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ABSTRACT

Motivation: Compared with sequence and structure similarity, func-

tional similarity is more informative for understanding the biological

roles and functions of genes. Many important applications in compu-

tational molecular biology require functional similarity, such as gene

clustering, protein function prediction, protein interaction evaluation

and disease gene prioritization. Gene Ontology (GO) is now widely

used as the basis for measuring gene functional similarity. Some exist-

ing methods combined semantic similarity scores of single term pairs

to estimate gene functional similarity, whereas others compared terms

in groups to measure it. However, these methods may make error-

prone judgments about gene functional similarity. It remains a chal-

lenge that measuring gene functional similarity reliably.

Result: We propose a novel method called SORA to measure gene

functional similarity in GO context. First of all, SORA computes the

information content (IC) of a term making use of semantic specificity

and coverage. Second, SORA measures the IC of a term set by means

of combining inherited and extended IC of the terms based on the

structure of GO. Finally, SORA estimates gene functional similarity

using the IC overlap ratio of term sets. SORA is evaluated against

five state-of-the-art methods in the file on the public platform for col-

laborative evaluation of GO-based semantic similarity measure. The

carefully comparisons show SORA is superior to other methods in

general. Further analysis suggests that it primarily benefits from the

structure of GO, which implies expressive information about gene

function. SORA offers an effective and reliable way to compare gene

function.
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1 INTRODUCTION

In recent years, gene functional similarity has become a main

hotspot in biology research. Because it is important for a variety
of applications such as gene clustering (Brameier andWiuf, 2007;

Cho et al., 2009; Qu and Xu, 2004; Yang et al., 2008), protein
interaction prediction and evaluation (Li et al., 2008; Jain and

Bader, 2010; Schlicker et al., 2007;), gene function prediction

(Chen and Xu, 2004; Jensen et al., 2003; Nariai et al., 2007)

and disease gene prioritization (Chen et al., 2009; Mathur and

Dinakarpandian, 2011; Ortutay and Vihinen, 2009; Schlicker

et al., 2010; Yilmaz et al., 2009). Moreover, compared with se-

quence and structure similarity, functional similarity is more in-

formative for understanding the biological roles and functions of

genes.
Gene Ontology (GO) is a controlled vocabulary of terms

for describing behavior of genes and their products (GO-

Consortium, 2004), which is valuable to measure gene functional

similarity. Gene and its products, which are collectively called

gene to simplify in this article, are usually annotated with mul-

tiple terms. Functional similarity between genes can be inferred

from the semantic relationships of their terms. It is considered

that two genes are similar in function if their terms are similar in

semantics. Accordingly, many methods based on semantic simi-

larity have been put forward to estimate gene functional similar-

ity. These methods could be generally classified into two

categories: pairwise and group-wise (Pesquita et al., 2009a).
Pairwise methods measure gene functional similarity through

two steps. The first step is measuring semantic similarity scores

of term pairs using term comparison techniques. The most typ-

ical term comparison techniques used by these methods are

Resnik’s (1999), Lin’s (1998), Jiang and Conrath’s (1998). The

second step is computing gene functional similarity based on the

semantic similarity scores calculated in the first step. Some rules

such as average rule (AVG), maximum rule (MAX) and best-

match average rule (BMA) are used in the last step. The methods

based on AVG regard the average of semantic similarity scores

of all term pairs as gene functional similarity. The methods based

on MAX take the maximal semantic similarity score of all term

pairs as gene functional similarity. The methods based on BMA

find all the best matches between the term sets and take the

average of semantic similarity scores of these best matches as

gene functional similarity. As Lord et al. (2003) made use of

GO and AVG to estimate gene functional similarity, great efforts

have been made in this field. In 2005, Sevilla et al. (2005) and

Azuaje et al. (2005) introduced methods like Lord’s, but they

used MAX and BMA rather than AVG. Meanwhile, many vari-

ants of aforementioned typical term comparison techniques like

GraSM (Couto et al., 2005), Wang’s (Wang et al., 2007) and

Pozo’s (Pozo et al., 2008) were proposed. Recently, Couto

et al. (2011) exploited DiShIn to update GraSM, and Yang

et al. (2012) improved the semantic similarity between two

terms by considering their common ancestors and descendants.*To whom correspondence should be addressed.
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Although pairwise methods are used widely for measuring

gene functional similarity, they suffer from some limitations of

combining rules. Methods based on AVG will underestimate

gene functional similarity. For instance, if two genes both are

annotated with two same terms, which are unrelated to each

other, their functional similarity is 0.5 by these methods. In

fact, they are exactly matched, and their functional similarity

should be 1. Methods based on MAX will overestimate gene

functional similarity. An example is that, the functional similar-

ity between genes, which share common terms, is 1, regardless of

the different terms of them. Unlike the methods aforementioned,

methods based on BMA make a balance between them.

