Joint analysis of expression profiles from multiple cancers improves the identification of microRNA-gene interactions

Xiaowei Chen¹, Frank J. Slack² and Hongyu Zhao¹,³,4*

⁰Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT.
¹Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT.
²Department of Biostatistics, Yale School of Public Health, New Haven, CT.
³Department of Genetics, Yale School of Medicine, New Haven, CT.

ABSTRACT

Motivation: MicroRNAs (miRNAs) play a crucial role in tumorigenesis and development through their effects on target genes. The characterization of miRNA-gene interactions will lead to a better understanding of cancer mechanisms. Many computational methods have been developed to infer miRNA targets with/without expression data. Since expression data sets are in general limited in size, most existing methods concatenate datasets from multiple studies to form one aggregated dataset to increase sample size and power. However, such simple aggregation analysis results in identifying miRNA-gene interactions that are mostly common across data sets, whereas specific interactions may be missed by these methods. Recent releases of The Cancer Genome Atlas (TCGA) data provide paired expression profiling of miRNAs and genes in multiple tumors with sufficiently large sample size. To study both common and cancer specific interactions, it is desirable to develop a method that can jointly analyze multiple cancers to study miRNA-gene interactions without combining all the data into one single data set.

Results: We developed a novel statistical method to jointly analyze expression profiles from multiple cancers to identify miRNA-gene interactions that are both common across cancers and specific to certain cancers. The benefit of this joint analysis approach is demonstrated by both simulation studies and real data analysis of TCGA datasets. Compared to simple aggregate analysis or single sample analysis, our method can effectively use the shared information among different but related cancers to improve the identification of miRNA-gene interactions. Another useful property of our method is that it can estimate similarity among cancers through their shared miRNA-gene interactions.

Availability and implementation: The program, MCMG, implemented in R is available at http://bioinformatics.med.yale.edu/group/.

Contact: hongyu.zhao@yale.edu.

1 INTRODUCTION

MicroRNAs (miRNAs) (~22nt) are important non-coding small RNAs regulating gene expression by repressing the translation or degrading target genes through complementary base pairing to 3’ untranslated regions (3’ UTRs) of genes (Bartel, 2004). They are involved in many cancer-related processes such as cell growth and differentiation through regulating their target gene expression (Esquela-Kerscher and Slack, 2006). Considering the importance of miRNAs in cancers and the fact that they regulate a large number of genes, deciphering miRNA and gene interactions at the genome level can lead to a better understanding of tumorigenesis and development. In recent years, many computational approaches have been developed to predict miRNA targets. Sequence-based prediction algorithms build on specific binding rules, including sequence complementarity, secondary structure, energy, conservation, and site accessibility, to predict miRNA-gene interactions. Some representative methods include TargetScanS/TargetScan (Lewis, et al., 2005; Lewis, et al., 2003), miRanda (Enright, et al., 2003), and PicTar (Krek, et al., 2005). Although these methods provide a list of potential target genes for each miRNA, they suffer from a relatively high false positive rate due to the complex nature of miRNA-gene interactions (Sethupathy, et al., 2006). In addition, the predictions are static and may not capture those interactions that are specific to certain diseases or conditions.

To improve sequence-based prediction specificities and identify condition-specific interactions, efforts have been made to incorporate expression profiles to study miRNA regulatory mechanisms. The basic principle of these methods is that genes regulated by a miRNA should exhibit negative expression correlations with the miRNA. These methods include those based on simple correlation analysis (Liu, et al., 2010; Van der Auwera, et al., 2010), simple/regularized regression models (Kim, et al., 2009; Lu, et al., 2011; Muniategui, et al., 2012), and Bayesian inference (Huang, et al., 2007; Su, et al., 2011). Pearson correlation in the category of simple correlation analysis is the most straightforward way to study miRNA-gene interactions. However, the simplicity of this method usually results in relatively high false positives. Lasso regression (Lu, et al., 2011; Muniategui, et al., 2012) in the category of regression models deals with the high correlation among genes/miRNAs by providing a sparse solution with a relatively small set of significant miRNA-gene pairs. GenMir++ (Huang, et al., 2007), the first-developed and mostly-cited method in the cate-
category of Bayesian inference, uses a Bayesian model with variational
inference techniques to find putative pairs from expression data by
incorporating the prior information (e.g. sequence features). Other
methods in the Bayesian category either provide a fast-solving
algorithm for Bayesian model or assume different priors (Stingo, et
al., 2010; Su, et al., 2011). The methods in all three categories have
improved prediction specificity by combining expression profiles
data with sequence-based prediction (Muniategui, et al., 2012).
However, expression data sets are in general limited in size. To
address this limitation, most existing methods concatenate expres-
sion profiles from multiple diseases into one single dataset for
analysis (called “simple aggregate analysis” in the rest of this pa-
per). The advantages of this approach include the relatively large
sample size achieved, and the high variability of expression in
genes and miRNAs among samples due to sample heterogeneity
among diseases (which is preferred in interaction studies) through
aggregation. However, the presence of disease heterogeneity may
dilute interaction signals if association is only present in one dis-
ease and there are also challenges in data processing and selection
(Liu, et al., 2009). Overall, studies based on samples from one
specific disease may be more preferred if sufficient samples are
available.

