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ABSTRACT

Motivation: Signaling networks mediate responses to different stimuli

using a multitude of feed-forward, feedback and cross-talk mechan-

isms, and malfunctions in these mechanisms have an important role in

various diseases. To understand a disease and to help discover novel

therapeutic approaches, we have to reveal the molecular mechanisms

underlying signal transduction and use that information to design tar-

geted perturbations.

Results: We have pursued this direction by developing an efficient

computational approach, Sorad, which can estimate the structure of

signal transduction networks and the associated continuous signaling

dynamics from phosphoprotein time-course measurements. Further,

Sorad can identify experimental conditions that modulate the signaling

toward a desired response. We have analyzed comprehensive

phosphoprotein time-course data from a human hepatocellular liver

carcinoma cell line and demonstrate here that Sorad provides more

accurate predictions of phosphoprotein responses to given stimuli

than previously presented methods and, importantly, that Sorad can

estimate experimental conditions to achieve a desired signaling re-

sponse. Because Sorad is data driven, it has a high potential to gen-

erate novel hypotheses for further research. Our analysis of the

hepatocellular liver carcinoma data predict a regulatory connection

where AKT activity is dependent on IKK in TGF� stimulated cells,

which is supported by the original data but not included in the original

model.

Availability: An implementation of the proposed computational meth-

ods will be available at http://research.ics.aalto.fi/csb/software/.

Contact: tarmo.aijo@aalto.fi or harri.lahdesmaki@aalto.fi

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

Binding of the ligand on the cell surface receptor initiates a sig-

naling cascade that is propagated via several parallel pathways

through phosphorylation of specific amino acid residues in

signaling proteins. Building a mechanistic understanding of sig-

naling pathway dynamics from experimental data has remained

challenging for several reasons. Although mass spectrometry–

based techniques have witnessed considerable progress recently,

it is laborious to measure active forms of proteins in a highly

quantitative and high-throughput manner. Furthermore, un-

raveling functional interactions between phosphoproteins de-

mands a large number of experiments where the key signaling

molecules are perturbed, or even co-perturbed, by using direct

gene knockouts, gene knockdowns, specific inhibitors or other

external stimuli.
A number of different computational strategies have been

proposed to model signal transduction. A methodology based

on Bayesian networks for describing the interconnections be-

tween signaling proteins has been used to study T cell signaling

(Sachs et al., 2005). Similarly, Aldridge et al. (2009) used an

approach based on fuzzy logic, an extension to the two valued

Boolean algebra, to study the downstream signaling of tumor

necrosis factor, epidermal growth factor and insulin receptors.

While logic-based approaches provide models that are easy to

interpret and analyze computationally, they do not allow bio-

physically motivated mechanistic modeling approaches, which

inevitably require the use of dynamic and continuous models of

signaling networks (reviewed in Aldridge et al., 2006;

Chakraborty and Das, 2010). Ordinary differential equations

(ODE), which represent the average of detailed chemical reac-

tion models in a cell population, have thus become preferable

in studies focusing on signaling dynamics. For example,

Chaudhri et al. (2010) constructed an ODE model to describe

receptor-dependent mitogen-activated protein kinase signaling

based on prior biological knowledge about the network struc-

ture, and also identified a novel regulatory motif. Reverse en-

gineering of dynamic models of molecular networks has also

been extensively studied in the context of transcriptional regu-

lation, and several ODE modeling methods have been proposed

(Äijö and Lähdesmäki, 2009; Bansal et al., 2006; Bonneau

et al., 2006; Cantone et al., 2009; Gao et al., 2008; Honkela

et al., 2010; Titsias et al., 2012). Our approach differs from the

previous methods by using continuous non-parametric dy-

namics and, importantly, by providing a way to modulate net-

work’s response as described below.*To whom correspondence should be addressed.
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A far-reaching goal is to use mathematical models and compu-
tational methods to modulate signaling pathway responses in

healthy and diseased conditions. For example, Mitsos et al.

(2009) attempted to detect drug targets from phosphoproteomic
data by identifying changes in a pathway induced by a treatment

relative to an untreated control. Given the complexity of signaling

pathway dynamics, accurate modulation strategies inevitably re-

quire the use of a mechanistic model of network dynamics.Model-
based intervention approaches have been studied in the context of

probabilistic Boolean network models (Shmulevich et al., 2002),

but there is an interest on how the intervention strategies can be
implemented for continuous and dynamical models.

Here, we present a flexible non-parametric ODE model and
propose an efficient and scalable network structure learning

algorithm to identify signaling pathways and their dynamics

from phosphoprotein data. This modeling method, called

Sorad, assumes the standard ODE formulation but alleviates
the detailed parametric model specifications by using non-

parametric functions. This has important consequences for the

signaling pathway reconstruction as we have to estimate only the

kinetic parameters � and � and the hyperparameters of the co-
variance function, but no parameters directly related to the regu-

latory functions. When applied to previously unseen stimuli,

Sorad provides quantitatively accurate signaling pathway re-
sponses. More importantly, we show how Sorad can be used

to design interventions for the modulation of said pathway’s re-

sponse and dynamics. This novel and unique method enabling

the design of optimal stimuli (e.g. receptor stimuli, drug treat-
ment) encourages the discovery of new methodologies for experi-

mental design, drug discovery and therapeutic applications. To

demonstrate Sorad’s performance, we make use of the DREAM
project, an initiative to foster collaboration between experimen-

tal and computational biologists (Prill et al., 2011), and validate

our predictions on independent experimental data from a human

carcinoma cell line (part of DREAM4) originally published in
(Alexopoulos et al., 2010; Saez-Rodriguez et al., 2009).

