.2 Genotyping error

Using the simulations, we calculate Prð�Þ for every number of

mismatching loci (0,1,..,L). When Prð�Þ equals unity, the ex-

pected number of false pairs equals the total number of putative

pairs within the dataset. Mathematically speaking, when the

prior Prð�Þ equals one, the posterior, Prð�j�Þ, also equals 1.

Consequently, when Prð�Þ is equal to 1, there is insufficient

power to distinguish between true and false parent–offspring

pairs (Fig. 1). In high-power datasets, the expected number of

false parent–offspring pairs will be low for the first several mis-

matching loci. SOLOMON calculates Prð�Þ for every number of

mismatching loci and calculates Prð�j�Þ for all putative pairs

where Prð�Þ is 51. Notice that the number of loci allowed to

mismatch depends on the genotyping error rate and the power

of the dataset. If a dataset has no genotyping error, then Prð�Þ
will equal 1 when allowing a single locus to mismatch because the

expected number of false pairs will equal the total number of

putative pairs (i.e. all true pairs will not mismatch at a locus, and,

consequently, all putative pairs will be false pairs for a positive

number of mismatching loci). Conversely, if the same dataset has

a high rate of genotyping error, then there will be more true pairs

mismatching at a single locus. When there are more true pairs,

the total number of putative pairs will increase, and Prð�Þ will be
51 provided that the expected number of false pairs is low, and

the locus will be allowed to mismatch (Fig. 1). Thus, the number

of loci allowed to mismatch is dictated by the genotyping error

rate and the expected number of false pairs. In the aforemen-

tioned framework, missing data are simply treated as a mis-

match, as there is no way to know whether a putative pair

would have shared an allele where an individual is missing

data. Null alleles can be accounted for by loading in adjusted

estimates of allele frequencies from programs that specialize with

such data types (e.g. MICROCHECKER, van Oosterhout et al.,

2006). To our knowledge, this is the first parentage method that

can account for genotyping errors without needing estimates of

the genotyping error rate.

2.3 Microsatellites versus SNPs

Using hundreds of thousands tomillions of SNPs can allow for the

elucidation of first, second and third order relatives (Manichaikul

et al., 2010). Nevertheless, for most species, it is not yet cost effect-

ive to genotype hundreds or thousands of individuals at so many

markers. SOLOMON cannot expediently process millions of

SNPs, but it can accommodate large SNP datasets by performing

a priori power analyses to determine a minimum number of SNPs

for the given sample sizes to capture all true parent–offspring

pairs. After a conservative number of SNPs are determined, the

appropriate number of loci can be selected.

Fig. 1. Number of observed putative (Nputative, green points) and ex-

pected false (Fpairs, brown points) parent–offspring pairs in the test

datasets derived from three empirical studies (Table 1). The left-hand

plots represent datasets with no genotyping error, and the right-hand

plots represent datasets with 3% genotyping error. Each panel represents

100 test datasets with 100 adults, 100 juveniles and 50 true parent–off-

spring pairs. The dashed line corresponds with the right-hand axis and

represents the prior probability of a putative parent–offspring pair occur-

ring by chance, Prð�Þ, estimated as Fpairs/Nputative. The number of true

parent–offspring pairs is estimated as the difference between Nputative

and Fpairs. Thus, whenever Nputative is greater than Fpairs, Prð�Þ is51,

and a nonzero proportion of true parent–offspring pairs may be inferred
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The precision associated with the posterior probabilities is

increased by increasing the number of simulated datasets and

genotypes. Because of the greater number of alleles and lower

numbers of loci typically found in microsatellite studies, these

markers require more simulations than SNPs for comparable

levels of precision (Supplementary Table S1 for details and

guidelines).

2.4 Validation

We use hypothesis-testing nomenclature to define the null hy-

pothesis as no relationship between a putative parent–offspring

pair (i.e. the pair is unrelated). In this framework, a type I error

occurs when a putative pair is unrelated, but are falsely identified

as a true pair for a given alpha. For example, a type I error

would occur if alpha was set to 0.05 and an unrelated adult

and juvenile were assigned a Prð�j�Þ value 50.05. Because

lower Prð�j�Þ values represent a reduced probability of sharing

alleles by chance, a lower posterior probability represents a

reduced probability of committing a type I error. For most meth-

ods, the type I error should be less than or equal to the chosen

alpha, else too many alternative hypotheses will be falsely ac-

cepted. A type II error occurs when a true parent–offspring

pair is not identified for a given alpha (i.e. Prð�j�Þ4� for a

true parent–offspring relationship). We determined the proper-

ties of our method by measuring the type I and type II errors

across a range of alpha levels.