Recent releases of The Cancer Genome Atlas (TCGA) expres-
sion datasets on multiple tumors, such as ovarian serous cystade-
nocarcinoma [OV] (The Cancer Genome Atlas Network, 2011),
glioblastoma multiforme [GBM] (The Cancer Genome Atlas Re-
search Network, 2008) and breast invasive carcinoma [BRCA]
(The Cancer Genome Atlas Network, 2012), provide the oppor-
tunity to study miRNA-gene interactions individually in each can-
cer. Large sample size (usually more than 200 samples), heteroge-
neity among patient samples, and high variability of gene/miRNA
expression in these cancers may significantly improve statistical
power to infer miRNA-gene interactions. The existing simple ag-
gregate methods mentioned above (e.g. Pearson correlation, Lasso
and GenMir++) can be used to analyze miRNA-gene interactions
in individual cancers in the TCGA datasets. However, if a large
number of miRNA-gene interactions are shared between different
cancers, potentially useful information may be lost in cancer-
specific analysis when interactions are weak in some of these can-
cers. The existing methods may suffer from signal dilution and
non-specific prediction when used at aggregated datasets; on the
other hand, these methods may miss interactions shared among
diseases if applied to individual cancers. Therefore, it is desirable
to develop a method that can identify both disease-specific and
common interacting miRNA-gene pairs through joint analysis of
multiple cancers.

In other areas of computational biology, statistical methods have
been developed for joint analysis of multiple related datasets. In
the joint analysis of multiple ChIP-chip datasets, Datta and Zhao
(2008) proposed a log-linear model to infer cooperative binding
among transcription factors. Ferguson, et al. (2012) applied a quad-
ratic regression model to jointly analyze multiple ChIP-seq librari-
es with consideration of the potential covariates in the data. Choi,
et al. (2009) developed a hierarchical hidden Markov model to
incorporate data from both ChIP-seq and ChIP-chip data to im-
prove the identifications of transcription factor binding sites. Chen,
et al. (2011) described a deterministic model-based method (MM-
ChIP) to perform meta analysis by integrating information from
cross-platform and between-laboratory ChIP-chip or ChIP-seq
data. Choi, et al. (2013) presented sparsely correlated hidden Mar-
kov models to analyze multiple genome-wide location study da-
tasets based on simultaneously HMM inference. In gene regulatory
network studies, Anvar, et al. (2011) proposed a novel algorithm to
infer interspecies disease networks based on the construction and
training of intraspecies Bayesian networks to enhance the inference
aggregation methods to study the regulatory networks by combin-
ing multiple microarray datasets with consensus or meta-analysis
Bayesian networks and improve the inference compared to simple
concatenation of datasets. Several meta-analyses of genome wide
association studies have been performed to increase the power of
disease-related variant detections (De Jager, et al., 2009; Ferrucci,
et al., 2009; Soranzo, et al., 2009).

In this article, we developed a two-stage method (called MCMG,
joint analysis of Multiple Cancers for MicroRNA-Gene interac-
tions) to identify miRNA-gene interactions that are either specific
to a cancer type or common to several cancers by jointly analyzing
expression profiles from multiple cancers. The probability of inter-
actions is first inferred individually in each cancer from paired
miRNA and gene expression data, and then jointly analyzed across
cancers through an empirical Bayes model. Due to information
sharing among different but related cancers, better characterization
of miRNA-gene pairs can be achieved compared to single cancer
analysis or simple aggregate analysis. Through both simulation
studies and the analyses of TCGA datasets, we demonstrate the
usefulness and power of our method. In addition, our method can
also infer relationship among cancers and incorporate different
data types shown in real data analysis.

2 METHODS

2.1 Inference of miRNA-gene interactions

To facilitate the characterization of both common and specific miRNA-
gene interactions in multiple cancers, we developed a two-stage method for
more accurate inference of interactions by borrowing information shared
among related cancers. In the first stage, the probabilities of miRNA-gene
interactions are calculated with Pearson correlation and local false discov-
ery rate estimation individually in each cancer. In second stage, we use an
empirical Bayes method to jointly infer the posterior probability of interac-
tions across cancers.