2 METHODS

2.1 A non-parametric and probabilistic model for

continuous signaling pathway dynamics

Full description and derivation of the computational methods can be

found from Supplementary Material. We model signaling pathway dy-

namics using first-order linear ODEs where the non-linear driving function

for each phosphoprotein xi is unknown. The time-dependent phosphoryl-

ation level for each phosphoprotein is modeled using three components:

_xiðtÞ ¼ fiðtÞ þ �i � �ixiðtÞ ð1Þ

where xiðtÞ is level of the ith ði ¼ 1, . . . ,NÞ phosphoprotein at time t, _xiðtÞ

denotes the time derivative, �i is the basal rate, which captures the con-

stant (non-zero) part of the phosphoprotein data, �i is the degradation

rate, which models spontaneous decrease or degradation of phosphopro-

tein level, fi is the non-parametric regulatory function, which generates

the dynamic changes in the phosphoprotein level by time (a.k.a. models

the actual signaling mechanism). We set a Gaussian process prior over

regulatory functions fi to prefer smooth functions. We assume that in-

active form of the protein is not limiting the rate of phosphorylation.

Traditional ODE modeling approaches typically encounter problems

with parameter estimation and model structure comparison because

neither of those have analytically tractable closed form solutions

(except special cases). As is explained below, the analytical solution,

which is inherited from the Gaussian process formulation, is one of our

main motivations because we can thus avoid problems associated with

parameter estimation steps, have an analytical model selection score and

have a build-in regularization via the Bayesian analysis. Moreover, our

chosen formulation also allows efficient experimental design.

2.2 Defining signaling network dynamics

For a given (fixed) signaling pathway structure, the key challenge is to

define the non-parametric functions such that the signaling network dy-

namics agree with experimental data. Previously, a similar estimation

problem for non-parametric functions fi has been solved in the context

of a discrete-time system (Penfold et al., 2012) or using the first-order

approximation of the derivative (Äijö and Lähdesmäki, 2009). Here, we

develop a probabilistic estimation method for continuous dynamics using

a two-step approach, as illustrated inside the topmost rounded rectangle

in Supplementary Figure S10. The first step is to identify the driving

functions, including basal rate, degradation rate and regulatory function

as a function of time only, fiðtÞ. This step is done independently for each

of the measured phosphoproteins by solving the non-parametric ODE

model in continuous time such that the obtained function xiðtÞ explain the

measurements as accurately as possible, a step that only requires meas-

urements of the corresponding phosphoprotein. Conceptually, when con-

sidered as a function of time, the non-parametric regulatory function tells

for any time point the instantaneous rate of (de)phosphorylation needed

to obtain the observed dynamics. The phosphorylation level of xi can be

solved to yield

xiðtÞ ¼
�i
�i
þ cie

��i t þ

Z t

0

fið�Þe
��iðt��Þd� ð2Þ

where ci depends on the initial condition at t¼ 0. We assume that the

time-dependent driving function fi is different for each experimental con-

dition but phosphoprotein-specific kinetic parameters �i and �i (as well as

hyperparameters of the Gaussian process) are shared over different con-

ditions. The linear integral transformation applied to the function fi in

Equation (2) preserves the Gaussian process property of fi. Thus, the

process xi is also a Gaussian process, i.e. xiðtÞ � GPðmxi ðtÞ, kxi , xi ðt, t
0ÞÞ,

where the mean is

mxi ðtÞ ¼
�i
�i
þ ci expð��itÞ ð3Þ

and the covariance function kxi , xi ðt, t
0Þ is shown in Supplementary

Equation (24). The kinetic parameters �i and �i and hyperparameters

are estimated by optimizing the (log) marginal likelihood of the data,

which can be written as

log pðxijT, �Þ ¼ �
1

2
ðxi �mxi Þ

T
ðKxi , xi þ �

2
n, iIÞ

�1
ðxi �mxi Þ

�
1

2
log jKxi , xi þ �

2
n, iIj �

n

2
log 2�

ð4Þ

where xi contains the phosphoprotein measurements for xi, T is a vector

of measurement time indices, � represents the parameters and hyper par-

ameters, mxi is a vector of values of mxi evaluated at T, Kxi , xi is the

covariance matrix between xi and xi evaluated at T, �2n, i denotes the

measurement noise variance for xi, and n denotes the number of meas-

urement time points. For partial derivatives of Equation (4), see

Supplementary Equations (36–41). Finally, the driving functions fi are

estimated using the posterior means. In particular, predictive equations

for fi can be written in the standard form (omitting the phosphoprotein

index i in the following)

f�jx,T,T� � N ðf�, Covðf�ÞÞ, where

f� ¼ Kf, xðT�,TÞKx, xðT,TÞ
�1x, and

Covðf�Þ ¼ Kf, fðT�,T�Þ � Kf, xðT�,TÞKx, xðT,TÞ
�1Kx, fðT,T�Þ
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where Kf, x is the covariance matrix between fi and xi evaluated at T, f�
denotes the points to be predicted and f� is our final estimate (see deriv-

ations in Supplementary Material and Supplementary Equation (11) for

details). As a result, we get the estimated values for the kinetic parameters

�i and �i and the condition-dependent functions fi for each

phosphoprotein.