Nevertheless, the pairwise methods are affected by how well

the semantic similarity of single term pair is measured. The

detailed discussion of these methods can be referred to several

reviews (Pesquita et al., 2009a; Guzzi et al., 2011).
Group-wise methods estimate gene functional similarity by

comparing the terms in groups. These methods are categorized

as follwos: set-based, graph-based and vector-based. Set-based

methods (Batet et al., 2011; Gentleman et al., 2005; Lee et al.,

2004; Martin et al., 2004; Mistry and Pavlidis, 2008; Pesquita

et al., 2008) put terms and their ancestors into term set to

denote gene firstly. Then, they compute semantic similarity

score between the term sets using Tversky’s ratio model

(Tversky, 1977). Finally, the semantic similarity score between

the term sets is regarded as gene functional similarity. Graph-

based methods make use of GO sub-graph to describe gene, in

which nodes are terms and arcs represent relationships between

terms. These methods estimate gene functional similarity by

means of graph matching (Alvarez and Yan, 2011; Cho et al.,

2007; Gentleman et al., 2005; Lin et al., 2004; Sheehan et al., 2008;

Ye et al., 2005; Yu et al., 2007). Vector-based methods represent

each gene as a vector where each dimension corresponds to a term

and 1 means the specific term occurs while 0 otherwise. They

measure the gene functional similarity through calculating the

cosine similarity of vector (Huang et al., 2007) or the probability

of co-occurrence of the terms (Chabalier et al., 2007).
To our knowledge, the group-wise methods also have some

shortcomings. The set-based and vector-based methods ignore

some valuable information implicit in the semantics and relation-

ships of terms. The graph-based methods are limited by the com-

plexity of graph matching.
In general, some error-prone judgments about gene functional

similarity may be raised by existing methods. In our views, it

primarily results from the inappropriate computing of the infor-

mation content (IC) of terms and unreasonable conversion from

semantic similarity into functional similarity. For the effective

comparison of gene function, we design a novel method based

on Semantic Overlap Ratio of Annotations, namely SORA.

Section 2 illustrates the details of our method, and the experi-

mental results are shown and discussed in Section 3. Finally,

Section 4 presents some concluding remarks.

2 METHODS

The process of measuring gene functional similarity by SORA is dis-

played in Figure 1. At first, to quantify the semantics of the terms,

SORA infers the IC of the terms from their location in the GO hierarchy.

Meanwhile, the inherited and extended IC values of the terms are

computed separately. Next, for the semantics of a term set, SORA cal-

culates the IC of the term set by combining the inherited and extended IC

values of its members. Finally, the functional similarity between two

genes is computed on the basis of the IC values of their term sets by a

simple reciprocal average method.

2.1 Measure the inherited and extended IC of terms

2.1.1 Related works There are two approaches, corpus-based and

structure-based, to compute the IC of a term. Under the corpus-based

approach, the IC of the term ti is defined as

ICcorpusðtiÞ ¼ -1ogðpðtiÞÞ ð1Þ

In the Equation (1), p(ti) is the occurrence probability of ti and its des-

cendants in the specified GO annotation (GOA) corpus.

Considering a GOA corpus includes 50 distinct annotated genes, in

which 15 genes are annotated with term ti or ti’s descendants, the IC of

the term ti is

ICcorpusðtiÞ ¼ -1og
15

50

� �
� 0:5229:

However, it becomes 0.3802 when annotation information about add-

itional 10 genes annotated with the term ti is added to the GOA

corpus. It can be found that IC for the same term depends on the

number of genes annotated with it. As argued by Guzzi et al. (2011),

the semantics of GO terms should be independent of the annotation

distribution. This approach suffers corpus bias and may not reflect the

semantics of the term objectively.

Alternatively, the IC of the term can also be computed from the

number of its descendants in the GO structure (Seco et al., 2004). We

refer this approach as a structural IC approach. Under this approach, the

IC of the term ti is defined as

ICstructureðtiÞ ¼
logððdescðtiÞ þ 1Þ=total termsÞ

logð1=total termsÞ

¼ 1�
logðdescðtiÞ þ 1Þ

logðtotal termsÞ

ð2Þ

where desc(ti) means the number of descendants of term ti, and total_

terms is the number of terms in GO. This measure produces consistent IC

of the term over different annotation corpus, which seems more reason-

able than corpus-based approach. However, a new problem is that the IC

Fig. 1. Measuring gene functional similarity by SORA
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values of the terms without descendant are all 1 under this approach.

Actually, the IC of these terms may be not entirely same. Hence,

Equation (2) is also unreasonable for measuring the IC of the terms.