2.1.1 Inference of within-cancer pairs probability

Various methods, such as correlation, regularized regression and Bayesian modeling, can be
used to infer interactions in a single cancer. Given the assumption that
miRNAs and target gene expression are negatively correlated, the most
straightforward method is through Pearson correlation on pre-processed
(standardized and/or normalized) expression data. Although regularized
regression and Bayesian modeling can deal with colinearity issues among
miRNAs and provide a sparse solution with variable selection, a number of
studies indicate that miRNA families with members of high sequence iden-
tity and miRNA clusters classified by genomic locations may present co-
expression patterns and regulate genes cooperatively (Chhabra, et al., 2010;
Cloonan, et al., 2011; Xiao, et al., 2012). Therefore, some true interactions
might be incorrectly excluded by sparse solutions among correlated miR-
NAS. Moreover, sparse solutions may choose different sets of interaction
pairs for each cancer when there is a strong correlation among miRNAs and
genes, leading to potential issue of “missing data” when joint analysis is
performed across cancers. Thus, we have chosen to use Pearson correlation
(equation 1) to quantify the statistical evidence of association between
miRNAs and genes in each cancer. The statistical significance level is calculated by Fisher transformation (equation 2), an approximate variance-stabilizing transformation, which follows a normal distribution.

\[
 r_{djk} = \frac{\sum_{i=1}^{N_d} (Y_{dik} - \bar{Y}_{d}) (X_{dij} - \bar{X}_{d})}{\sqrt{\sum_{i=1}^{N_d} (Y_{dik} - \bar{Y}_{d})^2} \sqrt{\sum_{i=1}^{N_d} (X_{dij} - \bar{X}_{d})^2}}
\]

(1)

\[
 z_{djk} = \frac{1}{2} \log\left(\frac{1 + r_{djk}}{1 - r_{djk}}\right) - \text{Normal}(0, \frac{1}{N_d - 3})
\]

(2)

where \(r_{djk} \) is the Pearson correlation coefficient between gene \(j \) and miRNA \(k \) in disease \(d \); \(Y_{dik} \) is the expression of gene \(j \) in individual \(i \) of disease \(d \); \(X_{dij} \) is the expression of miRNA \(k \) in individual \(i \) of disease \(d \); \(N_d \) is the number of individuals in disease \(d \); \(z_{djk} \) is the z-score of each pair gained from Fisher transformation of correlation coefficient.

To estimate the probabilities of interactions within each cancer, the local false discovery rate (abbreviated as local fdr in the following) estimation procedure developed by Efron (2004) was used to simultaneously consider all miRNA-gene interactions. Local fdr is an empirical Bayes method suitable for large-scale hypothesis testing involving many hypotheses, and it performs well when most of the cases belong to the null distribution and the test statistic under the null distribution is approximately normally distributed. The local fdr estimates the null distribution from the central peak in the z-values’ histogram, which is preferred over permutation-based null distribution estimation when differential expressions (unobserved covariates) are present (Efron, 2004). The local fdr method fits well for the miRNA-gene interaction analysis, since most miRNAs and gene pairs do not interact, the z-scores calculated from equation (2) approximately follow a normal distribution, and unobserved covariates are universal in biological studies. The local fdr for each miRNA-gene within a cancer is estimated by

\[
 \text{locfdr}(z_{djk}) = p(t_{djk} = 1 | z_{djk}) = \frac{p_{u|0}(z_{djk}) p_{0}}{p_{u|0}(z_{djk}) p_{0} + p_{u|1}(z_{djk}) p_{1}}
\]

(3)

where \(t_{djk} \) is an indicator variable representing whether a gene \(j \) and miRNA \(k \) interact; \(p_{u|0} \) is the probability of null cases (no interaction); \(p_{u|1} \) is the probability of non-null cases (true interactions).

Then the probability of interaction given its z-score is estimated through the following equation:

\[
 p(t_{djk} = 1 | z_{djk}) = 1 - \text{locfdr}(z_{djk}) = \frac{(1 - p_{u|0}) p_{0}(z_{djk})}{p_{0}(z_{djk})}
\]

(4)

For a set of p-values, locfdr(\(z_{djk} \)) and \(p_{u|0} \) can be estimated from R package “locfdr”, based on the local fdr method. With Pearson correlation, Fisher transformation and local fdr estimation, we infer the probabilities of interactions within each cancer given the expression dependency between genes and miRNAs.

2.1.2 Inference of cross-cancer pairs probability

In the first stage analysis as discussed above, miRNA-gene interactions are studied in cancers individually. Therefore shared information across multiple cancers is not taken into account. In the second stage, we jointly analyze multiple cancers with an empirical Bayes approach to effectively incorporate shared information to identify interactions. The ultimate goal of this joint analysis is to estimate the probability of interactions in cancer \(d \) given the z-scores of all cancers \(p(t_{djk} = 1 | z_{djk}, \ldots, z_{dN_d}) \).