The second step finds a mapping from measured phosphoprotein time-

course profiles of a specific set of regulatory proteins to the inferred time-

dependent regulatory function. This is done with the following regression

model:

fiðtÞ ¼ gi x
reg
i ðtÞ

� �
ð5Þ

where xregi ðtÞ ¼ ðxi1 ðtÞ, . . . ,xik ðtÞÞ denotes the activities of k phosphopro-

teins at time t regulating the phosphoprotein xi and gi is an unknown

non-parametric function with Gaussian process prior. Function gi is esti-

mated using the Gaussian process regression at measurement time points.

The s.c. final gi function will be refined during the validation step together

with the construction of the final network structure. While f functions

need to be estimated separately for each experiment, for the estimation of

g we use all experiments together and find a mapping from regulatory

phosphoproteins to the target protein that explains all the experimental

(training) data. In other words, g functions represent the actual mechan-

isms that propagate signal through the network. A schematic diagram of

the model and its inference is shown in Supplementary Figure S25.

2.3 Unraveling signaling pathway model from data

The above model inference applies for a given fixed signaling pathway

structure, which is completely specified by the functions gi and their

inputs xregi . Fortunately, we can iteratively apply the second step to dif-

ferent combinations of regulatory signaling components xregi to assess the

confidence in each network structure. In this study, we use Bayesian and

cross-validation approaches to rank different signaling network struc-

tures. In addition, we use the information included in f functions.

In each of the cross-validation cycles, the alternative models are fitted

to the training data and the corresponding prediction performances are

assessed using the test data. Note that we use only the original training

data for model fitting. For Bayesian analysis, we need the marginal like-

lihoods of different models, which for Gaussian process–based regression

in Equation (5) can be written analytically

log pðfjT, �Þ ¼ �
1

2
f
T
Kf, fðT,TÞ

�1f�
1

2
log Kf, fðT,TÞ
�� ��� n

2
log 2�

where � represents the hyperparameters, and � is again optimized by

maximizing the marginal likelihood [see Supplementary Material and

Supplementary Equations (43–46) for partial derivatives]. In addition

to the built-in regularization rising from the use of marginal likelihood,

we noticed a need for penalizing the models, which are composed of

many explanatory variables. We defined a prior distribution for the sig-

naling networks in a similar way as in the Akaike information criterion

that penalizes models based on the number of variables, i.e.

pðMÞ / expð�2kÞ, where k is the number of directed connections in a

network structure M, and kmax is a maximum number of explanatory

variables to be considered. As a result of cross-validation and Bayesian

analysis, we obtain scores for different signaling networks, which can be

summarized to pair-wise relationship between phosphoproteins by sum-

ming the scores of all model structures that contain a specific directed

interaction. These scores can be used to rank links between proteins.

The estimated functions f are also used to choose the signaling network

structure for two reasons. First, cross-validation and Bayesian

approaches depend on our choice of models of the perturbations (e.g. un-

known dynamics of external cytokine and growth factor perturbations),

whereas the analysis on f functions does not. Second, cross-validation and

Bayesian approaches would fail to identify phosphorylation events that

are active only in a single experiment. The f function represents the

instantaneous rate of change of a phosphoprotein. If our method infers

remarkably different dynamics for f in a single time-series experiment,

that gives evidence for dependencies that are likely observable only under

that particular condition. Thus, hierarchical clustering analysis is done

using average linkage and the Euclidean distance over f functions to

reveal dependencies between f functions and perturbations. Clustering

can be interpret by looking at how different growth factor stimulations

cluster separately if any of the clusters get higher or lower f values, and

whether certain upstream inhibitions cause f functions to cluster into

another cluster with lower/higher values than f functions in an uninhib-

ited case under the same growth factor stimulation.

The final dynamical system we obtain by interchanging the functions fi
in Equation (1) with the functions gi can be expressed in a vector form as

_xðtÞ ¼ gðxðtÞÞ þ �� diagð�ÞxðtÞ ð6Þ

where xðtÞ ¼ ðx1ðtÞ,x2ðtÞ, . . . ,xNðtÞÞ
T, gðxðtÞÞ ¼ ðg1ðx

reg
1 ðtÞÞ, g2ðx

reg
2 ðtÞÞ,

. . . , gNðx
reg
N ðtÞÞÞ

T and the kinetic parameters � ¼ ð�1, �2, . . . ,�NÞ
T and

� ¼ ð�1, �2, . . . , �NÞ
T. This system can be solved numerically over time

given the perturbations and the initial activity levels of the phosphopro-

teins xð0Þ. Occasionally, predictions can be negative, which in this study

were truncated to zero by biological reasoning.