To examine the relationship between alpha and type I and II

errors, we used the per locus allele frequencies from the empirical

studies (Table 1) to construct test datasets. For each of the three

empirical studies, we created 100 test datasets with 100 adults,

100 juveniles and 50 true parent–offspring pairs. The adult and

juvenile genotypes were created in accordance with HWE. The

parents and offspring were created by randomly selecting 50

adults and 50 juveniles and, for each pair, randomly copying

one allele from the adult to the juvenile at each locus. For

each of the 100 test datasets, the posterior probabilities were

calculated, and type I and type II errors were identified.

Precision of the posterior probability was calculated by measur-

ing the range of posterior probabilities across identical pairs

from 100 replicate runs of a single test dataset from each of

three study species (Supplementary Table S1). We also created

test datasets with varied numbers of unrelated individuals and

offspring per parent (Supplementary Tables S2 and S3).
We examined the effects of genotyping error by introducing

errors into the test datasets. We defined the genotyping error rate

as the proportion of all alleles that were called incorrectly (Bonin

et al., 2004; Pompanon et al., 2005). To add error to the test

datasets, we randomly sampled a single allelic position from the

multilocus dataset. We treated the dataset as a matrix with

m rows and n columns and randomly selected allele �mn. We

next replaced allele �mn with a randomly selected allele from

the same locus. This process was repeated until the desired gen-

otyping error rate was obtained. Because alleles were randomly

selected, an allele chosen to contain an error could be replaced

with the same allele. We chose genotyping error rates of 0, 0.005,

0.01 and 0.03 because they encompass the average documented

error rates for SNPs and microsatellites (Pompanon et al., 2005;

Saunders et al., 2007).

2.5 Number of known parents

The approach presented earlier in the text is general in that no

information about the sample of adults is required. We expanded

the aforementioned approach to two specific parentage applica-

tions. First, we expanded the method to situations where one

parent is known and it is possible to genotype the known

parent and their offspring. For example, many young mammals

remain closely associated with their mothers. After genotyping

both the mother and their offspring, it is possible to exclude the

maternal alleles from the offspring. This reduces the number of

alleles to search for in putative fathers and can greatly increase

the power for assignment (Jamieson and Taylor, 1997). Second,

we expanded the approach to include known parent pairings,

where it is known which males mated with which females. For

example, captive breeding and livestock programmes often spe-

cifically cross certain males with females and keep detailed re-

cords of such pairings. Knowing which females and males are

paired can substantially increase assignment power because it (i)

reduces the number of pairwise comparisons and (ii) each allele

in the offspring must match one allele in each parent. To allow

researchers to take advantage of the increased power and

reduced type I error from such study designs, we appropriately

modified the simulation and posterior probability calculation al-

gorithms. We tested these modified approaches with 100 test

datasets created from the European beech study because it had

the lowest power of the three datasets (and thus the most to gain

from additional information). For validation purposes, we set

the genotyping error rate to 1% and created mother–father

pairs (100 mothers:100 fathers), each of which produced a

single offspring.

2.6 Siblings and other relatives

Although full-siblings differ from parents and offspring in the

way that alleles are shared by descent (Blouin 2003), they can

share alleles across large numbers of loci, particularly when

including alleles that are shared by chance. This is only a concern

if full-siblings occur in both the sampled adults and juveniles (e.g.

species with lengthy and overlapping generation times), and if

they occur at high frequency. To account for full-siblings, we

additionally calculate a modified Bayesian prior that

includes alleles that are both identical-by-state and identical-

by-descent. This modification results in a more conservative

test that prevents full-siblings from being assigned as parent–off-

spring pairs. We tested both the modified and unmodified ap-

proach on datasets as described earlier in the text, but where we

introduced pairs of full-siblings as 5, 15, 25 and 50% of the

sampled individuals. Additionally, we tested whether more

distant kinship pairs (e.g. aunts/uncles to nieces/nephews,

half-siblings) would be falsely identified as parent–offspring

pairs.