In our following discussion, multiple studies refer to different cancers that may have distinct miRNA regulatory networks. Therefore, it is expected that only a fraction of the interactions is shared among cancers. In addition, we expect that cancers that are more closely related (e.g. ovarian cancer and breast cancer) should have a higher degree of sharing than those that are more distinctly related. In other words, the joint miRNA-gene interaction patterns across cancers are dependent on both the interaction probabilities in each individual cancer (derived in section 2.1.1) and the overall similarity of miRNA regulatory networks across cancers. To quantify the overall similarity, the most straightforward way is to calculate the fraction of miRNA-gene pairs shared between two cancers. The above rationale can be formulated as follows. Let \(t_{1}, \ldots, t_{D} \) denote the joint interaction status among cancers for a study of \(D \) cancers with \(t_{d} \) representing the status of interaction in cancer \(d \). Since \(t_{d} \) could be either 0 or 1, the joint status of \(D \) cancers has \(2^{D} \) possible patterns. For example, there are eight joint patterns (0,0,0), (0,0,1), (0,1,0), (0,1,1), (1,0,0), (1,0,1), (1,1,0) and (1,1,1) for three cancers under study. Let \(\pi(t_{1}, \ldots, t_{D}) \) denote the probability for pattern \((t_{1}, \ldots, t_{D}) \). The overall similarity of miRNA regulation between cancers \(u \) and \(v \) \((1 \leq u,v \leq D, u \neq d)\) can be quantified by the fraction of shared pairs from \(\pi(t_{1}, \ldots, t_{D}) \) by equation (5).

\[
 \text{similarity}(u,v) = \frac{1}{2} \left(p(t_{u} = 1 | t_{v} = 1) + p(t_{v} = 1 | t_{u} = 1) \right)
\]

(5)

Thus, the interactions common across cancers, which are shown by the overall similarity, can be incorporated into the joint estimation of pairs via the probability for each interaction pattern \((t_{1}, \ldots, t_{D}) \). In our algorithm, we use \(\pi(t_{1}, \ldots, t_{D}) \) to implicitly represent the overall similarity, considering indirectly using the similarity scores in the study.

Then we consider combining probability of individual cancers with similarity (via \(\pi(t_{1}, \ldots, t_{D}) \)) for inference of interactions. Although z-scores of the pairs are not independent among cancers due to the shared information, we assume conditional z-scores of a pair in different cancers are independent when the status of interactions for each cancer is known. So the probability of observing z-scores given the interaction status is

\[
 p(z_{djk}, \ldots, z_{dN_d} | t_{1}, \ldots, t_{D}) = p(z_{djk} | t_{1}, \ldots, t_{D}) \cdots p(z_{dN_d} | t_{1}, \ldots, t_{D})
\]

(6)

With \(p_{0|0}(z_{djk}) \), \(p(z_{djk} = 0 | t_{1}, \ldots, t_{D}) \) and \(p(t_{djk} = 1 | z_{djk}) \) obtained from local fdr estimation in the first stage, we have

\[
 p(z_{djk} | t_{djk} = 0) = \frac{p(z_{djk}) p(t_{djk} = 0 | z_{djk})}{p_{u|0}(z_{djk})}
\]

(7)

\[
 p(z_{djk} | t_{djk} = 1) = \frac{p(z_{djk}) p(t_{djk} = 1 | z_{djk})}{(1 - p_{u|0})}
\]

(8)

By combining the estimated probabilities in individual cancers and estimation of similarity among cancers, we can derive the posterior marginal probability of interaction between gene \(j \) and miRNA \(k \) given observed z-scores.

\[
 p(t_{djk} = 1 | z_{djk}, \ldots, z_{dN_d}) \sim \sum_{v=1}^{D} \sum_{u=1}^{D} p(z_{djk}, \ldots, z_{dN_d} | t_{1}, \ldots, t_{D}) \pi(t_{1}, \ldots, t_{D}) \pi(t_{1}, \ldots, t_{D})
\]

(9)
The only unknown parameters in equation (8) are the prior probabilities $\pi(t_1, \ldots, t_p)$, which measure cancer similarities. We empirically estimate $\pi(t_1, \ldots, t_p)$ from the observed data with an iterative updating algorithm shown in Fig. 1. Since only negative relationships are considered for miRNA-gene interactions, we assign $p(t_{djk} | z_{djk} = \ldots, z_{djk}) = 0$ if $z_{djk} > 0$ after the iterative inference.