Besides, some measures (Gentleman et al., 2005; Ye et al., 2005) con-

sidered that the IC of the term is proportional to its depth in the hier-

archy, which premised that the semantic of term is finer and finer details

as one descends the hierarchy. However, these approaches may not dis-

tinguish the differences between the terms, which are at the same level but

differ in the number of descendants. Meanwhile, we noticed that some

works, which focused on the semantic distances of terms, achieved their

goals through exploiting the information contained in the GO hierarchy.

For example, to measure distance between linked terms, Jiang and

Conrath (1998) weighted the edges along shortest path linking the

terms based on the link density, term depth and the difference of their

IC. Inspired by these works, we consider that the semantics of the term

may be tightly related to its location in the GO hierarchy, which could be

characterized by term depth (specificity) and the number of descendants

(coverage). Accordingly, a novel approach is proposed to overcome the

limitations suffered by aforementioned measures.

2.1.2 Inherited and extended IC of the term It assumed that the IC

of the term is not only proportional to its depth but also inversely to the

number of its descendants because more descendants the term has, less

specific the semantics is. Therefore, the IC of the term is computed by

Equation (3).

ICðtiÞ ¼ SpecificityðtiÞ � CoverageðtiÞ

¼ SpecificityðtiÞ � 1�
logðdescðtiÞ þ 1Þ

logðtotal termsÞ

� �
ð3Þ

In Equation (3), the semantic specificity of term ti, Specificity(ti) is com-

puted by its depth in the GO hierarchy. The maximum depth of the term

is taken as its depth. The semantic coverage of term ti, Coverage(ti) is

measured by the number of its descendants in GO, like Equation (2).

Under this approach, the terms at lower levels are more specific with

bigger IC, whereas the terms with more descendants are more generic

with smaller IC.

According to the true path rule of GO, if a gene is annotated with a

term, it is also annotated with the ancestors of the term. That is to say,

the semantics of the ancestor term is generalized from that of its descend-

ants, and the latter is extended from the former. In light of this, the

semantics of the term is divided into two parts: one is inherited semantics,

which is same as the semantics of its ancestors, and the other is extended

semantics, which is special in itself. For measuring IC of a term set, the

inherited IC and extended IC of each term, which represent the inherited

and the extended semantics of the term respectively, are computed.

Supposed that the term tj is one ancestor of the term ti, the inherited

IC of the term ti from the term tj is actually equal to the IC of term tj,

IC(tj). The extended IC of the term ti from the term tj is defined as

ICextendedðtj ! tiÞ ¼ICðtiÞ�ICðtjÞ: ð4Þ

Likewise, given the ancestor set of the term ti, AS(ti), the inherited IC

of the term ti from AS(ti) equals the IC of AS(ti), IC(AS(ti)). The

extended IC of the term ti from AS(ti), ICextended(AS(ti)!ti), is

ICextendedðASðtiÞ ! tiÞ ¼ICðtiÞ�ICðASðtiÞÞ: ð5Þ

2.2 MEASURE THE IC OF TERM SET BY
COMBINING THE INHERITED AND THE
EXTENDED IC OF ITS MEMBERS

Regarding the IC of the term set, a simple method is summing up

the IC of the terms in the set. Take an example, the IC of term set

ts, which just contains two terms t1 and t2, is the summation of

the IC(t1) and IC(t2). However, as discussed by Couto et al.

(2005), the terms may share IC because of the inheritance

nature of GO. Take the term set ts again, considering the term

tc is one common ancestor of t1 and t2, they share the inherited

IC from tc, IC(tc) but differ in the extended IC from tc.

Accordingly, the IC(ts)¼ IC(t1)þ IC(t2)¼ [IC(tc)þ ICextended

(tc!t1)]þ [IC(tc)þ ICextended(tc!t2)]¼ 2IC(tc)þ ICextended(tc!

t1)þ ICextended(tc!t2) in term of the Equation (4). Actually,

IC(ts) should be IC(tc)þ ICextended(tc!t1)þ ICextended(tc!t2) be-

cause the IC shared by terms should not cumulatively contribute

to the IC of the set. It is not hard to imagine that the IC of the set

would be larger than reality since more shared IC exists. To

overcome this limitation, it is necessary to remove the shared

IC between the terms, which is summed repeatedly.
In fact, the calculation of the shared IC has been already

proposed by GraSM (Couto et al., 2005) and DiShIn (Couto

et al., 2011). These works focused on dealing with the shared

IC when measuring semantic similarity between terms. GraSM

defined the shared IC between terms as the average of their

common disjunctive ancestors while DiShIn redefined it as the

average of their all disjunctive ancestors. As verified, both of

them could improve the performance of the semantic similarity

measures. However, in our opinion, the shared IC between terms

could be measured alternatively by the IC of their common an-

cestors set. Similarly, the shared IC between the term sets could

be measured by the IC of their intersection.
Subsequently, we put forward an algorithm for computing the