2.4 Prediction of interventions

Note that given perturbations and initial activity levels of the phospho-

proteins, it is a trivial task to simulate the behavior of the dynamic system

in Equation (5) over time using, for example, Euler’s method. However, a

much harder problem is to estimate the perturbations given the desired

behavior of a system over time. The problem can be stated as follows:

Given a desired time profile of a target protein’s activity level, estimate

the time profiles of one or several of its regulatory proteins to achieve the

desired signaling response. We propose a novel method to design inter-

ventions, which consists of two-step solution. First, given the desired

behavior of the target protein xj, estimate the regulatory function fjðtÞ

as explained above. Second, estimate the initial values of the inputs xregj to

the function gj in such a way that it approximates the ideal phosphoryl-

ation function fjðtÞ as well as possible. Because the analytically tractable

Gaussian processes properties apply to the system state xi as well as to the

regulatory functions fi and gi, our modeling framework is particularly

well suited to design modulation strategies. The task of predicting inter-

ventions can be seen as an inversion of a Gaussian process. For the sake

of simplicity, let us consider situation of a single test point t� 2 R
p, i.e. the

inputs are p-dimensional, and the training data is composed of the train-

ing inputs T (i.e. phosphorylation time-course data) and outputs g. In

that case, the predictive equation for a single test point is (Rasmussen and

Williams, 2006)

�g� ¼ Kg, gðT, t�ÞKg, gðT,TÞ
�1g ð7Þ

whereKg, gðT, t�Þ 2 R
1�N holds the covariances betweenN training points

and the test point t�. Now, if we turn the traditional situation the other

way around, i.e. we assume that we know the desired output (denoted as

ĝ�) but we do not know the value of the test point t� (input). From

Equation (7) we notice that the only term that depends on t� is the

vector Kg, gðT, t�Þ. Each of the elements in the vector Kg, gðT, t�Þ are

given by the covariance function kg, g, e.g. ith element is the covariance

between the ith training input and the test point t�. Using the mean

square error criterion, we can then write the optimization problem for

perturbations as

argmin
t�
jjĝ� � Kg, gðT, t�ÞKg, gðT,TÞ

�1gjj2 ð8Þ

In other words, the optimal perturbation corresponds to the initial

phosphoprotein levels t�, which minimize Equation (8). Additionally,

the search for optimal perturbations in Equation (8) can be combined
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with the uncertainty of the predictions (see Supplementary Material for

details).

Overall, Sorad’s computational complexity has two major steps. First,

inference of dynamics, network structure and interventions all involve

inversions of covariance matrices, which have no more than cubic asymp-

totic time complexity. Second, for each phosphoprotein, inference for

dynamics and regulatory proteins need to be applied for all 2N combin-

ations of regulatory proteins. Thus, for large signaling networks, an

upper bound on the number of regulatory proteins needs to be set,

hence reducing the exponential term to a polynomial time complexity.

Owing to the design of Sorad, however, the estimation of the f and g

functions is an embarrassingly parallel problem and thus the combina-

torially increasing computational load can be distributed.

3 RESULTS

3.1 Phosphoprotein time course from HepG2 cell line

In our training dataset, previously published in (Alexopoulos

et al., 2010), four cytokines or growth factors (IGF1,
TGF�, IL1� and TNF�) were individually used to stimulate

hepatocellular carcinoma cell line HepG2. In addition, inhibitors

for MEK1/2, p38, PI3K and IKK proteins were used to dissect
the upstream regulators for the measured proteins, resulting in

altogether ð4þ 1Þ � ð4þ 1Þ ¼ 25 different conditions. The activ-

ity levels of seven phosphoproteins, namely ERK1/2, HSP27,
JNK1/2, IKB, MEK1/2, p38 and AKT, were monitored in the

25 different conditions in a time-series manner, measurements
being taken at 0, 30 and 180min. For the test dataset, we use

an independent time-course dataset from (Alexopoulos et al.,

2010), which includes the same set of seven phosphoproteins
with 5� 4 ¼ 20 different perturbations: the inhibitions were

five different pairs of individual perturbations, namely

p38þMEK1/2, PI3KþMEK1/2, p38þPI3K, p38þ IKK and
PI3Kþ IKK, and the stimuli were IL1�, IGF1, TGF� and the

pair TGF�þ IGF1.

3.2 Modeling HepG2 phosphoprotein dynamics

We first estimated values of the � and � parameters for each of
the seven phosphoproteins (Supplementary Table S1). For ex-

ample, based on the model fitted to the data, HSP27 has the

lowest basal rate. A closer manual inspection on the data sup-
ports this finding, i.e. the level of HSP27 is low overall and is

only activated when stimulated with IL1� (Supplementary Fig.

S7). Similar reasoning can be done for the low basal rates of
ERK1/2, IKB, JNK1/2 and p38.