Notations
- z_{djk}: z-score of gene j and microRNA k in cancer d from Pearson correlation and Fisher transformation;
- $p(t_{djk})$: status of gene j and microRNA k in cancer d;
- t_{djk}: probability of joint status of D cancers;
- J: # of genes;
- K: # of microRNAs;
- D: # of cancers;

Initialization
- prior prob for status: $t_0(t_1, \ldots, t_p) = 1/2^p$
- prob of z_{djk} given t_{djk} is not true: $p(z_{djk} \mid t_{djk} = t_{djk}) = p(z_{djk} = 0 \mid t_{djk} = 0) \cdot p_{z_{djk}}$
- prob of z_{djk} given t_{djk} is true: $p(z_{djk} \mid t_{djk} = 1) = p(t_{djk} \mid t_{djk} = 1) / (1 \cdot p_{z_{djk}})$

Main
- while max $\prod_{djk} t_{djk} / (1 - \prod_{djk} t_{djk}) < 0.0001$ AND s<100
 1. Calculate the probability of joint status of each interaction given z-scores at s iteration:

 \[
 p(t_{1,\ldots,j-1,\ldots,p}, z_{djk}, \ldots, z_{djk}) = \frac{p(z_{djk}, \ldots, z_{djk} \mid t_{1,\ldots,j-1,\ldots,p})}{p(z_{djk}, \ldots, z_{djk} | t_{1,\ldots,j-1,\ldots,p})} \]

 \[
 t_{djk} = \frac{p(z_{djk}, \ldots, z_{djk} | t_{1,\ldots,j-1,\ldots,p})}{p(z_{djk}, \ldots, z_{djk} | t_{1,\ldots,j-1,\ldots,p})}
 \]

 (2) Estimate the new probability for overall joint status for $s+1$ iteration by averaging the probability of joint status of all pairs calculated in (1).

 \[
 t_{djk} = \frac{1}{K} \sum_{j=1}^{K} p(t_{1,\ldots,j-1,\ldots,p} | t_{djk} = t_{djk}, z_{djk}, \ldots, z_{djk})
 \]

 end

- Calculate posterior prob for status of interactions in each cancer based on estimated overall joint status:

 \[
 p(t_{djk} = 1 | t_{1,\ldots,j-1,\ldots,p}, z_{djk}, \ldots, z_{djk}) = \frac{1}{p(t_{djk} = t_{djk} \mid t_{1,\ldots,j-1,\ldots,p}, z_{djk}, \ldots, z_{djk})}
 \]

- return $p(t_{djk} = 1 | t_{1,\ldots,j-1,\ldots,p}, z_{djk}, \ldots, z_{djk})$

Fig. 1. Iterative updating algorithm to estimate posterior marginal probabilities for status of interactions with empirically estimated $\pi(t_1, \ldots, t_p)$.

2.2 Simulations
To demonstrate the benefit of joint analysis of multiple cancers to infer interaction by the proposed method MCMG, we performed extensive simulations on four scenarios considering the characteristics and issues in miRNA-gene paired expression data. To simulate realistic data for miRNA-gene pairs, both gene and miRNA expression data have to be separately generated, and the dependency within and between these two types of data has to be modeled as well. We are not aware of software to perform such simulations in the literature, partly due to the difficulty to mimic the features and dependency of miRNA-gene pairs. In our studies, we directly simulated the transformed correlation coefficients between miRNAs and genes from Gaussian mixture distributions (z-values’ distribution of miRNA-gene pairs in one cancer) to mimic the output of single cancer analysis. The main goal of our simulations was to demonstrate the advantage of joint analysis of multiple cancers over single cancer analysis. To better incorporate the characteristics of miRNA-gene data, we simulated pairs from Gaussian mixture distributions with different separation of null and non-null pairs, different similarity among cancers, and with or without pairs of positive correlations (details discussed below). In each scenario, 10,000 miRNA-gene pairs were simulated with 10 repeats. We assumed that 90% of the pairs had no interactions, i.e., $p_{z_{djk}} = 0.9$ whereas there were interactions between for other 10%, e.g., $p_{z_{djk}} = 0.1$ in cancer d. When there was no interaction, we assumed that $p(z_{djk} \mid t_{djk} = 0) = N(0,1)$. Let D denote the number of cancers. We considered the following four scenarios in our simulations.