IC of the term set, as illustrated in Figure 2, which combines

inherited and extended IC values of its members according to the

structure of GO. To simplify the description of the algorithm,

some notations are used in the algorithm: considering a term set

X, CET(X) consists of the terms without descendants in X;

textend is used to extend term set X in each round, which is se-

lected from CET(X); ESextend consists of the textend and its an-

cestors; ESi(X) is the extended term set X after the ith round

extension and ICi(X) is the IC of ESi(X); OTSi is the overlapped

term set between ESextend and ESi(X); ES(X) is the final term

set X after all extensions, and IC(X) is IC of the term set X.
The process of measuring the IC of the term set is demon-

strated by an example shown in Figure 3. Gene Q9BPW9 is

annotated with manually assigned term set Xg¼ {GO: 0004022,

GO: 0004745, GO: 0047035, GO: 0016854} in molecular function

sub-ontology. The initial CET(Xg) is {GO: 0004022, GO:

0004745, GO: 0047035, GO: 0016854}. The process of comput-

ing the IC of the term set Xg includes several rounds and each

round consists of four main steps:

(1) Select textend to extend ESi(Xg);

(2) Generate ESextend and OTSi;

(3) Calculate ICextended(OTSi!textend) and ICi(Xg);

(4) Update CET(Xg) and ESi(Xg).

As displayed in Figure 3, each term is represented by an oval

with a GO identifier and IC value. In each round, the term textend
is denoted by an oval with octagon. The terms of ESextend are

marked by the ovals with asterisks. The terms of ESi(Xg) are

labeled with symbols like tj, j2N in the circles. The overlapped
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terms between ESi(Xg) and ESextend are shown by the ovals with

circles and asterisks.
In the first round, as shown in Figure 3a, GO: 0047035 is

selected as textend to extend ES1(Xg). Because the initial ES(Xg)

is null, OTS1 is null and IC1(Xg)¼ IC(textend)¼ 0.42857 in term

of Equation (4). According to the true path rule, Xg can also be

annotated with the ancestors of the term textend. Therefore, the

term textend and its all ancestors should be added into ES(Xg).

Then GO: 0047035 is removed from CET(Xg). At the end of the

round, ES1(Xg) and CET(Xg) become {t1, t2, t3, t4, t5, t6, t7} and

{GO: 0004745, GO: 0004022, GO: 0016854}, respectively.
In the second round, as illustrated by Figure 3b, GO: 0004745

is selected as textend to extend ES2(Xg). The overlapped terms

between ESextend and ES1(Xg) are t1, t2, t3, t4 and t5. To measure

ICextended(OTS2!textend), it is necessary to measure IC(OTS2).

Because t5 is the only member of the CET(OTS2),

IC(OTS2)¼ IC(t5), i.e. 0.10474. According to Equation (5),

ICextended(OTS2!textend)¼ ICextended(t5!textend)¼ IC(textend)�

IC(t5)¼ 0.35714� 0.10474¼ 0.25240. For IC2(Xg)¼ IC1(Xg)þ

ICextended(OTS2!textend), IC2(Xg) becomes 0.68097. Then, the

terms of ESextend are added into ES1(Xg) and GO: 0004745 is

removed from CET(Xg). At the end of the second round,

ES2(Xg) and CET(Xg) are {t1, t2, t3, t4, t5, t6, t7, t8} and {GO:

0004022, GO: 0016854}, respectively.

In the third round, as shown in Figure 3c, GO: 0004022 is

selected as textend to extend ES3(Xg). The overlapped terms

between ESextend and ES2(Xg) are t1, t2, t3, t4 and t5. The

following process is similar to that of the second round. In the

following process, ICextended(OTS3!textend) is calculated, i.e.

0.18875. Thus, IC3(Xg)¼ IC2(Xg)þ ICextended(OTS3!textend)¼

0.68097þ 0.18875¼ 0.86972. At the end of the third round,

ES3(Xg) and CET(Xg) become {t1, t2, t3, t4, t5, t6, t7, t8, t9} and

{GO: 0016854}, respectively.
In the fourth round, as seen in Figure 3d, GO: 0016854 is

selected as textend to extend ES4(Xg). The overlapped terms be-

tween ESextend and ES3(Xg) are t1 and t2. For t2 is one child of t1,

IC(OTS4)¼ IC(t2), i.e. 0.00316. Thus, ICextended(OTS4!

textend)¼ 0.1152 and IC4(Xg)¼ 0.98492. Next, the terms of

ESextend are added into ES3(Xg), and GO: 0016854 is removed

from CET(Xg). Here, it is found that CET(Xg) is null; thus, the

iteration is finished.

