Improved Image Alignment Method in application to X-ray Images and Biological Images
Ching-Wei Wang and Hsiang-Chou Chen

1 Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei City, Taiwan
2 Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei City, Taiwan

ABSTRACT
Motivation: Alignment of medical images is a vital component of a large number of applications throughout the clinical track of events; not only within clinical diagnostic settings, but prominently so in the area of planning, consummation and evaluation of surgical and radiotherapeutical procedures. However, image registration of medical images is challenging due to variations on data appearance, imaging artifacts and complex data deformation problems. Hence, the aim of this study is to develop a robust image alignment method for medical images.

Results: An improved image registration method is proposed, and the method is evaluated with two types of medical data, including biological microscopic tissue images and dental x-ray images, and compared with five state-of-the-art image registration techniques. The experimental results show that the presented method consistently performs well on both types of medical images, achieving 88.44% and 88.93% averaged registration accuracies for biological tissue images and x-ray images respectively and outperforms the benchmark methods. Based on the Tukey’s HSD and LSD tests, the presented method performs significantly better than all existing methods (p ≤ 0.001) for tissue image alignment, and for the x-ray image registration, the proposed method performs significantly better than the two benchmark b-spline approaches (p < 0.001).

Availability: The software implementation of the presented method and the data used in this study are made publicly available for scientific communities to use. (http://www-o.ntust.edu.tw/~cweiwang/ImprovedImageRegistration/)

1 INTRODUCTION
Image registration is the process of systematically placing separate images in a common coordinate system so that the information they contain can be optimally integrated or compared. This is becoming the central tool for image analysis, understanding, and visualization in both medical and scientific applications (20). Time series of images are acquired for various reasons, such as monitoring of bone growth in children, monitoring of tumor growth, post-operative monitoring of healing, or observing the passing of an injected bolus through a vessel tree, and image registration plays an important role for these medical applications.

However, alignment of medical images is challenging due to variations on data appearance, imaging artifacts and complex data deformation problems, making existing registration approaches unstable and perform poor (16); section 2 shows the experimental results of four existing registration methods. Although there has also been substantial progress in non-rigid registration algorithms that can compensate for tissue deformation or align images from different subjects, many registration problems remain unsolved (16). From literature review (1; 3; 11; 13; 23; 25; 26; 29; 31), the raw data tends to be carefully prepared, showing little morphological distortions or stain variation, to simplify the registration task. In addition, they tend to work with low resolution images without dealing with high precision tissue or cell level registration.

The aim of this work is to investigate a robust and fully automatic image registration method for medical images. Two types of medical images are used, including biological microscopic tissue images and dental x-ray images.

Fig. 1. Challenges with respect to data variations for image registration of medical images. (a) rotation and translation effects in a pair of serial tissue slides, (b) significant stain variation due to potential discrepancy in thickness of individual tissue sections and stain artifacts in combination with rotation and translation effects in a pair of serial tissue slides, (c) brightness variations due to changes on radiation time with different capturing views in dental x-ray images.
UnwarpJ, BunwarpJ, TrakEM2 and Mutual Information) are briefly described below. Matlab implementation (19). The five benchmark methods (SURF, information based image registration approach (18; 22) using the reconstruction system (TrakEM2) (8; 9; 25; 26) and mutual elastic b-spline model (BunwarpJ) (3), a state-of-the-art 3D elastic b-spline model (UnwarpJ) (29), an improved bi-directional to be useful for biological images, including a unidirectional by Sorzano et al. in 2005 by combining and extending some of (Figure 2(b)).

The outline of this paper is as follows. The materials and results are presented in section 2, and the proposed methods are described in section 3. Information regarding the implementation of the presented method is provided in section 4, and a discussion is given in section 5.

There are various types of image registration techniques (21; 37), which can be categorized into area-based methods and feature-based methods. Zitova and Flusser (37) suggested that feature-based methods are recommended if the images contain enough distinctive and easily detectable objects, which is usually the case of applications in remote sensing and computer vision, and area-based methods are usually employed for medical images, which are not so rich in such details. In this study, we firstly evaluated five existing image registration techniques on the collected medical images. They are one feature-based method, i.e. SURF (5), which is popularly adopted for remote sensing and general computer vision applications, and four area-based methods demonstrated to be useful for biological images, including a unidirectional elastic b-spline model (UnwarpJ) (29), an improved bi-directional elastic b-spline model (BunwarpJ) (3), a state-of-the-art 3D reconstruction system (TrakEM2) (8; 9; 25; 26) and mutual information based image registration approach (18; 22) using the Matlab implementation (19). The five benchmark methods (SURF, UnwarpJ, BunwarpJ, TrakEM2 and Mutual Information) are briefly described below.