- **Scenario I**: We studied the effect of separation of null and alternative distributions in individual cancers. Since miRNAs and genes are assumed to be negatively correlated, we assumed that the alternative distribution is a normal distribution with negative mean, $\text{Norm}(\mu, 1), \mu = -1, -2, -3$ for two cancers where they share the same set of interacting miRNA-gene pairs.
- **Scenario II**: We studied the effect of similarity of interaction sets among cancers. We expect that our method performs better with more overlaps of interactions among cancers. We assessed the performance of our proposed method when two cancers shared 60%, 70%, 80%, 90%, or 100% of interacting sets.
- **Scenario III**: We studied the effect of the number of cancers included in the study. We expect that our proposed method performs better when more cancers jointly analyzed together. We varied the number of cancers considered from 2, 4, to 6.
- **Scenario IV**: We studied the effect of positive correlations between miRNAs and their target genes. Although most miRNA-gene interactions are negative, positive correlations have been observed in different cancers due to specific biological reasons, e.g., downstream genes in the pathway regulated by miRNA or close physical locations (Creighton, et al., 2012). To assess their effect on interaction inference, we let alternative distributions consist of two parts $N(-2,1) \& N(2,1)$ in a study involving two cancers. The non-null cases were simulated from these two distributions with equal chance.

The precision-recall curves (equation (9)) were used to evaluate the performance of the proposed method by comparing results from analyzing single cancers individually and analyzing multiple cancers jointly. The precision-recall curves were plotted based on the average of 10 simulated data sets for each scenario. In our simulation, some existing approaches to studying miRNA-gene interactions, such as LASSO and GenMir+++, are not applicable, since they require expression profiles and are limited to single cancer analysis or simple aggregate analysis.

\[
\text{precision} = \frac{TP}{TP + FP} \quad \text{recall} = \frac{TP}{TP + FN}
\] (9)

2.3 Real data analysis
We considered The Cancer Genome Atlas (TCGA) datasets with large sample sizes that enable us to study the miRNA-gene interactions individually and jointly. At the time of our analysis, a few cancer datasets, including ovarian cancer (OV), glioblastoma (GBM) and breast cancer (BRCA), were available for use without restrictions. At least 400 tumor samples in each cancer were profiled for paired miRNA and gene expressions using different platforms. OV and GBM were studied by expression microarrays; BRCA were studied by RNA-seq and miRNA-seq. These three cancers were used to evaluate MCMG for joint inference of miRNA-gene interactions.
For microarray datasets, the level 3 summarized data were downloaded and then batch effects were corrected with combat (Johnson, et al., 2007) for both gene and miRNA expression levels. For RNA-seq and miRNA-seq datasets, the level 3 data with RPKM normalization were downloaded. Then for miRNA or gene expression matrix in one cancer, the sample median was subtracted, and then genes and miRNAs with high variability were selected by median absolute deviation (MAD) >= 0.4 as done in the original TCGA publications (The Cancer Genome Atlas Network, 2011). Then quantile normalization was applied to each gene or miRNA across samples to facilitate correlation analysis. The selected genes and miRNAs overlapped among cancers are subjected to subsequent analysis of interaction identification.

The performance of our proposed method, MCMG, was compared with the existing methods to infer miRNA-gene interactions from expression datasets. The representative methods we compared include Pearson correlation in simple correlation analysis category, Lasso regression (Lu, et al., 2011) in the simple/regularized regression category, and GenMir++ (Huang, et al., 2007) in the Bayesian inference category. Since the existing methods cannot perform joint analysis, they were applied both to individual cancers and simple aggregate datasets (concatenate all cancer data together to form one set).

The effect of separation of null and alternative distributions (scenario I). A-C: local fdr estimation of data with alternative distribution mean -1, -2 and -3. D: Precision-recall curve for three mean values. Black lines represent single cancer analysis and red lines represent joint analysis of multiple cancers, labeled with number 1, 2 and 3 for mean value -1, -2 and -3, respectively.

Fig. 2. The effect of separation of null and alternative distributions (scenario I). A-C: local fdr estimation of data with alternative distribution mean -1, -2 and -3. D: Precision-recall curve for three mean values. Black lines represent single cancer analysis and red lines represent joint analysis of multiple cancers, labeled with number 1, 2 and 3 for mean value -1, -2 and -3, respectively.

3 RESULTS AND DISCUSSION

3.1 Simulation studies

To assess the effectiveness of MCMG, we performed four sets of simulations as described in Methods.

We first considered a simple biological setting where the two cancers shared the same set of miRNA-gene pairs and investigated the effect of interaction strengths on the performance of our method. We assumed the mean values for the alternative distribution to be -1, -2, and -3, respectively. The estimation of the probability of null distribution (p_{null}) was 0.995 (Figure 2A), 0.961 (Figure 2B) and 0.916 (Figure 2C), respectively by the Maximum Likelihood Estimation (MLE), where the true p_{null} was 0.9. The estimation of p_{null} is more accurate with larger separations. In Figure 2D, the precision-recall curves show that the joint analysis improved the detection of true interactions under all mean values of non-null distribution even when the true interactions were not able to be well distinguished from the null distribution as $\mu = -1$. The greatest improvement was achieved by $\mu = -2$ since a larger separation such as $\mu = -3$ is already sufficient to identify majority of true interactions with single cancer analysis. So in the following simulations, we used $\mu = -2$ or -2 to estimate the benefit of joint inference of multiple cancers.