The estimated regulatory functions f for AKT is visualized in
Figure 1 (for other phosphoproteins see Supplementary Figs

S3–S8). A separate subplot is shown for each of the individual

experimental settings, including the experiment-specific measure-
ments, f function and the continuous profile of the phosphory-

lated AKT level. It is evident that the estimated functions are

non-linear, and moreover, that they could not be approximated
with linear functions without drastic effects, emphasizing the

suitability of the presented non-parametric methodology.
Recall that g is an approximation for the set of functions f, and

it is a function of activity levels of regulatory phosphoproteins in

contrast to functions f that were functions of time. It was found
out that the behavior of f functions, e.g. for ERK1/2, are best

explained by altogether three variables, TGF�, MEK1/2 and

ERK1/2 (see the next section). The estimated regulatory function

g for ERK1/2 is shown in Supplementary Figure S9. The top-

most part of the figure illustrates the estimated outputs of f and g

functions across the 25 different experiments, and the lower part

visualizes the values of the explanatory variables. The initial

boost in the activation of ERK1/2 is explained by the stimulation

of TGF� receptor, and its effect is mediated by MEK1/2.

3.3 Unraveling the cell-type–specific signaling network

Altogether three types of criteria were used to reveal the data-

supported relationships between the phosphoproteins: prediction

performance (cross-validation), fit of the model (marginal likeli-

hood) and effects of individual perturbations (clustering of f

functions). The data-supported confidences of the relationships

for ERK1/2 are shown in Figure 2A and B. The marginal like-

lihood and cross-validation scores suggest that the changes in the

activity level of ERK1/2 are well explained by the activity levels

of ERK1/2, MEK1/2 and TGF�. It is interesting to see that

ERK1/2 is the strongest hit from the cross-validation–based ana-

lysis, i.e. has the lowest negative log-likelihood score among the

possible regulators. As another example, Figure 2C and D shows

the data-supported confidences of the relationships for IKB. In

Figure 2C, both of the analyses suggest that the activation level

of IKB and IKK and the perturbation status of IL1� are good

predictors of the activation of IKB. The regulatory role of TNF�
is suggested by the marginal likelihood–based analysis although

it was less evident according to the cross-validation results.

Moreover, the roles of IL1�, TNF� and IKK are supported by

the results of the hierarchical clustering of f functions as

Fig. 1. The regulatory functions f of AKT over the training data. The

estimated functions f are represented by the solid orange lines. The

crosses are the measurements that were used to fit the model. The filled

curves represent the continuous profile x that is estimated to produce the

measurements. The unit of measurements is scaled/arbitrary. The left-

and right-hand sided y-axes differ but remain the same between the

subfigures and they cover the range from zero to the maximum value

measured for AKT (the crosses and the filled curves) and from the

minimum to the maximum value of the regulatory function (the solid

orange lines)
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illustrated in Figure 2D, as the stimulation of either IL1� or

TNF� receptors discriminate f functions but this does not hold

when IKK has been inhibited. Therefore, it can be concluded

that IKB, IL1�, TNF� and IKK is the best set of explanatory

variables that are used to predict the activity level of IKB.
Some of the dependencies between the phosphoproteins are

only observable in one condition, e.g. mediating role of p38 in

the activation of HSP27 when IL1� is used for stimulation (see

Supplementary Fig. S7). In these cases, the cross-validation fails

because the dependency is only observable in the training data or

test data but not in both. However, the marginal likelihood–

based approach and the clustering of f functions reveal these

unique relationships and are hence used to supplement cross-

validation. The computational method for combining the mar-

ginal likelihood–, cross-validation– and clustering-based infor-

mation is not fully automatic, although such an approach

could be developed. Our view on the approach is such that,

owing to the diversity of interactions between signaling proteins,

it is better to produce useful and orthogonal data for the user

and to allow partial manual control, combined with biological

knowledge, to reason about the signaling events as demonstrated

above.
The data-supported network model of the signal transduction

in the HepG2 cell line is shown in Figure 3 where no biological

prior knowledge was used. In this study, the estimation of g

functions cover all the models from a single explanatory variable

up to the models consisting of six explanatory variables.

Regulatory relationships downstream of proteins that forward

the signal from the receptors to the pathway end points have

been marked by dashed edges. Supplementary Figure S19 has

been modified from Figure 3 by drawing the arrows coming

from the cytokines or growth factors only to the mediating up-

stream regulators. Most of the inferred interactions are sup-

ported by the literature. For example, the mediating role of

p38 in IL1�-induced activation of HSP27 was inferred correctly

(Alexopoulos et al., 2010). Interestingly, our model predicted

donwstream signaling to be dependent on the original growth

factor stimuli, whereas many models predict that signal is pro-

pagated in a similar manner in the network once it is initiated.

However, it is really the case in cellular biology that initial stimuli

can affect the outcome because each growth factor regulates dif-

ferently the receptors and adaptor proteins that mediate the

signal transduction. In principle it is possible to model this, but

all the necessary information is not available at the moment. The

fact that proteins can be regulated from several sites complicates

their behavior even further. In addition, different signaling path-

ways can crosstalk together generating (in)activation effects on

adjacent pathways. This all underlines the importance of model-

ing the signal transduction in stimulus-dependent manner.

3.4 Sorad provides accurate predictions

The ability of Sorad to predict phosphoprotein activity levels in a

signaling pathway is illustrated in Supplementary Figure S10.