SURF (Speeded-up robust features) (5) is a scale and rotation-invariant detector and descriptor based on sums of 2D Haar wavelet responses, and the method is a popularly adopted technique and widely applied to general computer vision applications such as remote sensing image alignment (7; 32) and object recognition and performs consistently well in our experiments for both biological tissue images and x-ray images. Detailed quantitative evaluations with statistical analysis were conducted, showing that the presented method achieves 88.44% and 88.9% averaged registration accuracies for biological tissue images and x-ray images respectively and outperforms the benchmark methods. Based on the Tukey’s HSD and LSD tests, the presented method performs significantly better than all existing methods (p ≤ 0.001) for tissue image alignment, and for the x-ray image registration, the proposed method performs significantly better than the two benchmark b-spline approaches (p < 0.001).

UnwarpJ (unidirectional elastic b-spline model) (29) is introduced by Sorzano et al. in 2005 by combining and extending some of the best techniques in the context of medical imaging. They utilize B-splines to model the deformation field and solve the registration problem by minimizing a pixelwise mean-square distance measure between the target image and the transformed source images with vector-spline regularization constraints. This method is demonstrated to be effective on the elastic registration of images of electrophoretic gels and fly embryos. Later, based on UnwarpJ, Arganda-Carreras et al. developed an improved bi-directional elastic b-spline model (BunwarpJ) (3) to perform better registration of histopathological tissue images. However, quantitative evaluations of the method were not provided in (3) to show the performance of BunwarpJ on alignment of tissue images. TrakEM2 (8; 9; 25; 26) is a recent development for 2D medical image registration and/or 3D image reconstruction, but Cardona et al. (8) pointed out that “TrakEM2 acknowledges that any automatic procedure (such as image registration and image segmentation) will eventually fail partially or fully and will require manual correction by a human operator”.

Mutual information techniques (18; 22) measures the statistical dependence or information redundancy between image intensities of corresponding voxels in both images and utilizes mutual information or relative entropy as the matching criterion. The method has been validated for rigid body registration of computed tomography, magnetic resonance and photon emission tomography images. Here, recent Matlab R2013a implementation (19) of the mutual information based method is adopted for evaluation.

In our experiments (see section 2), the five existing techniques do not deal with either tissue deformations or stain variation problems and perform poor, obtaining less than 65% registration accuracies on average for biological tissue images, and for x-ray images, the two b-spline models produce poor results with accuracy less than 60%. Hence, a robust and fully automatic registration method is highly desirable.

In this work, an improved image alignment approach that is a combination of feature-based and area-based elastic registration method and a tissue pattern extraction technique are introduced here, and the presented method is fully automatic and performs consistently well in our experiments for both biological tissue images and x-ray images. Significant quantitative evaluations with statistical analysis were conducted, showing that the presented method achieves 88.44% and 88.9% averaged registration accuracies for biological tissue images and x-ray images respectively and outperforms the benchmark methods. Based on the Tukey’s HSD and LSD tests, the presented method performs significantly better than all existing methods (p ≤ 0.001) for tissue image alignment, and for the x-ray image registration, the proposed method performs significantly better than the two benchmark b-spline approaches (p < 0.001).

Fig. 2. Corresponding feature detection by SURF. (a) For general computer vision applications, SURF is able to identify corresponding features, but (b) for biological tissue images where local features can be quite confusing, SURF performs poor on corresponding landmark detection.
2 DATA AND RESULTS

2.1 Materials

Serial Tissue Images. 90 pairs of serial histopathological slides were produced as the target and source images to be tested on the image registration techniques. The serial histological slides were collected using C57 mice with IgAN (Immunoglobulin A (IgA) nephropathy), which is the most common glomerular disorder across the world (12). IgAN was induced by daily injection of purified IgA anti-phosphorylcholine and pneumococcal C-polysaccharide (PnC) as described previously (10). The renal cortical tissue was collected and stored appropriately until analysis. All animal experiments were performed with the approval (permit number IACUC-11-063) of the Institutional Animal Care and Use Committee of The National Defense Medical Center, Taiwan, and were consistent with the NIH Guide for the Care and Use of Laboratory Animals. For histopathology, the tissues were fixed in 10% buffered formalin and embedded in paraffin. Serial sections (4µm) were cut using Leica RM2155 and stained with hematoxylin and eosin (H&E). Slide images were captured by light microscopy (Olympus, Japan) at the magnification of 400x.

