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ABSTRACT

Motivation: Heterogeneity is a ubiquitous property of biological sys-

tems. Even in a genetically identical population of a single cell type,

cell-to-cell differences are observed. Although the functional behavior

of a given population is generally robust, the consequences of hetero-

geneity are fairly unpredictable. In heterogeneous populations, syn-

chronization of events becomes a cardinal problem—particularly for

phase coherence in oscillating systems.

Results: The present article presents a novel strategy for construction

of large-scale simulation programs of heterogeneous biological enti-

ties. The strategy is designed to be tractable, to handle heterogeneity

and to handle computational cost issues simultaneously, primarily by

writing a generator of the ‘model to be simulated’. We apply the strat-

egy to model glycolytic oscillations among thousands of yeast cells

coupled through the extracellular medium. The usefulness is illustrated

through (i) benchmarking, showing an almost linear relationship be-

tween model size and run time, and (ii) analysis of the resulting

simulations, showing that contrary to the experimental situation, syn-

chronous oscillations are surprisingly hard to achieve, underpinning

the need for tools to study heterogeneity. Thus, we present an efficient

strategy to model the biological heterogeneity, neglected by ordinary

mean-field models. This tool is well posed to facilitate the elucidation

of the physiologically vital problem of synchronization.

Availability: The complete python code is available as Supplementary

Information.
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1 INTRODUCTION

Quantitative modeling of the dynamic behavior of living systems

has to be realistic in terms of both biochemistry and biophysics,

and in the description of the structural complexity of living

matter. Compared with equivalent problems in other parts of

natural science, complexity in biological systems is increased be-
cause structural elements with similar function, e.g. the cells in a

tissue, are not completely identical. Although biological function

seems stable and robust, the functional consequences of various

kinds of heterogeneity in cellular systems are rather difficult to

predict, and are fairly unexplored in the literature. This article

describes a new programming strategy aiming to model hetero-

geneous populations of biological entities. From a modeling
perspective, cellular heterogeneity entails a huge increase in the

number of parameters and variables, as (i) diversity among cells
is introduced by allowing kinetic parameters to vary (even for

systems with identical metabolic networks, where kinetic expres-

sions and the species are the same for all cells), and (ii) the chem-
istry in each individual cells is described through unique sets of

corresponding species. Most reactions of a metabolic network
are composite reactions where rates may depend on several elem-

entary rate constants and/or stationary concentrations varying

from cell to cell.
The programming strategy has been designed to produce code

that is computationally effective and at the same time manage-
able for the programmer. This is accomplished by writing a code

generator program, which automatically generates Cþþ code
from descriptions of cell interactions, the metabolic network

and the kinetic parameters. The strategy handles spatial as well

as temporal models and allows for easy change of scale and of
chemical composition.

The strategy was developed to study the dynamics of oscilla-
tory behavior in a population of heterogeneous cells. Notably,

usual mean-field models, per definition, neglect the problem of
intercellular signaling and synchronization, vital for biological

function, which are at the heart of the presented strategy. The

modeling is illustrated through the classical example of metabolic
oscillations in a stirred suspension of yeast cells first studied by

Chance et al. (1964). In this system, thousands of modeled cells
are coupled by exchange of chemical species through a common

extracellular environment. A model of a single cell embedded in a

cell solution (Hald and Sørensen, 2010) is used as an illustrative
example. The strategy allows for the generation of a large

number of cells, each with distinct properties. The overall com-
partments and reaction network are given in Figure 1. Because

the system easily can be scaled up to a very large system

[4100:000 ordinary differential equations (ODEs)], we briefly
discuss powerful features to speed up computations.