2.7 Comparison with existing methods

We next analysed empirical data by examining paternity assign-

ments for 4 run-years of summer-run steelhead collected from

the Hood River, OR, USA. This is a new dataset that has not

been previously analysed. Tissue samples from all returning

anadromous steelhead were collected, as the fish were passed
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over the Powerdale dam en route to their spawning grounds. The

dam was a complete barrier to migrating fish. All 1702

summer-run steelhead were genotyped at the same eight poly-

morphic loci used in the winter-run steelhead examples

previously mentioned (Araki et al., 2007). This dataset presents

a rigorous test for two reasons. First, not all candidate fathers

were sampled because resident steelhead (i.e. rainbow trout) that

remained above the dam could also have sired offspring (Christie

et al., 2011). Second, any given offspring may have aunts and

uncles competing for parentage assignments (Olsen et al., 2001).
Direct and equitable comparisons between parentage methods

can be challenging because each method represents different

theoretical approaches. Furthermore, each method often makes

different assumptions and requires different input information.

We first used Mendelian incompatibility (exclusion) to assign

offspring to putative fathers. We allowed one locus to mis-

match to account for genotyping error. We next employed the

most-frequently used parentage program, CERVUS 3.03

(Kalinowski et al., 2007; Marshall et al., 1998), to perform the

same assignments. CERVUS uses a simulation procedure to de-

termine the significance of log-likelihood scores for candidate

parent–offspring pairs. This program requires the estimates of

three parameters: (i) the number of candidate parents, (ii) the

proportion of candidate parents sampled and (iii) the genotyping

error rate. Because we did not have estimates of these parameters

(they require substantial observational data), we set the number

of candidate parents to the number of adults sampled in our

dataset and chose a small and large proportion of candidate

parents sampled (0.1 and 0.9, respectively). We set our genotyp-

ing error rate to 1%, which is the default setting, and included

assignments with 95% or higher confidence. Finally, we used

SOLOMON to analyse the same sets of samples, using an

alpha of 0.05.
To verify our assignments with these three methods, we geno-

typed all individuals at five additional microsatellite loci (see

Supplementary Material for details). To determine which pairs

were definitively true, we performed exclusion at all 13 loci and

allowed for one locus to mismatch. For matches at both 12 and

13 loci, the average expected number of false pairs was51. For

all three methods, we measured the total number of assignments

and the total number of correct assignments as determined by

comparison with the pairs identified with the additional loci.

3 RESULTS

3.1 Validation

For all three empirical studies used to generate test datasets, the

type I error rate was always equal to or less than the desired

alpha (Fig. 2). The beech datasets had the highest type II error

rate (lowest power) of the three studies. The steelhead datasets

had a lower type II error rate, despite having five fewer loci than

the beech study. Thus, in these two cases, increased marker poly-

morphism resulted in greater power for parentage analysis than

did additional loci. Finally, the retriever study with 200 SNPs

had the lowest type II error rate (highest power), further con-

firming that SNPs can be useful markers for parentage analysis

(Anderson and Garza, 2006). The inherent tradeoffs between

type I and II errors revealed that there is a marked decrease in

Fig. 2. The relationship between alpha and the type I and II error rate.

Genotyping error rates were varied from 0 to 3% (line order corresponds

to legend order). Each panel represents 100 test datasets with 100 adults,

100 juveniles and 50 true parent–offspring pairs. The maximum observed

type I error was plotted as a dashed grey line. Type I error is consistently

at or below � (solid line), indicating that our method is conservative and

does not produce an excess of false-positive parent–offspring pairs. For

the steelhead and Labrador retriever datasets, an increase in alpha

beyond 0.05 recovers few additional true parent–offspring pairs. The

lowest alpha value plotted is 0.001, and the 0.5% genotyping error was

omitted from the retriever dataset for visual clarity. See Supplementary

Figure S1 to view these results on a logarithmic scale
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type II error (increase in power) by changing the alpha threshold

from 0.001 to 0.01. Further increases in alpha from 0.01 to 0.1

yielded marginal increases in power for the steelhead and re-

triever datasets, but it provided consistent increases in power

for the beech dataset. In general, a good tradeoff between type

I and II errors can be obtained by setting alpha at 0.05, but this

value should ultimately be decided by weighing the relative risks

of committing type I and II errors for a particular study (Sokal

and Rohlf, 1994). Not surprisingly, the likelihood of committing

type I errors increases with low-power datasets that have high

values for the prior. As such, we recommend reporting both the

prior and posterior probabilities.