Dental X-ray Images. 45 pairs of source and target dental x-ray images were collected for registration, and each pair was sampled without replacement from ten dental x-ray images (45 = C_10^{(2)} = 10! / (2! * 8!)), acquired with different radiation time (0.04, 0.06, 0.1, 0.16, 0.25, 0.4, 0.63, 1, 1.6 and 2.5 second) and slightly different capturing views.

2.2 Experimental results on biological tissue images

Evaluation Method. In conventional computer vision applications, the performances of image registration algorithms can be evaluated using sum of squared differences (SSD) between the target image and the transformed source image to represent the registration accuracy level. However, for the biological data, this evaluation result can be misleading as it is common that the intensity of the pixel in the target image and the one of the wrongly registered pixel in the transformed source image can be similar and that the intensity of the pixel in the target image and the one of the accurately registered pixel in the transformed source image can be different due to stain variation. Hence, to provide a quantitative evaluation, five corresponding landmarks between target images and the associated transformed source images by each registration method were firstly manually marked, and an automatic matching system is built to compare the coordinates of the corresponding landmarks. The registration accuracy for each image pair is computed by the matching successful rate over the corresponding landmarks, and the performance of each registration method is evaluated by the averaged accuracies over all image pairs. Figure 3 illustrates the evaluation results of two pairs of tissue images.

Quantitative Results with Statistical Analysis. In the Appendix, Table 1 presents the quantitative evaluation outcomes of biological tissue image registration with ANOVA analysis. Furthermore, using SPSS software (30), the quantitative registration accuracy scores were analyzed with the Tukey’s Honestly Significant Difference test (Tukey’s HSD) and the Fisher’s Least Square Difference test (LSD); see Table 2.

![Fig. 4. The box plot of quantitative evaluation results of tissue image registration where outliers greater than 1.5× interquartile range (IQR) are marked with a dot and outliers greater than 3×IQR are marked with a asterisk. The presented methods works constantly well overall and significantly outperforms the benchmark methods based on Tukey’s HSD and LSD tests (p ≤ 0.001); see Table 2.](http://bioinformatics.oxfordjournals.org/)

The experimental results show that the five benchmark techniques do not deal with either tissue deformations or stain variation problems and perform poor, obtaining less than 65% registration accuracies on average. In comparison, the presented method achieves 88.44% averaged registration accuracy for biological tissue images and significantly outperforms the benchmark methods based on Tukey’s HSD and LSD tests (p ≤ 0.001). Moreover, the box plot of the quantitative evaluation results is provided in Figure 4, showing that the proposed method works constantly well overall and the four area-based methods (UnwarpJ, BunwarpJ, TrakEM2 and Mutual Information) perform better than the feature-based method (SURF) for tissue image registration. Furthermore, the modern system TrakEM2 and the B-spline model appear to perform better than the other two benchmark approaches, and thus for the following dental x-ray image registration experiments, the TrakEM2 and the B-spline models are selected for comparison.

2.3 Experimental results on dental x-ray images

Evaluation Method. Unlike tissue images, local image features of dental x-ray scans appear better correlated to each other, and therefore a general registration performance measurement method, i.e. the percentage of pixels with similar intensity levels, is adopted to measure the registration accuracy, and an automatic evaluation tool is built to conduct quantitative evaluation automatically. The registration accuracy, r, is formulated as follows.

\[r = \frac{\#\{x: \|I_2(x) - U(I_1(x))\| < t\}}{\#\Omega} \]

where \(I_1, I_2, U(I_1) \) represents the source, target and transformed source images; \(\Omega = \{x \in \Omega_1 \cap \Omega_2: d(x) \in \Omega_2 \cap \Omega_2\} \) defines a mask common to the source and target images, and \(\#\Omega \) is the size of the mask in pixels; \(t = 50 \) in our experiments.
Quantitative Results with Statistical Analysis. In the Appendix, Table 3 presents the quantitative evaluation outcomes of dental x-ray image registration with ANOVA analysis. Furthermore, using SPSS software (30), the quantitative registration accuracy scores were analyzed with the Tukey’s Honestly Significant Difference test (Tukey’s HSD) and the Fisher’s Least Square Difference test (LSD); see Table 4. Moreover, the box plot of the quantitative evaluation results is provided in Figure 5. The experimental results show that the proposed method performs well on registration of dental x-ray images, obtaining 88.93% averaged registration accuracy rate, and significantly better than UnwarpJ and BunwarpJ, which obtain less than 60% registration accuracy rates on average, based on Tukey’s HSD and LSD tests ($p < 0.001$). Figure 6 shows registration results of some dental x-ray images.