We illustrate the usefulness of the strategy by analyzing and
comparing the resulting model simulations using various meth-

ods. The yeast system is a particular simple example of an inter-
acting cellular system. Glycolytic oscillations within individual

cells give rise to oscillations in the concentrations of extracellular

species. If extracellular oscillations can synchronize the individ-
ual cells, the whole system will be phase locked in an oscillatory

state. This is precisely what is observed in the experimental*To whom correspondence should be addressed.
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system. Simulating systems of 1000 cells on the basis of two well-

established kinetic models (Hald and Sørensen, 2010; du Preez

et al., 2012a), however, did not produce in-phase oscillations

even with periodic forcing with extracellular acetaldehyde

(ACAx). The results show that realistic kinetic models of a

large population of heterogeneous oscillators are sometimes sur-

prisingly hard to synchronize. Thus, it underpins the need for this

type of modeling to facilitate understanding of the physiologic-

ally vital synchronization process in populations of cellular

oscillators.

2 METHODS

The central part of the method is a generator program, which takes input

(see Fig. 2) in the form of descriptions of kinetic expressions of reactions

within and between the different compartments. In the yeast system, a cell

and the extracellular medium constitute two functional units, where indi-

vidual cells also constitute individual compartments. Note that cells need

not be of the same size nor need they be connected in the same way. The

generator program processes the input before the generation of a simula-

tor program (here in Cþþ code), which can then be compiled and exe-

cuted. The processing stages reduce the risk of introducing errors during

manual coding, but the main point is it allows for an efficient reduction in

the computational costs of the Cþþ program owing to an increase in

system enlargement.

In this descriptive example, we use three primary techniques to reduce

computational load:

(a) To solve the system of ODEs, a Krylov iterative method of

CVODE as the linear solver is used. This iteration is an inexact

Newton iteration using the current Jacobian, but this is done

through the matrix-free J� z product, where J is the Jacobian

and z is an arbitrary vector.

(b) To reduce the sheer number of floating-point arithmetic, elimin-

ation of common sub-expressions (CSE) in a list of mathematical

expressions is performed.

(c) As each cell constitutes a single compartment, the code should be

very amenable to parallelization. This is implemented using

OpenMP on a single computer with shared memory.

Introduction of heterogeneity and handling of large-scale systems are

facilitated by the use of object-oriented programming (OOP), which is

well suited to this task (see the Supplementary Information for a brief

description of OOP).

2.1 General layout

Figure 2 shows graphically the overall structure of the proposed strategy.

Large-scale modeling requires problem-dependent solutions to reduce

Fig. 1. Drawing of the system and the reaction network. A yeast cell suspension consists of many heterogeneous cells that are coupled through the

extracellular medium. In every cell, glucose is used through the glycolytic pathway containing the same enzymes but in different amounts

Fig. 2. Overall charts of the strategy
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computational costs. Implementation of cost-reducing sub-programs is

facilitated by a model generator, which is written in Python. The

Python library, SymPy, allows for symbolic manipulations of mathemat-

ical expressions. This is used to (i) eliminate common sub-expressions

(CSE) within a set of mathematical expressions and (ii) generate symbolic

expressions of partial derivatives to produce a function that calculates

J� z. The model generator works in three stages:

� Input: Compartment descriptions, i.e. models, stoichiometry and ini-

tial conditions, are given in turn to the model generator. From this

input, the ODEs and stoichiometric matrix are produced.

� Process: Here, cost-reducing or information-enhancing manipula-

tions may be performed on the input.

� Output: As this stage writes out the Cþþ program, it consists of

somewhat messy production code.

� The Cþþ code is organized as follows (Fig. 2):

– Setup phase: Initialize variable vector and system objects to be

collected in a hierarchical data structure (see below). The data

hierarchy is important for introduction of heterogeneity generated

at this stage.

– Initialize solver and output structures.

– Solve system and produce output.

The generated (yet readable) Cþþ code is compiled and executed.

The Supplementary Information contains the Python code that is used

to implement the strategy and a more technical description of the files.

Here, a short presentation of the yeast system will be followed by a sec-

tion that describes the strategy in a more conceptual frame.