After iteration is finished, the IC4(Xg) and ES4(Xg) are retur-

ned as IC(Xg) and ES(Xg), respectively. As shown in Figure 3e,

the IC(Xg) is 0.98492. The final ES(Xg) is {t1, t2, t3, t4, t5, t6, t7, t8,

t9, t10, t11, t12}, which is consistent with the true path rule of GO.
Besides, we find that the key terms of which the IC could

represent the shared IC between two term sets such as t2 and

t5 in our strategy are coincidently the common disjunctive ances-

tors of the terms in the set like t8, t9, t10 and t12 in Figure 3. From

this point, the IC of term set can also be given alternatively by

summing the IC of the terms and remove the repeatedly summed

IC of their common disjunctive ancestors.

2.3 MEASURE THE FUNCTIONAL SIMILARITY
BETWEEN GENES

To compute gene functional similarity, set-based methods usu-

ally make use of Tversky’s ratio model or its variants. Assuming

that genes GA and GB are annotated with term sets

TA¼ {t1,t2, . . . ,tm} and TB¼ {t1,t2, . . . ,tn}, respectively, simUI

(Gentleman et al., 2005) defined the functional similarity between

GA and GB as follows:

FSsimUIðGA,GBÞ ¼
TA \ TBj j

TA [ TBj j
ð6Þ

j.j is the number of terms in the specified set. This method neg-

lected the differences of the terms; simGIC (Pesquita et al., 2008)

improved simUI by the IC of the terms. In simGIC, the func-

tional similarity between GA and GB is

FSsimGICðGA,GBÞ ¼

P
ti2TA\TB

fðtiÞP
tj2TA[TB

fðtjÞ
ð7Þ

where f(.) is the IC of the term. However, the shared IC of the

terms was also summed repeatedly under this method. In fact,

repeated summing of the shared IC is common in set-based

methods. It may also result in misjudgments of gene functional

similarity.
Inspired by Chen et al. (2012), the functional similarity be-

tween two genes is defined as the IC overlap ratio (ICOR) be-

tween their term sets as Equation (8).

FSsorðGA,GBÞ ¼ ð
ICðTA \ TBÞ

ICðTAÞ
þ
ICðTA \ TBÞ

ICðTBÞ
Þ=2 ð8Þ

Fig. 2. Algorithm for measuring the IC of the term set
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As known, the GOAs of genes are currently incomplete and suffer

from a large research bias (Wang et al., 2010, Yang et al., 2012).

To reduce the effects of annotation bias and imperfection, a

simple reciprocal average method is used to make a balance be-

tween shallow and well annotated genes. In the Equation (8), the

first item on the right of the equation reflects the proportion of the

shared IC betweenTA andTB to the IC of TA, and the second item

reflects the proportion of the shared IC between TA and TB to the

IC of TB. The shared IC between the term sets is measured by the

IC of the intersection between them IC(TA\TB). To avoid re-

peated summing of shared IC, the IC of the term set TA,TB and

TA\TB are computed by the algorithm described in Figure 2.

(a) (b)

(d) (e)

(c)

Fig. 3. The process of measuring the IC of the term set. Each term is represented by an oval node with GO identifier and the IC value. In each round, the

term textend is denoted by an oval with the octagon. The terms of ESextend are marked by ovals with asterisks. And the terms of ESi(Xg) are labeled with

symbols like tj, j2N in yellow circles. Overlapped terms between ESi(Xg) and ESextend are shown by the ovals with circles and asterisks. The process

includes four rounds corresponding to (a–d), respectively. The final ES(Xg) and IC(Xg) are shown by (e)
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3 VALIDATION AND RESULTS

To validate the performance of our method, SORA is imple-

mented, and its web service can available at http://nclab.hit.

edu.cn/SORA/.

SORA is compared on a widely used platform for

Collaborative Evaluation of GO-based Semantic Similarity

Measure (CESSM) (Pesquita et al., 2009b). The task is to meas-

ure functional similarity of 13 430 protein pairs, which involved

1039 proteins, in GO database and GOA released in August,

2008. According to the resources, terms in the GO are classified

as Electronic-assigned terms (E-terms) and Manually assigned

terms (M-Terms). E-terms are inferred from electronic annota-

tions, whereas M-terms are inferred from experiments, compu-

tational analysis, author statements and curatorial statements.

Considering GO aspects and the electronic annotations may in-

fluence performances of methods, validation experiments are

conducted on six GOAs: AMF, ABP, ACC, MMF, MBP and

MCC. The details of the six experimental GOAs are listed in

Table 1.