3 METHODS

In (37), the authors pointed out that feature-based methods are recommended if the images contain enough distinctive and easily detectable objects, which is usually the case of applications in remote sensing and computer vision, and area-based methods are usually employed for medical images, which are not so rich in such details. However, Shum and Szeliski (28) indicated that as area-based direct matching methods use all available image data, they result in very accurate registration if the initialized disparities at the start of the registration procedure are already close to the true disparities. This is consistent to our experimental results; when the target images appear similar to the source images, the three benchmark area-based methods (UnwarpJ, BunwarpJ and TrakEM2) perform well, but when the target image and source images do not appear similar to each other, the three area-based approaches tend to perform poor.

Sparse methods have achieved great success in various biomedical applications such as biomarker selection, biological network construction and magnetic resonance imaging (36). The underlying representations of
Fig. 6. Alignment results of x-ray images. \(r \) represents the level of registration accuracy based on the percentage of pixels with similar intensity levels between the target image and the registered source image.

Fig. 8. Image registration by the proposed method.

many biomedical data are compressible in the sense that they have concise representation when expressed in a proper basis. Feature-based matching methods as sparse models utilize invariant features to ensure reliable matching, and widely used framework rely on SURF descriptors (5; 7; 14) or SIFT features (17; 33), which offer invariance to affine transformation (i.e. translation, rotation and scaling) in the image representation. However, Barzigar et al. (4) pointed out that feature-based methods are not well suited for estimating large transformations, as the matching accuracy and key point localization degrade for large transformations. Figure 7 shows the feature matching results by SURF, SIFT and the proposed method where SURF produces poor matching, SIFT generates some incorrect matches, and the proposed method find accurate matched key points for fast and higher level coarse registration. The associated image registration result is displayed in figure 8.

Hence, to investigate a robust alignment method for both medical and biological images, our goal is to develop a method that integrates the strengths of both area-based approaches and feature-based methods. In this paper, we develop a fully automatic, robust and fast registration method for biological and medical data, containing three major parts: (1) data normalization and feature extraction, (2) sparse approximation of images for coarse and fast global registration, (3) Optimize and refine local registration by area-based direct matching approach.

3.1 Data normalization and feature extraction

A data normalization process is proposed to reduce variations on image features and enhance tissue patterns, which greatly benefit the following feature matching process and area-based directing matching results. For biological color images, in conventional histopathological staining (H&E), hematoxylin induces the blue staining of nuclei, and eosin induces the red/pink staining of cytoplasm. Based on our previous study (34) showing that applying histogram equalization in RGB color space performed better in separating the nuclei from the cytoplasm than in HSL color space, both to enlarge the difference between the nuclear and cytoplasmic expression in color space and to further produce more distinctive tissue image features, the normalization is independently applied to the red \(I_r \) and blue \(I_b \) channels of each image, producing new image intensities \(I_r' \), \(I_b' \); see Equation 2 and 3.

For dental x-ray images, the normalization is applied to the single gray scale channel. The normalization process is formulated as follows.

\[
I_r'(i) = \frac{cfd_r(i)}{M \times N} \times (2^c - 1)
\]

(2)

where \(r \) stands for the red channel, \(h_r(i) \) is the frequency of intensity value \(i \) in the channel \(r \), \(cfd_r(i) = \sum h_r(i), 0 \leq i \leq 2^c - 1 \), \(c \) represents the number of bits used to represent each pixel in each channel, and \(M \times N \) is the size of the image.

\[
I_b'(i) = \frac{cfd_b(i)}{M \times N} \times (2^c - 1)
\]

(3)
For normalization, each OD vector is divided by its total length, such that

\[
\begin{align*}
\vec{c} &= \frac{c_{11}}{\sqrt{c_{11}^2 + c_{12}^2 + c_{13}^2}} \quad \text{(red)} \\
\vec{c} &= \frac{c_{21}}{\sqrt{c_{21}^2 + c_{22}^2 + c_{23}^2}} \quad \text{(green)} \\
\vec{c} &= \frac{c_{31}}{\sqrt{c_{31}^2 + c_{32}^2 + c_{33}^2}} \quad \text{(blue)}
\end{align*}
\]