2.2 Yeast system

The modeling of a population of yeast cells is based on a previously

published mean-field model of global synchronous glycolytic oscillations

within a well-stirred population of yeast cells [refer to Hald and Sørensen

(2010) for details]. Experimentally, a global [NADH] oscillation is

observed, indicating that the individual cells must be well synchronized

(Danø et al., 1999, 2001). Thus, this full-scale model describes in detail

the behavior of transient oscillations in a single modeled cell on fermen-

tation of a pulse of glucose and addition of cyanide. This system is

modeled by 22 ODEs (17 reactions and 85 parameters, see

Supplementary Information). By definition, however, a mean field

cannot be used to study the synchronization process. To study the

effect of intercellular heterogeneity, many cells have to be simulated

each with distinct properties. This is introduced by varying cytosolic vol-

umes and enzymatic activities, i.e. the Vmax values of all enzymes within

the fermentation network. Km values, etc., can be considered to be con-

stant among monoclonal cells. The parameter values are drawn from a

normal distribution, with mean and standard deviation (SD) as given by

the literature (any detailed knowledge about parameters in individual

cells could also be set explicitly). This is in contrast to stochastic differ-

ential equations (SDEs) where noise is introduced explicitly to the ODEs

of the system. Here, models of thousands of distinct yeast cell oscillators

that couple through a common extracellular medium by linear diffusion

processes (see Fig. 1) are used to illustrate the power of the strategy.

2.3 Kinetic expressions and options

Each functional unit, i.e. a yeast cell compartment or the extracellular

compartment, is described by a single generic set of ODE expressions.

Thus, the two functional units of the system can be described succinctly

and similarly through sets of expressions describing reaction kinetics,

stoichiometry and initial conditions. Compartments are coupled through

metabolites that may cross the plasma membrane. A set of placeholder

variables describes these metabolites across every cell in the system.

From the input, the model generator must produce an internal repre-

sentation of (i) internal and external variables (relative to the compart-

ment), (ii) parameters and (iii) ODEs (as some reaction models are used

to in more than one ODEs, individual model expressions are also stored).

The representations must be in SymPy format (docs.sympy.org) to allow

for symbolic manipulations of the data.

Heterogeneous parameters within cells are given along with the cor-

responding SD to the model generator. The model generator simply re-

moves these parameters from the global list and treats them separately on

writing out the Cþþ model code (see below).

2.4 Model processing stages

The input data may be manipulated in various ways to decrease run

times. Here, we perform the following manipulations: (i) symbolic deriv-

ation of all partial derivatives needed to produce the non-zero content of

the Jacobian (using sympy.diff), i.e. @fðyÞi@yj
, where fðyÞi is every ODE and yj

is every variable within fðyÞi; and (ii) a search for all common sub-expres-

sions across a list of mathematical expressions (using sympy.cse). CSE on

such expressions may significantly decrease calculation load during run

time.

2.5 Generation of Cþþ code

After input processing, the collected information is provided to a set of

writer modules that writes out the Cþþ code. Designing the ‘writer

modules’ is very similar to writing a normal simulation program, e.g. con-

necting the model with a solver, and will not be described [see e.g.

Hindmarsh et al. (2005)]. Only features essential to the strategy used in

the Cþþ code are described below.

2.5.1 Initial conditions and variable vector All variables are orga-

nized and initialized in a vector, y (see Fig. 3A): on initializing y, the

values of the nI intracellular variables are stored in a particular sequence

(each variable is given an ‘enum’ to facilitate readability), and the nI
variables of each cell are stored in a back-to-back manner. The end of

y contains the values of the nX extracellular variables (also in an ‘enum’-

given sequence). This gives a system size of N ¼ ncells � nI þ nX, where

ncells is the number of cells. Each element is therefore easily accessed by

formulae. To reduce calculation load during run time, the starting vari-

able index of each cell is stored in the data hierarchy (for the ith cell, ci:

index ¼ ci � nI). Any variable can then be accessed safely and without

copying in Cþþ code by:

const double & vname ¼ y indexþ variable enum½ �

This organization is key for (i) optimization of cache coherence, (ii) read-

ability and (iii) fast and safe data retrieval across multiple cells.