Fig. 3. The effect of similarity of interaction sets among cancers (scenario II) and number of cancers in the joint study (scenario III). A-C: Precision-recall curves for different similarities among cancers and different number of cancers (A:2, B:4, C:6) involved in study. Black lines represent single cancer analysis; colored lines represent joint analysis with different similarities among cancers. Red: 100%; blue: 90%; green: 80%; yellow: 70%; pink: 60%. D. True and estimated similarity among cancers by joint analysis of 2, 4 and 6 cancers. Colored lines are true similarity levels; boxplots show the corresponding estimation from 10 repeats.

The second set of simulations explored the effect of similarity (the proportion of overlapping interaction sets) among cancers. The underlying idea of MCMG is to integrate commonality among cancers to increase the power of detection of true interactions and reduce false positive results. So we expect a higher number of shared interactions among cancers would enhance the accuracy of posterior probability estimation from single cancer analysis. This was indeed the case as shown in Figures 3A-C with different numbers of cancers studied, which indicates that MCMG can capture the shared information well. In addition, Figure 3 also reveals that more different but related cancers involved in joint analysis provide the opportunity to compensate the interaction heterogeneity among each other, which result in higher power to discover true
positives. Specifically, different interactions may be shared by different groups of cancers under study. More cancer types present in a joint study offer greater shared information available on interactions, leading to improved inference. Then, we used probabilities of status \(\pi(t_1, \ldots, t_D) \) to calculate the similarities as shown in equation (5). The estimated similarities have a linear relationship with true similarities, but about 10-20% lower than the true ones considering the absolute values (Figure 3D). It might be mainly due to the difficulty to classify the pairs at the boundary of null and alternative distributions. But the accurate estimation of similarity trend would help MCMG to put correct “weights” \((\pi(t_1, \ldots, t_D)) \) among cancers to infer interactions.

In the last scenario, we examined an effect that is specific and inevitable in miRNA studies, namely, the presence of systematic positive correlations \((-5\% \text{ of all pairs})\) between miRNA and their targets. The systematic positive correlations may increase the posterior probability for some false interactions. In this simulation, the effect of systematic positive correlations was investigated to see whether these “unwanted” correlations would affect the prediction of true sets. The precision-recall curves were just slightly lower compared to those of negative true sets only (Figure 3A), and the improvement of prediction was still obvious (Figure 4), suggesting that the presence of high positive z-scores may not affect the performance of the method. The standard deviation of precision and recall calculated in all scenarios ranges from 0 to 0.04 with a median about 0.02, which shows the stability of the methods on interaction discovery among repeats in the simulations.

3.2 Real data application

In this section, we demonstrate the effectiveness of the proposed method on miRNA-gene interaction identification using TCGA datasets. First, expression profiles of two cancers generated with the same technique (gene expression microarray) were used to show the improvement of inference. Then, we incorporated another cancer studied by RNA-seq to illustrate the analysis of three cancers and the ability of our method to naturally incorporate different data types in interaction inference.
prioritize interactions seen in two cancers over the ones found in only one when they have similar z-scores. Meanwhile, our method still identified miRNA-gene interaction pairs (396 pairs) specific for each cancer that account for the heterogeneity among cancers. GenMir++ identified 204 common pairs (Figure 5F), similar with Pearson correlation (Figure 5D), while Lasso only identified 127 common ones and some of them even had z-scores near 0 (Figure 5E). The reason might be that the pairs in Lasso were ranked with refined score from 100 to 0 based on estimated regression coefficient in each gene separately. The ranking method might be good if multiple diseases are combined to find pairs since more sets of genes might be involved in miRNA regulation processes. However, here we studied cancers separately, and the ranking method may select some pairs from genes not involved in the miRNA regulation in the cancer, which results in high ranking but with small z-values.

To further evaluate the performance of the proposed method, we examined the number of validated interactions identified in the top of the target lists by each method in OV (Figure 5G) and GBM (Figure 5H), respectively. Among predicted ones by TargetScan, 72 were experimentally validated and curated by TarBase V5.0 (Papadopoulos, et al., 2009). Enrichment of validated targets is improved by all methods incorporating expression data compared to sequence-based prediction only method TargetScan. Pearson correlation and GenMir++ had similar number of validated targets at different cutoffs. Lasso method did not perform well in OV, but had similar performance in GBM. However, MCMG showed consistently better identification of validated targets in every cutoff in this two-cancer study.