For the color system in the RGB color-space, every color is defined as

\[
\vec{c} = (r, g, b)
\]

where \(r, g, b \) represent the red, green, and blue components, and we can see additive color mixing as the vector addition of RGB components. To model the colors in an image as the vector addition of a desired (D) and undesired (U) components to a background color (P), new unit vectors can be transformed to the new unit vectors.

\[
\vec{u} \equiv \vec{P} \hat{U} \quad \text{(4)}
\]

\[
\vec{d} \equiv \vec{P} \hat{D} \quad \text{(5)}
\]

\[
\vec{n} \equiv \vec{u} \times \vec{d} \quad \text{(6)}
\]

where \(\vec{n} \) is perpendicular to \(\vec{u} \) and \(\vec{d} \); \(\vec{u}, \vec{d}, \vec{n} \) span the 3D space; \(\vec{P} \hat{U} \) and \(\vec{P} \hat{D} \) are alternative unit vectors based on the undesired and desired colors.

Then, color \(\vec{c} \) can be transformed to the new unit vectors.

\[
\vec{c}' = r \cdot \vec{u} + g \cdot \vec{n} + b \cdot \vec{d} = u \cdot \vec{u} + d \cdot \vec{d} + n \cdot \vec{n} + \vec{p} \quad \text{(7)}
\]

where \(\vec{p} \equiv \vec{O} \vec{P} \); \(\vec{O} \) is the origin in the RGB 3D space; \(\vec{O} \vec{P} \) is a vector. By setting \(u = 0 \), we remove the undesired component and obtain the new color \(\vec{c}' = d \cdot \vec{d} + n \cdot \vec{n} + \vec{p} \). In the case of three channels, the color system can be described as a matrix of the form with every row representing a specific stain and every column representing the optical density (OD) as detected by the red, green, and blue channel for each stain.

\[
M = \begin{pmatrix}
c_{11} & c_{12} & c_{13} \\
c_{21} & c_{22} & c_{23} \\
c_{31} & c_{32} & c_{33}
\end{pmatrix}
\]

(8)

For normalization, each OD vector is divided by its total length, such that

\[
\begin{align*}
\vec{c}_{11} &= c_{11}/\sqrt{c_{11}^2 + c_{12}^2 + c_{13}^2} \\
\vec{c}_{21} &= c_{21}/\sqrt{c_{21}^2 + c_{22}^2 + c_{23}^2} \\
\vec{c}_{31} &= c_{31}/\sqrt{c_{31}^2 + c_{32}^2 + c_{33}^2}
\end{align*}
\]

In this study, the normalized optical density (OD) matrix, \(\hat{\vec{M}} \), to describe the color system for orthonormal transformation is defined as follows:

\[
\hat{\vec{M}} = \begin{pmatrix}
R & G & B \\
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{pmatrix}
\]

(9)

When \(C \) is the 3 × 1 vector for amounts of the stains at a particular pixel, the vector of OD levels detected at that pixel is equal to \(L = C \hat{\vec{M}} \).

Therefore, multiplication of the OD image with the inverse of OD matrix results in orthogonal representation of the stains forming the image \((C = \hat{\vec{M}}^{-1} L) \). Then, the image features of the red channel are extracted as eosinophilic structures for both high level feature-based coarse registration and local area-based direct matching registration. Figure 9 displays the flowchart of the presented approach.
3.2 Sparse approximation for fast and coarse global registration

Given I_1 and I_2 as two images for alignment, T as a set of all possible transformations between I_1 and I_2, and $U_t(I)$ as the function that maps an image I to its transformed image using the transformation t, the goal is to find the optimal transformation t':

$$t' = \arg\min_{t \in T} \|U_t(I_1) - I_2\|_2$$ (10)

The transformation invariant distance $d(I_1, I_2) = \|U_t(I_1) - I_2\|_2$ corresponds to the regular Euclidean distance when the images are aligned optimally in L^2 where images are considered as continuous functions in $L^2 = \{f : R^2 \to R : \int_{R^2} |f(x)|^2 dx < \infty\}$, but finding the optimal transformation t' and the smallest distance $d(I_1, I_2)$ is not easy as the objective function is non convex and local minima trap solution might occur. Feature based approaches represent a more efficient class of methods. Considered images can be well approximated by the sparse expansion in a series of geometric features, we define $D = \{\psi_{\alpha} : \alpha \in \Sigma L^2\}$ as a set of geometric features constructed by transforming a generating function $\psi \in L_2$ where $T_s \subset T$ represents a fine discretization of the transformations T and $\psi_{\alpha} = U_{\alpha}(\psi)$ denotes the transformation of the generating function ψ by α. Given p and q as the respective K-sparse approximation of I_1 and I_2 in D,

$$p = \sum_{i=1}^{K} a_i \psi_{\alpha_i}$$ (11)

$$q = \sum_{i=1}^{K} b_i \psi_{\beta_i}$$ (12)

where a_i, b_i are non-negative coefficients.