As for the performance criteria, CESSM provides the Pearson

correlations with sequence similarity (Seq), protein family simi-

larity (Pfam), enzyme commission classification similarity (ECC)

and Resolution (Res) to evaluate measures. Sequence similarity

is computed by dividing the sum of their reciprocal BlAST bit

scores by the sum of their self-BLAST bit scores. The Pfam

similarity between two proteins is the ratio between the

number of domains they share and the total number of those

they have. ECC similarity is measured by the digits of the enzyme

commission number shared by the proteins. The larger Pearson

correlations with them suggest that the semantic similarities re-

flect the functional closeness of proteins better. Resolution is the

relative intensity with which values in the sequence similarity

scale are translated into the semantic similarity (Pesquita et al.,

2008). A higher resolution indicates the method is more sensitive

to the differences in annotations. It is noteworthy that, as re-

ported by Pesquita et al. (2008), the relationship between seman-

tic and sequence similarity is not linear, and the resolution was

verified more appropriate to depict the intrinsic relationship be-

tween them than the correlation.
To evaluate the impact of the term IC, we measure the func-

tional similarities of the protein pairs specified by CESSM using

the methods based on the structural IC and that based on the

term IC computed by our strategy (called SORA IC), respect-

ively. These two approaches are evaluated on CESSM, and the

results are displayed in Table 2. As suggested by the results, the

method based on the SORA IC performs identically better than

the other with respect to Seq, Pfam and ECC in the experiments.

However, it is also found that the performance of the method

based on SORA IC is not as good as the one based on structural

IC on Res in some cases. It suggests that the differences of

SORA IC may be not as obvious as those of structural IC, but

the former reflect the reality better than the latter in terms of

other metrics. On the whole, the SORA IC has more positive

impacts on functional comparison of protein.
To validate the effects of the converting strategy, we convert

the semantic similarity into function similarity using Jaccard and

ICOR, respectively. The functional similarity scores measured

with the two converting strategies are compared on CESSM.

As listed in the Table 3, the method with ICOR gets higher

Res and ECC, whereas it is comparable with the other one on

Pfam in most experiments. On all of the experimental datasets,

the scores computed by ICOR show lower correlation with se-

quence similarities. This may illustrate that the distribution of the

scores converted by Jaccard matches better with that of sequence

similarities than by ours. According to Res, the scores derived by

Jaccard are less capable to capture the differences in the anno-

tations of the proteins than by our strategy. Overall, the results

indicate that ICOR is more discriminating for gene functional

comparison.
To evaluate effectiveness of our method, SORA is performed

on the six experimental GOAs separately. The functional simila-

rities of the 13 430 protein pairs computed by SORA are com-

pared with other methods on CESSM after every experiment.

The CESSM enables the comparison of new methods against

11 pairwise and group-wise functional similarity methods.

SORA is compared against typical methods of them including

simUI, simGIC as well as Resnik’s (RB), Lin’s (LB) and Jiang

and Conrath’s (JB) based on BMA, respectively. Table 4 shows

the Seq, Res, Pfam, ECC, average and the improvement on re-

spective average level of them computed by different methods.

The negative values, signed with ‘#’ in Table 4, imply that the

method is under average level with respect to the specific metric.
As for Seq, simGIC shows consistently better performance

than others on the six experimental datasets, whereas SORA is

Table 2. The impacts of the term IC

GOA Strategy Seq Res Pfam ECC

AMF SORA IC 0.5949 0.9762 0.5765 0.6726

Structural IC 0.5528 0.9720 0.5247 0.6056

ABP SORA IC 0.7293 0.9076 0.4679 0.4648

Structural IC 0.6374 0.9229 0.4297 0.4618

ACC SORA IC 0.6549 0.9371 0.4960 0.3741

Structural IC 0.6472 0.9447 0.4790 0.3603

MMF SORA IC 0.6443 0.9605 0.5703 0.6502

Structural IC 0.5539 0.9520 0.4686 0.5859

MBP SORA IC 0.6754 0.8966 0.4171 0.4311

Structural IC 0.5810 0.9079 0.3688 0.4172

MCC SORA IC 0.6875 0.9110 0.4725 0.3512

Structural IC 0.6406 0.9221 0.4613 0.3429

The best results are in bold.

Table 1. Descriptions of the six experimental GOA

GOA Components Number

of terms

AMF M-terms and E-terms of MF sub-ontology 9375

ABP M-terms and E-terms of BP sub-ontology 9235

ACC M-terms and E-terms of CC sub-ontology 5163

MMF Only M-terms of MF sub-ontology 4437

MBP Only M-terms of BP sub-ontology 6291

MCC Only M-terms of CC sub-ontology 3343
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slightly superior to the average level. Regarding Res and ECC,

SORA outperforms to others in most cases. When performed on

AMF, SORA is the best with improvements in the average level

against Res and ECC, by 25.47 and 8%, respectively. When

applied to MMF, SORA has significant improvements in the

average level against Res and ECC by 13.85 and 16.98%, re-

spectively. Referring to average levels of the Res and ECC,

SORA improves them by 14.04 and 10.86% when conducted

on ABP and improves by 11.81 and 5.14% when performed

on the MBP. SORA running on the terms of CC sub-ontology

is the best. Regarding Pfam, SORA is comparable with the best

and has significant improvements in the average level of Pfam.