The comparison methods can be applied to aggregated datasets concatenating the two cancers together. We applied Pearson correlation, Lasso and GenMir++ to concatenated OV and GBM data (Figure 5I). Probably due to the refined scores provided by Lasso method for each gene separately, Lasso performed better than the other two methods in the situation of aggregated dataset when more genes might be involved in miRNA regulatory network than that of single cancer dataset. However, all comparison methods identified fewer validated targets than those identified by the analysis of single cancers. So MCMG had even better performance here, since it already showed enhanced identification of pairs compared to single cancer analysis in Figures 5G and H. Higher accuracy of single cancer analysis compared to simple aggregate analysis also confirmed the hypothesis that when the sample size is sufficiently large, single cancer analysis would be preferred.

3.2.2 Three cancers with different data types

Next, we considered joint analysis of three cancers (OV, GBM, BRCA) collected on different platforms, where BRCA was generated by RNAseq, while the other two were measured by microarrays. We note that these three datasets are not able to be concatenated because of their different formats, so the existing methods can only be applied to single cancer analysis, but not aggregate analysis. However, our method can naturally incorporate different data types to infer interacting miRNA-gene pairs. The within-cancer inference step generates normalized z-scores for all cancers no matter what the data type is, and then there is no difficulty to apply the second stage cross-cancer inference of MCMG to well-formatted z-scores.

The estimated probabilities converged after 26 iterations for the joint status (OV, GBM, BRCA); 0.7282, 0.0971, 0.0532, 0.0198, 0.0169, 0.0287, 0.0207 and 0.0355, for (0,0,0), (0,0,1), (0,1,0), (0,1,1), (1,0,0), (1,0,1), (1,1,0) and (1,1,1), respectively. The similarity between OV-BRCA was estimated to be 49.26%, which was higher than 36.66% estimated between GBM-BRCA, showing closer relationship of OV-BRCA than GBM-BRCA. Despite the 49.36% similarity score between OV and GBM, the percentage of shared interactions of OV-GBM and OV-BRCA in all the potential interaction list of OV was 56.16% and 64.19%, which agreed with the conclusion that the similarity of OV-BRCA is higher than GBM-BRCA. This is consistent with our expectation that BRCA and OV are more similar among the three cancers, since they are both female cancers and share some commonality in cancer-causing mutations or pathways (The Cancer Genome Atlas Network, 2012). Thus, MCMG led to a reasonable similarity inference among cancers based on gene-miRNA interaction data.
The number of validated interactions in the top lists was also investigated for the three-cancer study. The results of OV (Figure 6A) and GBM (Figure 6B) are very similar with those from the joint analysis of two cancers, as our method can identify the largest number of validated interactions from predicted ones. For BRCA (Figure 6C), Lasso had better prediction than Pearson and GenMir++. But our proposed method was still the best among all methods from the top list 200 to 1000.

Thus, real data analyses showed that our method outperformed existing methods by taking into account shared information and provided good assessment of relationship among cancers.

4 CONCLUSION

The existing analysis of miRNA-gene interactions with expression data is either based on single cancer data set or aggregated data set concatenated from multiple cancers. In this paper, we proposed a novel approach (MCMG) to study microRNA-gene interactions with paired expression profiles. We use an empirical Bayes method to explicitly borrow information among cancers to improve the identification of interactions. With simulation studies considering features of gene-miRNA pair data and two sets of real TCGA data analysis, we demonstrated the benefit of our joint analysis compared to single cancer or simple aggregate analysis. MCMG can efficiently recognize common interactions, and also retains specific miRNA regulations for each cancer. Interestingly, the hidden relationship among cancers could also be quantitatively estimated by our method based on miRNA-gene pairs data, which might be useful for other disease studies as well. This two-stage method infers the probability of interactions within each cancer and then the posterior marginal probability considering all cancers in a sequential manner, which enables us to naturally combine cancers with different data types in the study. The two-stage design also provides the possibility to substitute the initial step (Pearson correlation) with results from other methods (such as lasso or Bayesian inference) if one prefers, and then they can still benefit from the second stage of integrating multiple cancers for better prediction.

ACKNOWLEDGEMENTS

We thank Xiu Huang, John Ferguson and Can Yang for helpful discussions, and Yale University Biomedical High Performance Computing Center (YHPC) for data storage and computation runs. Funding: XC was supported by Lo Graduate Fellowship for Excellence in Stem Cell Research and a fellowship from the China Scholars Council. FJS was supported by NIH CA131301 and an Anonymous Foundation. HZ was supported by NIH grants R01 GM59507 and P01CA154295 and NSF grant DMS 1106738. YHPC was funded by NIH RR19895. There is no conflict of interest.

REFERENCES

Chen, Y., et al. (2011) MM-ChIP enables integrative analysis of cross-platform and between-laboratory ChIP-chip or ChIP-seq data, Genome biology, 12, R11.