Then, the coarse global transformation problem can be formulated as finding the optimal relative transformation t'' between the K-sparse approximations with the smallest approximation transformation invariant distance $d(p,q)$:

$$t'' = \arg\min_{t \in T} \|U_t(p) - q\|_2$$ (13)

$$d(p,q) = \|U_{t''}(p) - q\|_2$$ (14)

There are two notable advantages with respect to sparse approximation and coarse global registration. Firstly, it helps escape from many local minima traps, and secondly it greatly reduces computational time for image alignment. Here, the K-sparse approximations p and q are obtained by the following procedures. Obtaining normalized image features F_1, F_2 by the method described in section 3.1, interested points S_1, S_2 are detected using the difference of Gaussian detector (17), and then the corresponding feature points p, q are selected as geometric consensus between S_1 and S_2 using random sample consensus (RANSAC) (15). The selected paired feature points p, q are then used for coarse global registration. The registration methodology adapted from (3) is based on the minimization of an energy function that incorporates three energy terms, ($\tilde{E} = \arg\min E$).

$$E = \underbrace{w t E_{img} + w a E_{div} + w r E_{rot} + w e E_{cons}}_{E}$$ (16)

where E_{img} is the energy of the similarity error between $U_t(I_1)$ and I_2, E_{mark} is the error of the mapping of paired feature points p, q, E_{cons} expresses the geometrical consistency between the elastic deformation in both direction ($I_1 \to I_2, I_2 \to I_1$), and w_k are the weights for sub-energy terms.

3.3 Refine local registration by area-based direct matching

Obtaining alignment outputs from the coarse registration process described in the previous section, we then refine registration by an area-based direct matching method, adapted from the improved bi-directional elastic b-spline model (3). The registration methodology is based on the minimization of an energy function that incorporates four energy terms; the calculation of the elastic deformation field, $d(x)$, is through the minimization of an energy function ($\tilde{E} = \arg\min E$).

$$E = \underbrace{w t E_{img} + w a E_{div} + w r E_{rot} + w e E_{cons}}_{E}$$ (17)

where E_{img} is the energy of the similarity error between I_1 and $I_2(d(x))$, E_{div}, E_{rot} are the regularization energy based on the divergence and curl of the deformation, E_{cons} expresses the geometrical consistency between the elastic deformation in both direction ($I_1 \to I_2, I_2 \to I_1$), and w_k are the weights for sub-energy terms.

$$E_{div} = \frac{1}{\#\Omega} \sum_{x \in \Omega} (d_{x}(x) - d_{y}(y))^2$$ (18)

where $div = \partial_x d_1 + \partial_y d_2$ represents the divergence of the 2D vector field d, and the divergence of a vector represents the net flow of the vector out of a unit volume.

$$E_{rot} = \frac{1}{\#\Omega} \sum_{x \in \Omega} (\nabla \cdot d(x))^2$$ (19)

where $\nabla \cdot d = -\partial_y d_1 + \partial_x d_2$ represents the length of the unique component of the curl of 2D vector field d, and where $\nabla \times d = (\partial_y f, \partial_x f)$ is the gradient of the scalar function f; the curl is usually described as a measure of the circulation of a vector field.

$$E_{cons} = E_{cons}^+ + E_{cons}^-$$ (20)

$$E_{cons}^+ = \frac{1}{\#\Omega^+} \sum_{x \in \Omega^+} \|x - d^+(d(x))\|^2$$ (21)

$$E_{cons}^- = \frac{1}{\#\Omega^-} \sum_{x \in \Omega^-} \|x - d^-(d(x))\|^2$$ (22)

where Ω^+, Ω^- define sets of relevant pixels common to the target and source images ($\Omega^+ = \{x \in \Omega_2 \cap \Omega^2 : d^+(x) \in \Omega_1 \cap \Omega^2\}$, $\Omega^- = \{x \in \Omega_1 \cap \Omega^2 : d^-(x) \in \Omega_2 \cap \Omega^2\}$), where $\#\Omega^+, \#\Omega^-$ are the number of pixels in the masks, and where d^+ is the elastic deformation in the direction ($I_1 \to I_2$), and d^- is the elastic deformation in the direction ($I_2 \to I_1$).