Moreover, SORA outperforms average level of these methods in

terms of almost all of the metrics in the experiments. From these

results, SORA is outstanding than others while measuring gene

functional similarity.
To evaluate SORA against each metric, the average improve-

ments of them in six experiments are calculated and shown in

Table 5. Regarding Seq, simGIC is the best by 12%, and SORA

has a positive effect on it, whereas some others have a negative

impact on it. As for Res and ECC, SORA shows the best per-

formances with 15.37 and 8.82% improvement on average level,

respectively. In terms of Pfam, SORA gets a significant improve-

ment and performs comparably with the best, simGIC. It reveals

that SORA has improved the performances of gene functional

comparison.

Furthermore, to provide an intuitive measure of relative

performance, we summarize the comparison results by ranking

performances of the concerned methods in the six experiments.

Table 4. The performances of different methods in six experiments

GOA Metric Original value Average

value

Improvement in average level (%)

simGIC simUI RB LB JB SORA simGIC simUI RB LB JB SORA

AMF Seq 0.7172 0.5925 0.6683 0.6063 0.5459 0.5949 0.6209 15.52 4.57 7.64 �2.34# �12.07# �4.18#

Res 0.9559 0.9671 0.9577 0.5705 0.2409 0.9762 0.7781 22.85 24.30 23.09 �26.67# �69.04# 25.47

Pfam 0.6380 0.6181 0.5718 0.5639 0.4908 0.5765 0.5765 10.67 7.21 �0.82# �2.19# �14.86# 0

ECC 0.6219 0.6365 0.6027 0.6417 0.5612 0.6726 0.6228 �0.14# 2.21 �3.23# 3.04 �9.88# 8

ABP Seq 0.7732 0.7304 0.7397 0.6369 0.5864 0.7293 0.6993 10.56 4.44 5.77 �8.93# �16.15# 4.29

Res 0.8373 0.8628 0.9004 0.9326 0.3345 0.9076 0.7959 5.2 8.41 13.13 17.18 �57.97# 14.04

Pfam 0.4547 0.4505 0.4587 0.3727 0.3318 0.4679 0.4227 7.55 6.57 8.52 �11.84# �21.5# 10.69

ECC 0.3981 0.4022 0.4444 0.4352 0.3707 0.4648 0.4192 �5.05# �4.05# 6 3.81 �11.57# 10.86

ACC Seq 0.7500 0.6721 0.7113 0.6398 0.5014 0.6549 0.6549 14.52 2.62 8.61 �2.31# �23.44# 0

Res 0.9001 0.9337 0.9167 0.9359 0.3098 0.9371 0.8222 9.47 13.56 11.5 13.82 �62.31# 13.97

Pfam 0.4974 0.5214 0.4930 0.4850 0.3123 0.4960 0.4675 6.39 11.52 5.46 3.74 �33.2# 6.09

ECC 0.3612 0.3757 0.3776 0.3683 0.2598 0.3741 0.3528 2.39 6.49 7.03 4.39 �26.35# 6.04

MMF Seq 0.6665 0.5907 0.6512 0.5976 0.5219 0.6443 0.6120 8.90 �3.49# 6.40 �2.36# �14.73# 5.27

Res 0.9358 0.9304 0.9335 0.9376 0.3641 0.9605 0.8437 10.92 10.28 10.65 11.13 �56.84# 13.85

Pfam 0.5824 0.5504 0.5221 0.5148 0.4503 0.5703 0.5317 9.54 3.51 �1.81# �3.18# �15.32# 7.26

ECC 0.5874 0.5782 0.4841 0.5161 0.5189 0.6502 0.5558 5.68 4.02 �12.9# �7.14# �6.64# 16.98

MBP Seq 0.7359 0.6949 0.7267 0.6269 0.5333 0.6754 0.6655 10.58 4.42 9.19 �5.80# �19.87# 1.49

Res 0.8697 0.8831 0.8929 0.9117 0.3573 0.8966 0.8019 8.46 10.12 11.35 13.7 �55.44# 11.81

Pfam 0.4383 0.4253 0.4506 0.3810 0.2740 0.4171 0.3977 10.19 6.93 13.3 �4.20# �31.09# 4.88