In all three datasets, genotyping error increased the number of

type II errors. Because the retriever dataset could allow for the

greatest number of mismatching loci (Fig. 1), this dataset was the

least affected by genotyping error. In general, genotyping error

rates of 0.005 or 0.01 did not drastically increase the type II error

rate. A genotyping error rate of 3%, however, did result in sub-

stantial increases in type II error for all three datasets. We further

examined the tradeoff between genotyping error rates and power

in the retriever dataset. All datasets, regardless of the genotyping

error rate, identified all true parent–offspring pairs with 250 loci

(Fig. 3). As expected, the number of loci required to identify all

true parent–offspring pairs increased with an increase in the

genotyping error rate.

Additional samples of a single known-parent or information

about putative parent pairings greatly reduced the type I and II

error rates (Fig. 4). Both the type I and type II errors were

highest when no known parents were sampled. Having a

known sample of one of the parents or knowing the parent

pairs reduced the type II error by nearly 60% for the beech

study. Thus, when possible, we recommend collecting this add-

itional data to maximize power for parentage analysis.

In general, pairs of simulated full-siblings that were split be-

tween adult and juvenile files did not get assigned in large num-

bers until they represented425% of the individuals in a dataset

(Supplementary Table S4). Adjusting the prior for alleles that

were identical-by-state as well as those that were identical-

by-descent resulted in fewer sibling pairs identified with a pos-

terior probability50.05 (Supplementary Table S5). Accounting

for alleles that are identical-by-descent comes at the cost of as-

signing true parents, as it can be difficult to distinguish between

full-siblings and parent–offspring pairs with genotyping errors

with limited numbers of loci. As such, we recommend using

the modified sibling approach only when large numbers of sib-

lings are expected to be sampled. Other levels of relationship that

share fewer alleles than full-siblings (e.g. aunts/uncles to nieces/

nephews) were not falsely identified using the unmodified

approach.

3.2 Empirical data

Across all 4 run-years of our summer-run steelhead dataset, we

found that using simple exclusion for seven of eight loci

(i.e. allowing one locus to mismatch) resulted in a high type I

error rate. Using exclusion, 349 offspring were assigned to a

father, of which 213 were later confirmed to be true assignments

with genotyping at the five additional loci (Table 2). Thus, ex-

clusion produced 136 false assignments, yielding a type I error

rate of 0.39. CERVUS had type I error rates of 0.22 and 0.49

when we set the estimates of the proportion of candidate parents

sampled to 0.1 and 0.9, respectively. In contrast, SOLOMON

had a type I error rate of 0.029 for an alpha set to 0.05.

Consistent with the results from the test datasets (Figs 2 and

4), varying the alpha in this empirical dataset resulted in an

Fig. 4. The relationship between alpha and the type I and II error rate for

three parentage scenarios: no known parents (orange circles), known

parent pairs (blue circles) and one known parent (brown circles).

Notice that type I and II errors are reduced, as additional parentage

information is used. For each parentage scenario, 100 test datasets

were constructed with 100 adults, 100 juveniles and 100 true parent–off-

spring pairs

Fig. 3. Relationship between the number of used SNPs and the percent-

age of true parent–offspring pairs that were correctly identified in the

retriever datasets. Genotyping error rates were varied from 0 to 3%,

and all parent–offspring pairs were correctly identified with 250 SNPs

(line order corresponds to legend order). Notice that small amounts of

error do not substantially affect the assignment rate with intermediate

numbers of loci
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observed type I error less than or equal to alpha in all 4 years

(Supplementary Table S6). It is worth noting that in some years,

CERVUS had a higher number of false assignments than exclu-

sion because the program sometimes allowed for up to two loci

to mismatch.

Previous studies have shown that the performance of

CERVUS is robust, and we suspect that the possible presence

of aunts and uncles among the candidate parents coupled with

unknown numbers of sampled parents provided challenging con-

ditions. In general, SOLOMON performed favourably by mini-

mizing the number of false assignments while maximizing the

number of correct assignments (Table 2).

4 DISCUSSION

Accurate parentage assignments are necessary to appropriately

address a wide range of research questions (Jones and Ardren,

2003; Pemberton, 2008). Here, we provide a Bayesian method

that can account for genotyping error, missing data and false

matches without requiring estimates of any non-genetic param-

eters (i.e. all analyses simply use the provided genotypic data).