4 IMPLEMENTATION

The software implementation of the presented method is developed in JAVA (with jdk 1.7.0.07 installed) and based on ImageJ framework (1.45s version) (27). The software and the data are both made publicly available for scientific communities to use.

(http://www-o.ntust.edu.tw/~cweiwang/ImprovedImageRegistration/)
5 DISCUSSION

Image registration is the process of overlaying two or more images of the same scene taken at different times from different viewpoints or using different capturing modules, and a good image alignment method has to take a number of issues into consideration (4), including imperfect inputs such as aberrations and artifacts, occlusion issues where many pixels in one image may not match with any pixel in another image, and uniqueness issues where each pixel in an image has to uniquely map to a pixel of another image. Alignment of biological images is challenging as local image features may appear confusing to one another and imperfect inputs are inevitable.

In this paper, a robust and fully automatic registration method has been presented and demonstrated to be promising for aligning biological tissue images and dental x-ray images. Moreover, for the tissue image alignment, the presented method outperforms five popularly adopted existing approaches ($p \leq 0.001$) based on Tukey’s HSD and LSD tests, and performs consistently well for both types of data in our experiments (88.44% and 88.93% averaged registration accuracies for biological tissue images and x-ray images respectively).

The presented image registration algorithm is not limited to tissue images or dental x-ray scans but can also be applied to other anatomically or histologically defined medical data. Moreover, as complex deformation problems are unavoidable in real life data, the presented technique will prove to be a substantial advantage for any application that requires image registration.

ACKNOWLEDGEMENT

This study has been supported by the National Science Council of Taiwan, and the authors thank Prof. Ann Chen and Dr. Shuk-Man Ka from Department of Pathology, Tri-Service General Hospital, Taipei City, Taiwan for providing the serial histopathological tissue slides.

APPENDIX: FULL STATISTICAL RESULTS

A One-Way Analysis of Variance (ANOVA) is a way to test the equality of three or more means at one time by using variances. The total variation is comprised the sum of the squares of each mean with the grand mean. There is the between group variation and the within group variation. The whole idea behind the analysis of variance is to compare the ratio of between group variance to within group variance. If the variance caused by the interaction between the samples is much larger when compared to the variance that appears within each group, then it is because the means are not the same. The significant ANOVA result suggests rejecting the global null hypothesis that the means are the same across the groups being compared. Multiple comparison procedures are then used to determine which means differ. Here, Tukey’s Honestly Significant Difference test (Tukey’s HSD) and the Fisher’s Least Square Difference test (LSD) are used as multiple comparison tests.

Table 1. Registration Accuracies (%) of biological tissue image with ANOVA analysis

<table>
<thead>
<tr>
<th>Method</th>
<th>N</th>
<th>Score</th>
<th>Std. Deviation</th>
<th>Std. Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>UnwarpJ (29)</td>
<td>90</td>
<td>53.78</td>
<td>45.24</td>
<td>4.77</td>
</tr>
<tr>
<td>BUUnwarpJ (3)</td>
<td>90</td>
<td>49.56</td>
<td>45.98</td>
<td>4.85</td>
</tr>
<tr>
<td>SURF (5)</td>
<td>90</td>
<td>13.78</td>
<td>22.76</td>
<td>2.4</td>
</tr>
<tr>
<td>TrakEM2 (8; 9; 25; 26)</td>
<td>90</td>
<td>64.67</td>
<td>43.76</td>
<td>4.61</td>
</tr>
<tr>
<td>Proposed Method</td>
<td>90</td>
<td>88.44</td>
<td>30.13</td>
<td>3.18</td>
</tr>
<tr>
<td>Mutual information (19; 22)</td>
<td>90</td>
<td>45.56</td>
<td>42.4</td>
<td>4.47</td>
</tr>
</tbody>
</table>

ANOVA df Mean Square F Sig.

<table>
<thead>
<tr>
<th></th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between Groups</td>
<td>5</td>
<td>53961.63</td>
<td>34.816</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Within Groups</td>
<td>534</td>
<td>1549.92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>539</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The proposed method outperforms the benchmark methods on average.