Fig. 3. Variable and parameter organization. (A) Variables are stored in a

1D vector, y. Intracellular variables from every cell are stored in a par-

ticular sequence, and cells are stored back to back, ending with the extra-

cellular variables. This provides for access by formulae and optimization

of cache coherence. (B) Parameters are stored in a data hierarchy where

system-wide parameters are kept in a hierarchy object at the top-most

level, constant parameters for the cell or extracellular compartments in

two middle-level objects and the heterogeneous parameter values at the

individual cell objects at the bottom level. The four different colors illus-

trate four different classes
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2.6 Data hierarchy

Variable indexes and parameters are also organized to maximize run-time

efficiency and readability. Data are stored at relevant levels in a data

hierarchy that resembles the morphological hierarchy and chemical struc-

ture of the system (see Fig. 3B).

The hierarchy is build such that any parameter is only stored once in

the hierarchy but applies to all downstream objects. Thus, a parameter

stored in a higher-level object (e.g. the top-most hierarchy object, here

simply called Hierarchy) applies to all downstream types. In effect,

higher-level objects contain the lower-level objects as nested lists (we do

not use an inheritance hierarchy even though the hCell-type ‘is a’ cCell-

type as well). As cells may be heterogeneous, variability is introduced as

different parameter values in the multiple objects of hCell type that de-

scribe individual cells. This implies that a class is generated for each type

of object in the hierarchy, i.e. four classes describe the yeast system (dif-

ferent shades in Fig. 3B).

(i) The top-most Hierarchy class contains all ‘global’ system param-

eters (none in this example) and single cCell and xComp objects as data

members. (ii) The extracellular xComp class only contains parameters

specific for the extracellular compartment as members. (iii) The ‘constant’

intracellular cCell class contains constant cell parameters as well as a

vector of cell objects. (iv) Lastly, data members of the ‘heterogeneous’

intracellular hCell class are parameters to be heterogeneous among the

cells as well as the index where the local cell variables are found within the

variable vector, y. Classes with ‘constant’ parameters (all except the hCell

class) are only instantiated once. In contrast, the hCell class is instantiated

ncells times, and each object is given individual values for the parameters

to be heterogeneous among cells.

2.6.1 Introduction of heterogeneity In this example, the values of

heterogeneous parameters are drawn from a normal distribution, with

mean and SD given by the user (see above). The heterogeneous para-

meters are then given to the hCell object at the point of instantiation.

Other mathematical distributions or functions may also be used. These

hCell objects are collected in a vector used to instantiate the cCell object.

Thus, object instantiation works from bottom-up as we collect lower-level

objects into higher-level objects of the data hierarchy.

The _y ¼ fðyÞ function is evaluated by traversing the data hierarchy

from top to bottom; data from each object are extracted. At the ODE

level, all relevant data are available to calculate _y (see listing 1 in the

Supplementary Information). Note that by accessing parameter values,

variables and indexes as references to const doubles or const ints, copying

of data is eliminated and computational load is reduced.

The J� z function, which returns the matrix-free J� z product, re-

quires proper indexing and non-zero Jacobian information. The deriv-

ation of symbolic expressions of partial derivatives reduces this task to an

indexing problem, which is expedited by use of the data hierarchy. Again,

traversing the data hierarchy provides relevant variable indexing and

parameter data (Fig. 3) needed to calculate this vector (see Supplemen-

tary Information for technical details).

2.6.2 Parallelization Traversing the data hierarchy in the fðyÞ and

J� z functions makes the code very amenable to parallelization. In this

example, we use OpenMP to handle the distribution of calculations

among processors. See the python code for an example of implementa-

tion. Consult Chapman et al. (2007) regarding details.

2.6.3 Storing large datasets The HDF5 file format was used to store

large datasets fast and efficiently in a binary format. Moreover, HDF5

offers a number of third-party bindings, including python, Matlab, IDL,

etc. See python code for an example of implementation, and refer to the

HDF Group (2011) for further information.