These methods can be applied to a broad array of datasets ran-

ging from samples of large wild populations with unknown num-

bers of sampled parents to carefully controlled crosses with

detailed pedigree records. To our knowledge, this is the first

parentage program that does not require direct estimates of gen-

otyping error. This solution represents a significant advance be-

cause choosing the appropriate method for estimating

genotyping error rates can be ambiguous and is further

obfuscated by the different types of genotyping errors that can

occur (Pompanon et al., 2005). Furthermore, the estimation of

error rates typically involves the genotyping of additional (or

duplicate) samples, which is costly from both a time and mon-

etary standpoint. Because this method was designed with a null

hypothesis of no relationship, it may not be ideally suited for

datasets with large numbers of related individuals (e.g. full-sibs).

Future improvements could include specifying different null

hypotheses of relationship and evaluating them in a

likelihood-based framework.
Our analyses revealed that, for a given dataset, the Bayesian

approach appropriately minimizes false assignments while max-

imizing the number of correct assignments. The number of true

parent–offspring relationships correctly identified depends on the

sample sizes, the number of loci, the allele frequencies and the

genotyping error rate. For a given marker set, larger sample sizes

rapidly increase the number of pairs that share alleles by chance

(Christie 2010), and increases in genotyping error can diminish

power (Figs 2 and 3). Furthermore, the number and frequency

distribution of alleles at each locus contribute to the rate of false

matching. Uniform allele frequencies result in the greatest power

for parentage analysis, but they are rarely observed in genetic

markers. On the other hand, SNPs with a minor allele frequency

51% will contribute little information to the elucidation of par-

ent–offspring pairs. Given the multitude of factors that contrib-

ute to false matching and reduced power, we suggest that

researchers conduct a priori power analyses before designing a

study that involves parentage analysis. Such power analyses can

dictate precisely how many loci would be required for given

sample sizes.
We provide a module for a priori power analysis as part of our

program SOLOMON, which is available as a freely distributable

R package (R Development Core Team, 2012) from the CRAN

website: http://cran.r-project.org/web/packages/. SOLOMON is

run with a graphical user interface written with the TCL/TK

package provided by R. SOLOMON performs the described

Bayesian parentage analysis for datasets with no known parents,

one known parent or known parent pairs. Using an Intel core

i7TM processor with 8 GB of random access memory, the average

run-time was 11 min for the beech datasets, 8 min for the steel-

head dataset and 13 min for the retriever dataset (with larger

sample sizes resulting in increased run times). Furthermore, the

program performs exclusion for the three types of parentage

analysis, and the exclusion interfaces allow for user-defined num-

bers of loci to mismatch. In summary, the Bayesian approach

implemented in SOLOMON can be applied to a wide variety of

datasets, resulting in robust parentage assignment.
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Table 2. Comparison of exclusion, CERVUS and SOLOMON on a

summer-run steelhead dataset

Run-year Adults/

juveniles

Method Assigned Correct

2001 201/227 Exclusion 79 38

2001 201/227 CERVUS 35 (98) 23 (37)

2001 201/227 SOLOMON 29 27

2002 343/285 Exclusion 141 90

2002 343/285 CERVUS 47 (151) 39 (78)

2002 343/285 SOLOMON 63 61

2003 144/216 Exclusion 73 49

2003 144/216 CERVUS 44 (83) 34 (49)

2003 144/216 SOLOMON 28 28

2004 90/196 Exclusion 56 36

2004 90/196 CERVUS 32 (65) 27 (35)

2004 90/196 SOLOMON 20 20

All years 778/924 Exclusion 349 213

All years 778/924 CERVUS 158 (397) 123 (199)

All years 778/924 SOLOMON 140 136

Adults/juveniles column represents the sample sizes of adults and their putative

offspring, respectively. Assigned refers to the total number of assignments.

Correct refers to the number of assignments that were correct after genotyping all

putative pairs at five additional loci. For CERVUS, we estimated the proportion of

candidate parents sampled to be 0.1 or 0.9, although we did not possess demo-

graphic estimates of this parameter (results for 0.9 are presented in parentheses).

Using more moderate values for the proportion of candidate parents sampled (e.g.

0.05) did not improve performance.
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