Table 2. Multiple Comparison for tissue image evaluation: Tukey’s HSD and LSD

<table>
<thead>
<tr>
<th>Tukey HSD (I)Method</th>
<th>(J)Method</th>
<th>Mean Difference (I-J)</th>
<th>Std. Error</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proposed</td>
<td>UnwarpJ</td>
<td>34.67*</td>
<td>5.87</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Method</td>
<td>BuUnwarpJ</td>
<td>38.89*</td>
<td>5.87</td>
<td>< 0.001</td>
</tr>
<tr>
<td>SURF</td>
<td>74.67*</td>
<td>5.87</td>
<td>< 0.001</td>
<td></td>
</tr>
<tr>
<td>TrakEM2</td>
<td>23.78*</td>
<td>5.87</td>
<td>< 0.001</td>
<td></td>
</tr>
<tr>
<td>Mutual Information</td>
<td>42.88*</td>
<td>5.87</td>
<td>< 0.001</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LSD (I)Method</th>
<th>(J)Method</th>
<th>Mean Difference (I-J)</th>
<th>Std. Error</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proposed</td>
<td>UnwarpJ</td>
<td>34.67*</td>
<td>5.87</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Method</td>
<td>BuUnwarpJ</td>
<td>38.89*</td>
<td>5.87</td>
<td>< 0.001</td>
</tr>
<tr>
<td>SURF</td>
<td>74.67*</td>
<td>5.87</td>
<td>< 0.001</td>
<td></td>
</tr>
<tr>
<td>TrakEM2</td>
<td>23.78*</td>
<td>5.87</td>
<td>< 0.001</td>
<td></td>
</tr>
<tr>
<td>Mutual Information</td>
<td>42.89*</td>
<td>5.87</td>
<td>< 0.001</td>
<td></td>
</tr>
</tbody>
</table>

*The proposed method is significantly better than the benchmark techniques using both Tukey’s HSD and LSD tests ($p \leq 0.001$)

REFERENCES

The proposed method outperforms the benchmark methods on average. ANOVA analysis

Table 3. Registration accuracy (%) of dental x-ray image registration with ANOVA analysis

<table>
<thead>
<tr>
<th>Method</th>
<th>N</th>
<th>Score Mean</th>
<th>Std. Deviation</th>
<th>Std. Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>UnwarpJ (29)</td>
<td>45</td>
<td>55.06</td>
<td>35.78</td>
<td>5.39</td>
</tr>
<tr>
<td>BU/UnwarpJ (3)</td>
<td>45</td>
<td>55.04</td>
<td>35.21</td>
<td>5.25</td>
</tr>
<tr>
<td>TrakEM2 (8-9; 25; 26)</td>
<td>45</td>
<td>87.77</td>
<td>5.54</td>
<td>0.83</td>
</tr>
<tr>
<td>Proposed Method</td>
<td>45</td>
<td>88.93</td>
<td>5.41</td>
<td>0.81</td>
</tr>
</tbody>
</table>

ANOVA df | Mean Square | F | Sig. |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Between Groups</td>
<td>3</td>
<td>16547.832</td>
<td>25.807</td>
</tr>
<tr>
<td>Within Groups</td>
<td>175</td>
<td>641.222</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>178</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The proposed method outperforms the benchmark methods on average.

Table 4. Multiple Comparison for dental x-ray image evaluation: Tukey’s HSD and LSD

Tukey HSD

<table>
<thead>
<tr>
<th>(I) Method</th>
<th>(J) Method</th>
<th>Mean Difference (I-J)</th>
<th>Std. Error</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proposed</td>
<td>UnwarpJ</td>
<td>33.87*</td>
<td>5.37</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Method</td>
<td>BU/UnwarpJ</td>
<td>33.89*</td>
<td>5.34</td>
<td>< 0.001</td>
</tr>
<tr>
<td></td>
<td>TrakEM2</td>
<td>1.16*</td>
<td>5.34</td>
<td>0.996</td>
</tr>
</tbody>
</table>

LSD

<table>
<thead>
<tr>
<th>(I) Method</th>
<th>(J) Method</th>
<th>Mean Difference (I-J)</th>
<th>Std. Error</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proposed</td>
<td>UnwarpJ</td>
<td>33.87*</td>
<td>5.37</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Method</td>
<td>BU/UnwarpJ</td>
<td>33.89*</td>
<td>5.34</td>
<td>< 0.001</td>
</tr>
<tr>
<td></td>
<td>TrakEM2</td>
<td>1.16*</td>
<td>5.34</td>
<td>0.828</td>
</tr>
</tbody>
</table>

*The proposed method is significantly better than UnwarpJ and BU/UnwarpJ using both Tukey’s HSD and LSD tests (p < 0.001)

[34] Vedaldi, A.: An open implementation of the SIFT detector and descriptor. UCLA Computing 52(4) (2005) 652-663