2.7 Measuring synchronization

Synchronization between the heterogeneous cells was monitored by prob-

ing the long-time distribution of phases, �. The instantaneous phase is

derived as the argument of the Hilbert transform, H, of each individual

[NADH] oscillation, i.e. �iðtÞ ¼ arctanðHð½NADHi �ðtÞÞ
½NADHi �ðtÞ

Þ. As a measure of

global synchronization at time t, the mean phase distance (mpd) between

oscillators was calculated as in Gil et al. (2009):

di, j ¼ minfj�i � �jj, 2�� j�i � �jjg ð1Þ

mpd ¼
1

N2

XN

i, j¼1

di, j ð2Þ

3 RESULTS

The main result in this article is the python code that generates
the Cþþ code to be compiled and run (see Supplementary

Information). To illustrate the power of the proposed program-

ming strategy, we also include some basic run-time figures.
Our basic test runs included heterogeneity in all Vmax values of

enzymatic reactions (with an SD of 5% relative to the value of

Vmax, see below), as these parameters are heterogeneous among
cells. Simulating an experiment of 30min, corresponding to con-

sumption of 25mM dissolved glucose, Figure 4 shows that run-

time scales almost linearly with system size.

3.1 Enhancing run-time performance

Run-time reductions are, of course, dependent on the particular

system and the chosen size. We chose 10 000 cells (16 006 ODEs)
as a benchmark system size to illustrate the power of our three

basic run-time reduction schemes (i) CSE, (ii) Krylov solver and

(iii) parallelization. Table 1 shows bench-marked run times of the

Fig. 4. Run time versus system size. This graph shows the almost propor-

tional relationship between run time and system size

Table 1. Run times in minutes for a 30-min simulation of 10 000 coupled

yeast cells with and without system enhancement

Enhancements All None no CSE One core Diaga

Run time/min 287 1506 311 834 1028

Ratio 1.0 5.25 1.08 2.91 3.58

Normal configuration (All) uses CSE, eight cores and GMRES solver. aDiag: linear

solver that uses a diagonal approximation to J.
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normal configuration (All), without any optimizations (None)

and without just a single optimization.
In this case, excluding CSE only increases run time � 10%. In

general, this increase will depend on the number of identical

sub-expressions found (in some models, up to a factor of 6 can

be gained). Excluding parallelization with eight cores increases

run time by a factor of � 3, and excluding the Krylov-enhanced

solver using a Jacobian information yields a factor of � 3:5.
Excluding all optimizations did not decrease performance

proportionally.

3.2 Synchronization

Heterogeneity in the population of yeast cells was simulated by

drawing a parameter value, Pvalue, from a normal distribution,

with an average equal to the Pvalue in the model from Hald and

Sørensen (2010) and an SD set to k � Pvalue, where 0 � k � 1. If

real-time cytometric data had been available, a more realistic

distribution could have been obtained by the method of

Hasenauer et al. (2011). To keep run times within 20min, we

choose ncells ¼ 1000. In simulations, we used k ¼ 0:01, 0.05 and

0.2, and observed increasingly low levels of total synchronization

as shown in upper and lower panels of Figure 5A, B and D

[under similar growth conditions as in our experiments,

Johnston et al. (1979) estimated up to 30% differences in cell

size]. The red curves in the lower panels of Figure 5 show that the

mean phase distance between oscillators was high throughout the

oscillatory period, and that the rate of desynchronization corre-

lated with level of heterogeneity. Desynchronization is partly a

consequence of the lack of phase synchronization between indi-

vidual oscillators, causing a lack of oscillations in ACAx, the

main synchronizer of the system (see Fig. 6A). Introducing an

external oscillatory ACAx flow to simulate an oscillatory ACAx

flux from synchronized cells led to forced oscillations in global

[NADH] oscillations as shown in Figure 6 (no and maximal

forcing correspond to Fig. 5B and C, respectively). Even

small-amplitude [ACAx] oscillations produced global [NADH]

oscillations, with a roughly linear amplitude relationship (Fig.