First, the optimal model topology is inferred as described

above, and its dynamics are learned from the whole training

data. The model can then be initialized with different phospho-

protein levels and perturbation configurations, and the response

of the system can be solved numerically. The third challenge in

the DREAM4 was to unravel a signaling network based on ex-

perimental data, and the model fit was assessed by the prediction

performance. The task was to predict the activity levels of the

phosphoproteins at 30min after the initiation of cytokine stimuli

given the initial activity levels of the phosphoproteins and the

information about the perturbations. The goal of the challenge is

to find the best predictive model with the minimal number of

connections in the signal transduction network.
Table 1 lists the results of Sorad and the four best performing

teams from DREAM4. All the attributes listed in Table 1 are

computed as in DREAM4 and are explained in ‘Performance

metrics’ section in Supplementary Material. Sorad performed

well because it had the best prediction score as well as the smal-

lest number of edges in the network. The best performer in the

DREAM4 challenge used a methodology formulated within a

Boolean logic framework (Eduati et al., 2010). The first step in

their method statistically identifies whether a certain perturb-

ation has an effect on the phosphorylation of a given protein

(binary decision) and constructs a Boolean network model.

In the second step, they link these inferred relationships with

A B

C D

Fig. 2. The information used to infer the regulators of ERK1/2 and IKB.

(A) Here the marginal likelihood and cross-validation scores (in negative

log scale) are summarized to represent the confidences between the pair-

wise relationships for the target protein ERK1/2. The relationships with

small scores are more reliable and are preferred. (B) The hierarchical

clustering of f functions of ERK1/2 for all perturbations (indicated on

the left) in the training data. TGF�-stimulated samples form a separate

cluster with higher f function values, suggesting that TGF� activates

ERK1/2. However, the f function under TGF�-stimulated MEK-in-

hibited conditions have lower values and clusters into another cluster,

suggesting that MEK1/2 mediates the activating effects of TGF�.

According to all the results, TGF�, MEK1/2 and ERK1/2 itself regulate

ERK1/2 activity. Inhibition is denoted with the character ‘i’ at the end of

the protein names (e.g. MEKi). (C and D) The same analysis when the

target is IKB
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the experimental data by combining linearly the observed effects

of the perturbations. The second top best performing team also

developed a two-step approach: a parametric linear ODE model

is first used to infer the topology of the signaling pathway and

this model is used as the starting point for a predefined non-

linear ODE model that is fitted to the experimental data (The

New York Academic of Sciences, 2009).
The performance metric p-values show that the activity levels

of AKT are the most challenging to predict. To study this more

closely, we have visualized the test set measurements together

with our predictions for AKT in Figure 4A. The largest differ-

ences between the measurements and the predictions are due to

the underestimated stimulative effect of TGF� and IGF1. As

AKT lies downstream of TGF�, IGF1, PI3K and IKK
(Fig. 3), it is important that cooperative effects of the perturb-

ations are estimated correctly.

Figure 4B shows Sorad’s predictions and the test set measure-
ments for MEK1/2 across the 15 test conditions. The cooperative

effect of TGF� and IGF1 receptors is challenging for modeling

because the stimulation of IGF1 growth factor alone is not suf-

ficient to activate MEK1/2. However, Sorad can capture this

non-linear co-operativity well. The corresponding predictions

for other five phosphoproteins are visualized in Supplementary

Figures S11–S15. Taken together, we conclude that proposed
non-parametric ODE model provides a predictive modeling

framework that is generally quantitatively accurate.

3.5 Upstream regulators of AKT

We identified AKT as an interesting candidate protein for a

more detailed analysis. We studied the effect of different perturb-

ations on the activity level of AKT based on the training data
(Supplementary Fig. S16A). Interestingly, the model suggests

that TGF� or IGF1 stimulation induces approximately the

same level of AKT activity. Similarly, we notice that the inhib-

ition of PI3K has a greater negative influence on the activation of

AKT than the inhibition of IKK, regardless of whether TGF� or

IGF1 stimulation is used, which is in accordance with the PI3K-

dependent activation of AKT (Chin and Toker, 2009).
Strikingly, supporting a finding previously reported in (Eduati

et al., 2010), AKT activation is dependent on IKK inhibition

when TGF� receptor is stimulated (Supplementary Fig. S16).

High specificity of the inhibitor (Burke et al., 2003) and

TGF�-assiocated regulation suggests that the observed IKK-

AKT interaction is not caused by unspecific side effects.

Fig. 3. The topology of the inferred network. Four cytokines or growth

factors are represented by black colored nodes and other proteins either

by gray or white nodes. The color of the signaling protein nodes indicates

whether they have been inhibited in some of the experiments and/or

measured in all the experiments. Edges in the graph show the causal

interactions between the nodes. A dashed edge represents an interaction

where the inhibition of the regulatory phosphoprotein dampens the acti-

vation produced by the marked growth factor stimulation

A B

Fig. 4. Predicted behavior of (A) AKT and (B) MEK1/2 in the unseen

perturbations conditions and their observed phosphorylation levels in

real measurements. The leftmost bars are the provided values for 0min

time point for a given inhibition. They show the initial baseline for all the

predicted and measured values at 30min time point with the same inhib-

ition (bars on their right side). The blue bars represent the measured

phosphorylation level at 30min and the orange bars show the predictions.