ECC 0.3887 0.3818 0.4257 0.4216 0.4113 0.4311 0.4100 �5.21# �6.9# 3.83 2.83 0.31 5.14

MCC Seq 0.7348 0.6499 0.7214 0.6441 0.5013 0.6875 0.6565 11.93 �1.01# 9.89 �1.89# �23.64# 4.72

Res 0.8691 0.9072 0.8921 0.9102 0.3441 0.9110 0.8056 7.88 12.61 10.73 12.98 �57.28# 13.08

Pfam 0.4681 0.4872 0.4676 0.4562 0.3321 0.4725 0.4473 4.66 8.93 4.54 1.99 �25.76# 5.64

ECC 0.3502 0.3527 0.3443 0.3390 0.2519 0.3512 0.3316 5.63 6.37 3.86 2.25 �24.01# 5.90

Original values show Seq, Res, Pfam and ECC provided by CESSM. Average values present the average level on each metric. Improvements in the average level (%) display

the improvement on average level with respect to each metric. Symbol ‘#’ denotes that the method is under average level in term of the specific metric. The best levels of each

metric are in bold.

Table 3. The effects of the converting strategies

GOA Strategy Seq Res Pfam ECC

AMF ICOR 0.5949 0.9762 0.5765 0.6726

Jaccard 0.6629 0.9625 0.6122 0.6378

ABP ICOR 0.7293 0.9076 0.4679 0.4648

Jaccard 0.7778 0.8555 0.4679 0.4104

ACC ICOR 0.6549 0.9371 0.4960 0.3741

Jaccard 0.7621 0.8920 0.4865 0.3587

MMF ICOR 0.6443 0.9605 0.5703 0.6502

Jaccard 0.6988 0.9368 0.5895 0.5943

MBP ICOR 0.6754 0.8966 0.4171 0.4311

Jaccard 0.7374 0.8561 0.4339 0.3916

MCC ICOR 0.6875 0.9110 0.4725 0.3512

Jaccard 0.7391 0.8680 0.4633 0.3406

The best results are in bold.
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To simplify, we define the ranking of a given method mi with

respect to an assigned performance metric pj in a specific experi-

ment E as rank(mi,pj,E). As these methods are compared in the

same task, the comprehensive ranking of mi, RS(mi), is mea-

sured by

RSðmiÞ ¼
X

rankðmi, pj,EÞ ð9Þ

Sorting RS(mi) in increasing order gives the final ranking of the

concerned methods. The rankings of different methods are listed

in Table 6. It suggests that SORA is at the top of the list by

smallest comprehensive ranking of 54. SORA is still the best

among these methods. The second is simGIC and RB is the third.

Generally, SORA is able to obtain better results and perform

better than other methods. The structure of GO has a great

contribution to its success, as it implies expressive information

about gene function. Further analysis indicates that the group-

wise methods show better overall performances than pairwise

methods. It may be related to the ways of converting semantic

similarity into gene functional similarity. The pairwise methods

combine semantic similarity of terms into gene functional simi-

larity with the help of BMA. The group-wise methods take se-

mantic similarity between the term sets as gene functional

similarity in a single step. The way of converting in the latter

may be closer to reality than that in the former.

4 CONCLUSION

In this article, we put forward a novel method, namely SORA, to

measure gene functional similarity. It was evaluated against typ-

ical pairwise and group-wise methods on CESSM. From the ex-

perimental results, SORA is a more effective and reliable way to

estimate gene functional similarity than other tested methods.

The success of SORA may be related to the following

characteristics.

First, SORA makes use of semantic specificity and coverage to

measure the IC of the term. The term IC is determined by its

location in the GO hierarchy rather than the number of proteins

annotated with it. Thus, it can overcome the limitation of GOA

corpus bias, which affects the corpus-based approach heavily.

With the help of both semantic specificity and coverage, our

strategy could reflect the differences in semantics of terms

more objectively than the structural IC.
Second, SORA computes the IC of annotating term set by

combining the inherited and extended IC of the terms based

on the structure of GO. It can effectively avoid repeated sum-

ming of the shared IC of terms, which is the key point for esti-

mating the IC of the term set correctly.

Third, SORA uses simple reciprocal ICOR between the term

sets as gene functional similarity. It is an appropriate description

of functional relationship between genes. As discussed before,

SORA measures semantic similarity in a single step, regardless

of the number of annotations per protein, which is essential for

combining similarities of term pairs in pairwise approach. This

strategy has positive impacts on gene function comparison.
Moreover, from the results of our experiments, all of the meth-

ods performed better with E-terms than without. We consider

that sometimes the E-terms may provide new knowledge about

protein function, which has not been confirmed by manual

means. High quality computational inferring of annotations

would promote the gene function comparison, which is one of

our interests in the future.
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