6A—note that for [ACAx] to be non-negative, the amplitude

cannot increase much further). Global [NADH] oscillations

correlate with a narrowing phase distribution (Fig. 5C and 6).

This clearly shows that a heterogeneous population can remain

fairly unsynchronized in terms of its phase distribution but still

display global oscillations when most of phase angles cluster

around the natural global frequency.
As global oscillations are observed experimentally, despite the

high degree of heterogeneity, [ACAx] must indeed oscillate

(Richard et al., 1996; Hald and Sørensen, 2010). Usually, a

phase-resetting, i.e. a synchronizing, perturbation by cyanide

acting on ACAx is required to achieve global oscillations besides

the addition of glucose. A phase-resetting signal was modeled at t

¼ 5min by forcing [ACAx] for a single period. This, however, did

not synchronize the cells (data not shown), corroborating the

fact that the intrinsic oscillators of the model mostly are too

insensitive to ACAx. Moreover, a 180	 phase shift in the forcing

flow of ACAx led to an instant quench of oscillations followed

by swift re-entrainment to the forcing (Fig. 6B). Overall, this

indicates that the oscillator sensitivity to ACAx is too low, and

that the forcing mostly entrains the otherwise non-oscillatory or

low-amplitude cells to display coherent global oscillations.

Fig. 5. Heterogeneity desynchronizes oscillations. A total of 1000 cells

were simulated. In (A), the heterogeneity constant k ¼ 0:01 (see text); in

(B and C), k ¼ 0:05; and in (D), k ¼ 0:2. In C, a forcing flow of ACAx

was introduced (see inset).Upper panel: Phase-/period-plots of individuals

[NADH] oscillations, where each dot has a transparency proportional to

the amplitude. Note that the phases are extremely sensitive on heteroge-

neity, whereas the periods remain more constant (except for D). Lower

panel: The averaged [NADH] of all cells (blue curves) clearly show that

global oscillations diminish with increasing heterogeneity. The mean

phase distance (red curve) is high throughout the oscillatory domain.

With a forced ACAx flow (C), global sinusoidal [NADH] oscillations

are present, as a small proportion of cells oscillate in-phase, reflected in

oscillations of the otherwise high mean phase distance

A B

Fig. 6. Glycolytic oscillations depend on [ACAx] forcing. A total of 1000

cells and k ¼ 0:05. (A) Increasing forced ACAx-flow amplitudes from 0.0,

0.02, 0.1, 0.2 to 0.3 mM
min both increased the amplitude of sawtooth-shaped

[ACAx] oscillations, �[ACAx] (black curve in B), and the global ampli-

tude of [NADH] oscillations, �[NADH] (grey curve in B), in a near-

linear manner. (B) Introducing a 180	 phase shift in the [ACAx] forcing

lead to a very fast re-entrainment of the simulated [NADH] signal

1296

B.O.Hald et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/29/10/1292/257054 by guest on 19 April 2024



This problem is not particular to the metabolic model chosen

here. We also applied the modeling strategy to a recent open-

flow model (du Preez et al., 2012a, b), which also failed to show

global synchronous oscillations on introduction of heterogeneity

of k ¼ 0:05 (see Fig. 7).
It is beyond the scope of this article to elucidate the current

lack of our understanding of synchronization in yeast, but the

prospects of the proposed modeling strategy for studying the

effects of heterogeneity should be evident.

4 DISCUSSION

This article presents a flexible and efficient strategy for generat-

ing large-scale models of heterogeneous biological systems from

existing single-cell models. A heterogeneous yeast population

model was implemented as an example of the concept. The pos-

sibility of introducing various forms of heterogeneity at any

structural level facilitates numerical studies of the question

posed in the introduction: How does biochemical and morpho-

logical diversity affect the overall functions and synchronization

of a biological system?