Units are arbitrary (fluorescence levels), but y-axis is equal in all the

subfigures for one predicted/measured protein covering the range from

zero to the maximum value of the measurements of the corresponding

protein

Table 1. Comparison of predictions on the independent test data

Attribute Sorad Team 441 Team 476 Team 533 Team 491

AKT 1.080e-05 4.656e-05 9.429e-04 2.085e-05 7.797e-04

ERK1/2 9.475e-013 1.568e-09 3.522e-14 1.891e-16 1.101e-08

IKB 6.140e-010 3.782e-10 5.998e-09 3.782e-10 1.292e-08

JNK1/2 1.508e-10 1.732e-10 1.310e-10 3.791e-10 5.301e-11

P38 1.375e-08 1.059e-08 1.378e-10 1.871e-06 4.821e-05

HSP27 1.782e-10 8.289e-11 5.379e-06 1.886e-06 9.276e-07

MEK1/2 1.424e-08 1.615e-07 4.014e-05 4.900e-09 1.118e-06

Edges 16 18 17 26 18

Prediction 8.783 8.167 7.730 8.430 6.505

Overall 7.460 6.678 6.324 6.279 5.016

Prediction P-values for different phosphoproteins, the number edges in a network,

combined prediction score and the overall score for different methods.
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The IKK-dependent activation of AKT on TGF� stimulation
is supported by both the training and the independent test

data. For example, when TGF� receptor is stimulated, AKT

activity decreases only on inhibition of IKK, PI3K or both,

whereas IKK-dependent activation of AKT cannot be observed
in IGF1-stimulated cells (Figs 1 and 4A and Supplementary

Fig. S16).

3.6 Computational design of interventions to generate

desired signaling pathway response

Next we study the suitability of Sorad for predicting experimen-

tal conditions to acquire a desired signaling response, for which
we again use the original partitioning of the training and test

data. We study two different cases where the activation of

AKT is controlled: either the activity level of AKT remains con-

stant or it is strongly increased after the perturbations (150% of
the maximum activity level of AKT in training data). The esti-

mated perturbations that are needed for the desired AKT activity

levels are shown in Figure 5A–D. In each of the cases, we con-

sider five different initially fixed perturbation conditions: none of
the perturbations are fixed, TGF� stimulation is either manda-

tory or not permitted, or IGF1 stimulation is mandatory or not

permitted. The four regulators are partioned into two groups

based on the experimental setting: TGF� and IGF1 are regula-
tors that can be used to stimulate the respective receptors, and

PI3K and IKK are mediators that can be inhibited. As an

example, consider the case where IGF1 receptor has been stimu-

lated and the activity level of AKT is desired to remain constant

(the top-left subfigure and the second bar chart group from top).

When IGF1 receptor is stimulated, we get the estimated values

for three free factors: TGF� receptor should not be stimulated

and PI3K and IKK should be inhibited. From the biological

point of view, this finding is arguable and, in addition, from

Figure 4A (bottom row, the third panel from left), we notice

that the only condition where IGF1 receptor is stimulated and

AKT is not further activated is the one where TGF� receptor is

not stimulated and PI3K and IKK are both inhibited, exactly as

we estimated.
A more sophisticated approach can weigh the predictions by

the amount of uncertainty that is associated with it, which in

principle should bias the estimated stimuli/inhibition levels

from moderate to the ones used in the model construction.

This is also a desired property from the experimental point of

view because it would allow the use of the same experimental

conditions as used already in the experiments to generate the

training data. Figure 5B (corresponding to the case in Fig. 5A)

and Figure 5D (corresponding to the case in Fig. 5C) show the

estimated perturbations when we take into account the uncer-

tainty of the estimations. It is clear that when the uncertainty in

the estimations is taken into account, the estimated perturbations

are closer to the perturbations that have already been used in the

training data. For example, if it is desired to activate AKT

(Fig. 5D) and it is given that either TGF� or IGF1 receptor is

stimulated, then the estimated perturbations are similar to those

in the experiments producing the training data. Another example

includes the case where AKT is not further activated (Fig. 5A

and B) under the stimulation of TGF� receptor: in this case, the

approach that tries to minimize the amount of uncertainty pre-

dicts an experimental condition that requires one perturbation

less than the one that is achieved by minimizing the error be-

tween the desired and predicted behavior. This can again be

validated based on the data shown in Figure 4A, as we notice

that it is enough to silence PI3K (inhibition p38iþPI3Ki) under

the stimulation of TGF� receptor to keep AKT activity at the

basal level. Because the predicted interventions to modulate the

signaling response are validated by independent experimental

data, we conclude that Sorad can be used to identify accurate

modulation strategies.