The implemented model generator of heterogeneous cell popu-

lation models was used to study the synchronization processes

using previously established models of (i) transient mean-field

oscillations in a stirred suspension of yeast cells (Hald and

Sørensen, 2010) and (ii) a recent open-flow model of the yeast

system (du Preez et al., 2012a). This demonstrates the relative

ease of switching between models on creation of a semi-generic

model generator (the Cþþ code–generating modules are depen-

dent on the particular problem and have to be revised between

very different models). In the former system, we also showed that

the phase of individual cellular oscillations is very sensitive to

heterogeneity, whereas the frequency is more robust. The lack of

in-phase synchronization leads to lack of [ACAx] oscillations, i.e.

the cells do not synchronize in the model as opposed to the

global synchronous signal achieved experimentally. Thus, the

details of the synchronization process within a yeast cell popula-

tion are clearly not quantitatively understood.
Owing to incomplete knowledge of the distribution of model

parameters for the actual yeast cells, we use a random sample of

parameter values to describe the cell heterogeneity. This should

not be confused with treating incomplete knowledge of the

system environment using SDEs for the simulations (Kampen,

1992). Our particular aim is to investigate synchronization

among many heterogeneous oscillators, not the study of

random fluctuations in single oscillator in a heterogeneous

medium, where the SDE approach would have been appropriate

(Bachar et al., 2012). Applying an SDE description of the entire

ensemble of oscillators would increase the computational load

prohibitively. Thus, for the present method, the ODE description

is fully retained, and any detailed knowledge of actual morphol-

ogy and parameter values for the individual cells can be seam-

lessly implemented.

4.1 Modeling concept

The flexibility and efficiency of the presented strategy mainly

stem from the introduction of a model generator: a program

that generates code to be compiled instead of writing compilable

code directly. This may, at first, seem complicated and time-

consuming, but it does have major advantages, as it provides a

platform for model processing, customization and readability.

Here, the symbolic mathematical library, ‘SymPy’, was used

both to build a matrix-free J� z function needed for the

Krylov-based solver and to perform CSE on all lists of mathe-

matical expressions. Moreover, the model generator automati-

cally generates Cþþ code dependent on selected levels of

heterogeneity or custom-made sub-routines (e.g. CSE). Finally,

the modularity of the model generator increases code readability

and minimizes error introduction, i.e. no system-wide changes

are required when changing subsets of the model.
Three code optimizations were performed (Table 1): (i) a

Krylov iterative method as solver, which led to an �4-times

reduction in run time. The requirement of the J� z sub-routine

requires most work compared with the other optimizations, but

it also had the biggest return. (ii) CSE only led to �10% reduc-

tion. However, in other systems with more sub-expressions and

reuse, we have observed up to �6-times reductions in run times

(Hald et al., 2012). CSE is easily implemented, but may also be

the slowest sub-routine of the model generator if many expres-

sions are searched. (iii) Parallelization does not, in itself,

require use of a model generator, but the efficiency is

enhanced by the data hierarchy of the strategy that allows

for easy threading in a shared-memory multiprocessor compu-

ter. In the yeast system, parallelization to eight cores led to

� 3-times reduction in run time. Finally, simulation run times

are reduced by letting the generated model trade RAM for

speed, as all information that can be calculated before the

actual solving of ODEs is stored within the data hierarchy.

The efficacy of this approach compared with usual simulator

setups is harder to quantify, but the hierarchical structure of

our strategy obviously (i) facilitates optimization of cache

coherence, (ii) helps optimization of parallelization schemes,

(iii) allows for easy data access for the _y ¼ fðyÞ and J� z

sub-routines and (iv) improves readability.
The novelty of the proposed strategy is more conceptual

than technical: without resorting to a completely new

domain-specific language, the existing computational resources

are used in the construction of a model generator. The model-

ing concept is independent of particular implementations or

A B

Fig. 7. Cell synchronization within an open-flow system. The modeling

strategy was applied to a recently developed open-flow model (du Preez

et al., 2012a). (A) Global [NADH] signal in a system of 1000 heteroge-

neous (k ¼ 0:05) cells (upper panel) or a single cell (original model in red

color, lower panel). (B) Phase-/period-plot of the systems in (A): blue dots

from upper panel, red dot from lower panel
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run-time systems, but different implementations naturally

require a rewrite of the presented code. A natural set of

future extensions would be to generate code for other ODE

integrators and to develop a modeling environment that may

generate model code in different formats that can be imported

by existing simulation environments. The amount of work

required for such extensions depends on the match between

the current and new backends.

4.2 Synchronization of heterogeneous oscillators

Introducing heterogeneity in the activities of intracellular

enzymes (Vmax) of a model consisting of 1000 cells led to desyn-

chronization. Increasing levels of heterogeneity showed that the

phase of oscillations was particularly sensitive on heterogeneity

in Vmax values as compared with the frequency (Fig. 5). The

uniform phase distribution led to a lack of [ACAx] oscillations,

i.e. absence of coupling signal, although most individual cells

showed independent oscillations. This finding has recently been

demonstrated experimentally using optical tweezers during feed-

ing with a transient glucose pulse (Gustavsson et al., 2012). The

initial conditions of the cells were identical under each simula-

tion, but differences in the initial transient (during filling of inter-

mediary metabolite pools) might disallow for a synchronization

event. However, introducing a ‘global’ forcing event of [ACAx]

after 5min, i.e. a phase-resetting signal, did not synchronize cells.

Only by external forcing of [ACAx] during glucose consumption,

global [NADH] oscillations could be observed. These arose from

forcing the subset of oscillators that showed weak or no oscilla-

tions (Fig. 6). This suggests that the glycolytic oscillator sensitiv-

ity of real cells on [ACAx] is larger than in the model, a finding

consistent with the experimentally reported [ACAx] amplitude of

only 5–8mM (Danø et al., 2007). We have previously measured

180	 phase-shift responses from a yeast cell suspension forced

with [ACAx] at their natural frequency [Fig. 1 in Danø et al.

(2007)]. These experiments showed a weak amplitude response

and fast re-entrainment to the new phase in �8 cycles owing to a

combined phase and amplitude response. The simulation of a

180	 phase shift in forced [ACAx] (Fig. 6) showed an even stron-

ger re-entrainment to the forcing frequency because the system

shows no intrinsic [ACAx] oscillations. Thus, low-amplitude and

non-oscillating cells are just driven by the forcing.

As this synchronization problem occurred in two of the most

recent quantitative models of yeast synchronization, the

modeling strategy highlights a fundamental problem in global

synchronization of heterogeneous populations. However, our

simulations do show that a complete in-phase synchronization

is unnecessary to observe oscillations. As long as the phase dis-

tribution is clustered (Fig. 5C), global oscillations might be

observed.
The degree of heterogeneity is currently not known in detail.

However, it is fair to assume that after the exponential growth

phase, cells in all kinds of cell cycle phases are present in the

suspension, leaving the cells very heterogeneous in terms of pro-

tein content and size.

5 CONCLUSION

A novel strategy for construction of temporal (or spatio-tem-

poral) large-scale models of heterogeneous biological entities

has been presented. The strategy was illustrated by modeling a

single cell type in a stirred suspension, but coupled cells of dif-

ferent types could be modeled by the same principle. The strategy

is particularly well suited to study synchronization processes in

heterogeneous cell populations. Large models of coupled cells

tend to be stiff and have off-diagonal couplings in their

Jacobians. However, the present strategy is flexible enough to

allow for system-specific implementations of user-defined proces-

sing to enhance run-time performance. Simulations of 1000 yeast

cells in two recent models of yeast cell oscillations showed that

the sensitivity of the core glycolytic oscillator on [ACAx] most

likely is too weak in the models to allow for globally synchro-

nized oscillations.
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