3.7 Performance evaluation using in silico data

To better demonstrate Sorad’s performance in predicting dy-

namics and perturbations, we set up an in silico signaling scen-

ario similar with the one in the HepG2 cell line. We define a

hypothetical ODE model (Supplementary Fig. S1A) where two

proteins are responsible for the phosphorylation of a target pro-

tein and generate data from the model with additive Gaussian

noise. Assuming the model structure is known, we first learn the

dynamics of the model (functions f and g) together with � and �,
and then apply it to independent test data to predict the re-

sponse. As shown in Supplementary Figure S1B–D, Sorad is

able to learn the unknown regulatory function as well as make

accurate predictions of signaling dynamics over long time inter-

vals. We also tested Sorad on a more challenging in silico prob-

lem where effectively less data are available to learn the

A

C D

B

Fig. 5. Predicting the optimal perturbations to control the activation level

of AKT in an unrestricted situation or under different preset conditions

(stimulation with IGF1 or TGF� is mandatory or not permitted). The

levels of bars in the bar charts reflect the suggested levels (concentrations)

of IGF1 and TGF� growth factors as well as PI3K and IKK inhibitors,

all of which can be used to acquire the desired activation level for AKT.

The dashed lines mark at the levels of perturbations used in the training

data. (A) In this prediction, it is desired that the activity level of AKT

after 30min is same as the initial activity level. (B) The situation is the

same as in (A) but here the uncertainty of the prediction is taken into

account in the optimization. (C) In this prediction, it is desired that AKT

is fully activated after 30min, i.e. the activity level of AKT is 150% of the

maximum activity level of AKT in the training data. (D) Same situation

as in (C), but here the uncertainty of the prediction is taken into account
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phosphorylation dynamics g. Nevertheless, as shown in Supple-
mentary Figures S2A–D, Sorad still makes relatively accurate
predictions under uncertainty in estimated dynamics. To that

end, we applied the estimated models (Supplementary Figs 1C
and 2C) of phosphorylation dynamics to predict perturbations.
First, we simulate the mathematical model and then, using the

estimated dynamical model, estimated the optimal perturbation
(or input) to obtain the observed model response. Results in
Supplementary Figures S1E and S2E show how the estimated

perturbation closely follows the (unknown) input used to gener-
ate the data, thus demonstrating Sorad’s ability to predict dy-
namic perturbations over long time intervals.

4 DISCUSSION AND CONCLUSIONS

The presented methodology, Sorad, combines dynamic models
with a data-driven non-parametric component, which leads to a
flexible and probabilistic dynamical modeling framework. The

first main contribution of this study is the efficient methodology,
which makes the use of ODEs easy in situations where the con-
struction of a parametric network model beforehand is challen-

ging, as is typically the case in practice. The second main
contribution is the scheme for predicting required perturbations
for modulating the pathway response, which we demonstrated

with a proof-of-concept example using real phosphoprotein time-
course data.
To validate Sorad, we carried out a comparison that demon-

strated its applicability for modeling signal propagation even
without prior biological knowledge. This is supported by the

performance assessment of the predictions: Sorad produced the
most accurate predictions with the smallest number of relation-
ships between the phosphoproteins. In addition to modeling sig-

naling pathways, Sorad is also applicable for modeling other
types of biological processes and it can be applied to even
larger networks and datasets because the computation can be

easily parallelized. However, if one is interested in analyzing
larger networks consisting of hundreds or thousands of phospho-
proteins or, for example, transcripts, the manual clustering step

for the search of individual conditions where a target protein or
gene is regulated differentially will become a bottleneck. For
large networks, this step could be automated by using, for ex-

ample, model-based clustering methods, which provide a quan-
titative and probabilistic scoring framework. Also note that the

estimation of f functions is analytically tractable as long as it is
possible to write the solution of the ODE, which only contains
linear operations on f function.

A closer inspection of the pathway model that was inferred
using Sorad pointed out a putative regulatory role for IKK in the
activation of AKT in TGF�-stimulated cells. AKT has been

generally thought to regulate IKK, thereby suggesting a reverse
regulatory interaction between the proteins (Manning and
Cantley, 2007). Low levels of IKB phosphorylation in TGF�-
stimulated cells imply that NF-�B pathway is unlikely to mediate
IKK-dependent AKT phosphorylation and we could not find
any publications reporting IKK-dependent activation of ILK

or mTORC2, the upstream kinases for AKT. Interestingly,
IRS1 has potential to regulate AKT in HepG2 cells
(Khamzina et al., 2005): increased IRS1 phosphorylation

(Ser636/Ser639) decreases both IRS1-PI3K interaction and

AKT phosphorylation after stimulation through insulin receptor.

Furthermore, IKKs bind to IRS1 in a basal state in HepG2 cells

(Gao et al., 2002). On TNF� stimulation, IKK-IRS1 interaction

is disturbed and IRS1 gets phosphorylated on Ser312, leading to

decreased IRS1 activity in insulin-treated cells. IRS1 gets phos-

phorylated on Ser636/Ser639 residues after TGF� (but not after

IGF1) stimulation in the original dataset (Alexopoulos et al.,

2010), which correlates with IKK-dependent AKT activation

only in TGF�-treated cells. Interestingly, MEK1/2 activation is

also dependent on both PI3K and IKK after TGF� stimulation,

suggesting a similar type of upstream regulation. The data sug-

gest that IKK might regulate AKT (and MEK1/2) phosphoryl-

ation through IRS1 and PI3K in TGF�-treated cells. This idea

can be addressed in adjacent biological studies. What comes to

the prediction itself, it demonstrates how the data-driven nature

of Sorad provides high potential to generate novel hypotheses for

further experimental research.
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